summaryrefslogtreecommitdiff
path: root/contrib/rtauto/Rtauto.v
diff options
context:
space:
mode:
authorGravatar Stephane Glondu <steph@glondu.net>2010-07-21 09:46:51 +0200
committerGravatar Stephane Glondu <steph@glondu.net>2010-07-21 09:46:51 +0200
commit5b7eafd0f00a16d78f99a27f5c7d5a0de77dc7e6 (patch)
tree631ad791a7685edafeb1fb2e8faeedc8379318ae /contrib/rtauto/Rtauto.v
parentda178a880e3ace820b41d38b191d3785b82991f5 (diff)
Imported Upstream snapshot 8.3~beta0+13298
Diffstat (limited to 'contrib/rtauto/Rtauto.v')
-rw-r--r--contrib/rtauto/Rtauto.v398
1 files changed, 0 insertions, 398 deletions
diff --git a/contrib/rtauto/Rtauto.v b/contrib/rtauto/Rtauto.v
deleted file mode 100644
index 98fca90f..00000000
--- a/contrib/rtauto/Rtauto.v
+++ /dev/null
@@ -1,398 +0,0 @@
-(************************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(************************************************************************)
-
-(* $Id: Rtauto.v 7639 2005-12-02 10:01:15Z gregoire $ *)
-
-
-Require Export List.
-Require Export Bintree.
-Require Import Bool.
-Unset Boxed Definitions.
-
-Ltac caseq t := generalize (refl_equal t); pattern t at -1; case t.
-Ltac clean:=try (simpl;congruence).
-
-Inductive form:Set:=
- Atom : positive -> form
-| Arrow : form -> form -> form
-| Bot
-| Conjunct : form -> form -> form
-| Disjunct : form -> form -> form.
-
-Notation "[ n ]":=(Atom n).
-Notation "A =>> B":= (Arrow A B) (at level 59, right associativity).
-Notation "#" := Bot.
-Notation "A //\\ B" := (Conjunct A B) (at level 57, left associativity).
-Notation "A \\// B" := (Disjunct A B) (at level 58, left associativity).
-
-Definition ctx := Store form.
-
-Fixpoint pos_eq (m n:positive) {struct m} :bool :=
-match m with
- xI mm => match n with xI nn => pos_eq mm nn | _ => false end
-| xO mm => match n with xO nn => pos_eq mm nn | _ => false end
-| xH => match n with xH => true | _ => false end
-end.
-
-Theorem pos_eq_refl : forall m n, pos_eq m n = true -> m = n.
-induction m;simpl;destruct n;congruence ||
-(intro e;apply f_equal with positive;auto).
-Qed.
-
-Fixpoint form_eq (p q:form) {struct p} :bool :=
-match p with
- Atom m => match q with Atom n => pos_eq m n | _ => false end
-| Arrow p1 p2 =>
-match q with
- Arrow q1 q2 => form_eq p1 q1 && form_eq p2 q2
-| _ => false end
-| Bot => match q with Bot => true | _ => false end
-| Conjunct p1 p2 =>
-match q with
- Conjunct q1 q2 => form_eq p1 q1 && form_eq p2 q2
-| _ => false
-end
-| Disjunct p1 p2 =>
-match q with
- Disjunct q1 q2 => form_eq p1 q1 && form_eq p2 q2
-| _ => false
-end
-end.
-
-Theorem form_eq_refl: forall p q, form_eq p q = true -> p = q.
-induction p;destruct q;simpl;clean.
-intro h;generalize (pos_eq_refl _ _ h);congruence.
-caseq (form_eq p1 q1);clean.
-intros e1 e2;generalize (IHp1 _ e1) (IHp2 _ e2);congruence.
-caseq (form_eq p1 q1);clean.
-intros e1 e2;generalize (IHp1 _ e1) (IHp2 _ e2);congruence.
-caseq (form_eq p1 q1);clean.
-intros e1 e2;generalize (IHp1 _ e1) (IHp2 _ e2);congruence.
-Qed.
-
-Implicit Arguments form_eq_refl [p q].
-
-Section with_env.
-
-Variable env:Store Prop.
-
-Fixpoint interp_form (f:form): Prop :=
-match f with
-[n]=> match get n env with PNone => True | PSome P => P end
-| A =>> B => (interp_form A) -> (interp_form B)
-| # => False
-| A //\\ B => (interp_form A) /\ (interp_form B)
-| A \\// B => (interp_form A) \/ (interp_form B)
-end.
-
-Notation "[[ A ]]" := (interp_form A).
-
-Fixpoint interp_ctx (hyps:ctx) (F:Full hyps) (G:Prop) {struct F} : Prop :=
-match F with
- F_empty => G
-| F_push H hyps0 F0 => interp_ctx hyps0 F0 ([[H]] -> G)
-end.
-
-Require Export BinPos.
-
-Ltac wipe := intros;simpl;constructor.
-
-Lemma compose0 :
-forall hyps F (A:Prop),
- A ->
- (interp_ctx hyps F A).
-induction F;intros A H;simpl;auto.
-Qed.
-
-Lemma compose1 :
-forall hyps F (A B:Prop),
- (A -> B) ->
- (interp_ctx hyps F A) ->
- (interp_ctx hyps F B).
-induction F;intros A B H;simpl;auto.
-apply IHF;auto.
-Qed.
-
-Theorem compose2 :
-forall hyps F (A B C:Prop),
- (A -> B -> C) ->
- (interp_ctx hyps F A) ->
- (interp_ctx hyps F B) ->
- (interp_ctx hyps F C).
-induction F;intros A B C H;simpl;auto.
-apply IHF;auto.
-Qed.
-
-Theorem compose3 :
-forall hyps F (A B C D:Prop),
- (A -> B -> C -> D) ->
- (interp_ctx hyps F A) ->
- (interp_ctx hyps F B) ->
- (interp_ctx hyps F C) ->
- (interp_ctx hyps F D).
-induction F;intros A B C D H;simpl;auto.
-apply IHF;auto.
-Qed.
-
-Lemma weaken : forall hyps F f G,
- (interp_ctx hyps F G) ->
- (interp_ctx (hyps\f) (F_push f hyps F) G).
-induction F;simpl;intros;auto.
-apply compose1 with ([[a]]-> G);auto.
-Qed.
-
-Theorem project_In : forall hyps F g,
-In g hyps F ->
-interp_ctx hyps F [[g]].
-induction F;simpl.
-contradiction.
-intros g H;destruct H.
-subst;apply compose0;simpl;trivial.
-apply compose1 with [[g]];auto.
-Qed.
-
-Theorem project : forall hyps F p g,
-get p hyps = PSome g->
-interp_ctx hyps F [[g]].
-intros hyps F p g e; apply project_In.
-apply get_In with p;assumption.
-Qed.
-
-Implicit Arguments project [hyps p g].
-
-Inductive proof:Set :=
- Ax : positive -> proof
-| I_Arrow : proof -> proof
-| E_Arrow : positive -> positive -> proof -> proof
-| D_Arrow : positive -> proof -> proof -> proof
-| E_False : positive -> proof
-| I_And: proof -> proof -> proof
-| E_And: positive -> proof -> proof
-| D_And: positive -> proof -> proof
-| I_Or_l: proof -> proof
-| I_Or_r: proof -> proof
-| E_Or: positive -> proof -> proof -> proof
-| D_Or: positive -> proof -> proof
-| Cut: form -> proof -> proof -> proof.
-
-Notation "hyps \ A" := (push A hyps) (at level 72,left associativity).
-
-Fixpoint check_proof (hyps:ctx) (gl:form) (P:proof) {struct P}: bool :=
- match P with
- Ax i =>
- match get i hyps with
- PSome F => form_eq F gl
- | _ => false
- end
-| I_Arrow p =>
- match gl with
- A =>> B => check_proof (hyps \ A) B p
- | _ => false
- end
-| E_Arrow i j p =>
- match get i hyps,get j hyps with
- PSome A,PSome (B =>>C) =>
- form_eq A B && check_proof (hyps \ C) (gl) p
- | _,_ => false
- end
-| D_Arrow i p1 p2 =>
- match get i hyps with
- PSome ((A =>>B)=>>C) =>
- (check_proof ( hyps \ B =>> C \ A) B p1) && (check_proof (hyps \ C) gl p2)
- | _ => false
- end
-| E_False i =>
- match get i hyps with
- PSome # => true
- | _ => false
- end
-| I_And p1 p2 =>
- match gl with
- A //\\ B =>
- check_proof hyps A p1 && check_proof hyps B p2
- | _ => false
- end
-| E_And i p =>
- match get i hyps with
- PSome (A //\\ B) => check_proof (hyps \ A \ B) gl p
- | _=> false
- end
-| D_And i p =>
- match get i hyps with
- PSome (A //\\ B =>> C) => check_proof (hyps \ A=>>B=>>C) gl p
- | _=> false
- end
-| I_Or_l p =>
- match gl with
- (A \\// B) => check_proof hyps A p
- | _ => false
- end
-| I_Or_r p =>
- match gl with
- (A \\// B) => check_proof hyps B p
- | _ => false
- end
-| E_Or i p1 p2 =>
- match get i hyps with
- PSome (A \\// B) =>
- check_proof (hyps \ A) gl p1 && check_proof (hyps \ B) gl p2
- | _=> false
- end
-| D_Or i p =>
- match get i hyps with
- PSome (A \\// B =>> C) =>
- (check_proof (hyps \ A=>>C \ B=>>C) gl p)
- | _=> false
- end
-| Cut A p1 p2 =>
- check_proof hyps A p1 && check_proof (hyps \ A) gl p2
-end.
-
-Theorem interp_proof:
-forall p hyps F gl,
-check_proof hyps gl p = true -> interp_ctx hyps F [[gl]].
-
-induction p;intros hyps F gl.
-
-(* cas Axiom *)
-Focus 1.
-simpl;caseq (get p hyps);clean.
-intros f nth_f e;rewrite <- (form_eq_refl e).
-apply project with p;trivial.
-
-(* Cas Arrow_Intro *)
-Focus 1.
-destruct gl;clean.
-simpl;intros.
-change (interp_ctx (hyps\gl1) (F_push gl1 hyps F) [[gl2]]).
-apply IHp;try constructor;trivial.
-
-(* Cas Arrow_Elim *)
-Focus 1.
-simpl check_proof;caseq (get p hyps);clean.
-intros f ef;caseq (get p0 hyps);clean.
-intros f0 ef0;destruct f0;clean.
-caseq (form_eq f f0_1);clean.
-simpl;intros e check_p1.
-generalize (project F ef) (project F ef0)
-(IHp (hyps \ f0_2) (F_push f0_2 hyps F) gl check_p1);
-clear check_p1 IHp p p0 p1 ef ef0.
-simpl.
-apply compose3.
-rewrite (form_eq_refl e).
-auto.
-
-(* cas Arrow_Destruct *)
-Focus 1.
-simpl;caseq (get p1 hyps);clean.
-intros f ef;destruct f;clean.
-destruct f1;clean.
-caseq (check_proof (hyps \ f1_2 =>> f2 \ f1_1) f1_2 p2);clean.
-intros check_p1 check_p2.
-generalize (project F ef)
-(IHp1 (hyps \ f1_2 =>> f2 \ f1_1)
-(F_push f1_1 (hyps \ f1_2 =>> f2)
- (F_push (f1_2 =>> f2) hyps F)) f1_2 check_p1)
-(IHp2 (hyps \ f2) (F_push f2 hyps F) gl check_p2).
-simpl;apply compose3;auto.
-
-(* Cas False_Elim *)
-Focus 1.
-simpl;caseq (get p hyps);clean.
-intros f ef;destruct f;clean.
-intros _; generalize (project F ef).
-apply compose1;apply False_ind.
-
-(* Cas And_Intro *)
-Focus 1.
-simpl;destruct gl;clean.
-caseq (check_proof hyps gl1 p1);clean.
-intros Hp1 Hp2;generalize (IHp1 hyps F gl1 Hp1) (IHp2 hyps F gl2 Hp2).
-apply compose2 ;simpl;auto.
-
-(* cas And_Elim *)
-Focus 1.
-simpl;caseq (get p hyps);clean.
-intros f ef;destruct f;clean.
-intro check_p;generalize (project F ef)
-(IHp (hyps \ f1 \ f2) (F_push f2 (hyps \ f1) (F_push f1 hyps F)) gl check_p).
-simpl;apply compose2;intros [h1 h2];auto.
-
-(* cas And_Destruct *)
-Focus 1.
-simpl;caseq (get p hyps);clean.
-intros f ef;destruct f;clean.
-destruct f1;clean.
-intro H;generalize (project F ef)
-(IHp (hyps \ f1_1 =>> f1_2 =>> f2)
-(F_push (f1_1 =>> f1_2 =>> f2) hyps F) gl H);clear H;simpl.
-apply compose2;auto.
-
-(* cas Or_Intro_left *)
-Focus 1.
-destruct gl;clean.
-intro Hp;generalize (IHp hyps F gl1 Hp).
-apply compose1;simpl;auto.
-
-(* cas Or_Intro_right *)
-Focus 1.
-destruct gl;clean.
-intro Hp;generalize (IHp hyps F gl2 Hp).
-apply compose1;simpl;auto.
-
-(* cas Or_elim *)
-Focus 1.
-simpl;caseq (get p1 hyps);clean.
-intros f ef;destruct f;clean.
-caseq (check_proof (hyps \ f1) gl p2);clean.
-intros check_p1 check_p2;generalize (project F ef)
-(IHp1 (hyps \ f1) (F_push f1 hyps F) gl check_p1)
-(IHp2 (hyps \ f2) (F_push f2 hyps F) gl check_p2);
-simpl;apply compose3;simpl;intro h;destruct h;auto.
-
-(* cas Or_Destruct *)
-Focus 1.
-simpl;caseq (get p hyps);clean.
-intros f ef;destruct f;clean.
-destruct f1;clean.
-intro check_p0;generalize (project F ef)
-(IHp (hyps \ f1_1 =>> f2 \ f1_2 =>> f2)
-(F_push (f1_2 =>> f2) (hyps \ f1_1 =>> f2)
- (F_push (f1_1 =>> f2) hyps F)) gl check_p0);simpl.
-apply compose2;auto.
-
-(* cas Cut *)
-Focus 1.
-simpl;caseq (check_proof hyps f p1);clean.
-intros check_p1 check_p2;
-generalize (IHp1 hyps F f check_p1)
-(IHp2 (hyps\f) (F_push f hyps F) gl check_p2);
-simpl; apply compose2;auto.
-Qed.
-
-Theorem Reflect: forall gl prf, if check_proof empty gl prf then [[gl]] else True.
-intros gl prf;caseq (check_proof empty gl prf);intro check_prf.
-change (interp_ctx empty F_empty [[gl]]) ;
-apply interp_proof with prf;assumption.
-trivial.
-Qed.
-
-End with_env.
-
-(*
-(* A small example *)
-Parameters A B C D:Prop.
-Theorem toto:A /\ (B \/ C) -> (A /\ B) \/ (A /\ C).
-exact (Reflect (empty \ A \ B \ C)
-([1] //\\ ([2] \\// [3]) =>> [1] //\\ [2] \\// [1] //\\ [3])
-(I_Arrow (E_And 1 (E_Or 3
- (I_Or_l (I_And (Ax 2) (Ax 4)))
- (I_Or_r (I_And (Ax 2) (Ax 4))))))).
-Qed.
-Print toto.
-*)