summaryrefslogtreecommitdiff
path: root/contrib/rtauto/Bintree.v
diff options
context:
space:
mode:
authorGravatar Samuel Mimram <smimram@debian.org>2006-04-28 14:59:16 +0000
committerGravatar Samuel Mimram <smimram@debian.org>2006-04-28 14:59:16 +0000
commit3ef7797ef6fc605dfafb32523261fe1b023aeecb (patch)
treead89c6bb57ceee608fcba2bb3435b74e0f57919e /contrib/rtauto/Bintree.v
parent018ee3b0c2be79eb81b1f65c3f3fa142d24129c8 (diff)
Imported Upstream version 8.0pl3+8.1alphaupstream/8.0pl3+8.1alpha
Diffstat (limited to 'contrib/rtauto/Bintree.v')
-rw-r--r--contrib/rtauto/Bintree.v498
1 files changed, 498 insertions, 0 deletions
diff --git a/contrib/rtauto/Bintree.v b/contrib/rtauto/Bintree.v
new file mode 100644
index 00000000..97d80a92
--- /dev/null
+++ b/contrib/rtauto/Bintree.v
@@ -0,0 +1,498 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(* $Id: Bintree.v 7233 2005-07-15 12:34:56Z corbinea $ *)
+
+Require Export List.
+Require Export BinPos.
+
+Unset Boxed Definitions.
+
+Open Scope positive_scope.
+
+Ltac clean := try (simpl; congruence).
+Ltac caseq t := generalize (refl_equal t); pattern t at -1; case t.
+
+Functional Scheme Pcompare_ind := Induction for Pcompare.
+
+Lemma Prect : forall P : positive -> Type,
+ P 1 ->
+ (forall n : positive, P n -> P (Psucc n)) -> forall p : positive, P p.
+intros P H1 Hsucc n; induction n.
+rewrite <- plus_iter_xI; apply Hsucc; apply iterate_add; assumption.
+rewrite <- plus_iter_xO; apply iterate_add; assumption.
+assumption.
+Qed.
+
+Lemma Gt_Eq_Gt : forall p q cmp,
+ (p ?= q) Eq = Gt -> (p ?= q) cmp = Gt.
+apply (Pcompare_ind (fun p q cmp => (p ?= q) Eq = Gt -> (p ?= q) cmp = Gt));
+simpl;auto;congruence.
+Qed.
+
+Lemma Gt_Lt_Gt : forall p q cmp,
+ (p ?= q) Lt = Gt -> (p ?= q) cmp = Gt.
+apply (Pcompare_ind (fun p q cmp => (p ?= q) Lt = Gt -> (p ?= q) cmp = Gt));
+simpl;auto;congruence.
+Qed.
+
+Lemma Gt_Psucc_Eq: forall p q,
+ (p ?= Psucc q) Gt = Gt -> (p ?= q) Eq = Gt.
+intros p q;generalize p;clear p;induction q;destruct p;simpl;auto;try congruence.
+intro;apply Gt_Eq_Gt;auto.
+apply Gt_Lt_Gt.
+Qed.
+
+Lemma Eq_Psucc_Gt: forall p q,
+ (p ?= Psucc q) Eq = Eq -> (p ?= q) Eq = Gt.
+intros p q;generalize p;clear p;induction q;destruct p;simpl;auto;try congruence.
+intro H;elim (Pcompare_not_Eq p (Psucc q));tauto.
+intro H;apply Gt_Eq_Gt;auto.
+intro H;rewrite Pcompare_Eq_eq with p q;auto.
+generalize q;clear q IHq p H;induction q;simpl;auto.
+intro H;elim (Pcompare_not_Eq p q);tauto.
+Qed.
+
+Lemma Gt_Psucc_Gt : forall n p cmp cmp0,
+ (n?=p) cmp = Gt -> (Psucc n?=p) cmp0 = Gt.
+induction n;intros [ | p | p];simpl;try congruence.
+intros; apply IHn with cmp;trivial.
+intros; apply IHn with Gt;trivial.
+intros;apply Gt_Lt_Gt;trivial.
+intros [ | | ] _ H.
+apply Gt_Eq_Gt;trivial.
+apply Gt_Lt_Gt;trivial.
+trivial.
+Qed.
+
+Lemma Gt_Psucc: forall p q,
+ (p ?= Psucc q) Eq = Gt -> (p ?= q) Eq = Gt.
+intros p q;generalize p;clear p;induction q;destruct p;simpl;auto;try congruence.
+apply Gt_Psucc_Eq.
+intro;apply Gt_Eq_Gt;apply IHq;auto.
+apply Gt_Eq_Gt.
+apply Gt_Lt_Gt.
+Qed.
+
+Lemma Psucc_Gt : forall p,
+ (Psucc p ?= p) Eq = Gt.
+induction p;simpl.
+apply Gt_Eq_Gt;auto.
+generalize p;clear p IHp.
+induction p;simpl;auto.
+reflexivity.
+Qed.
+
+Fixpoint pos_eq (m n:positive) {struct m} :bool :=
+match m, n with
+ xI mm, xI nn => pos_eq mm nn
+| xO mm, xO nn => pos_eq mm nn
+| xH, xH => true
+| _, _ => false
+end.
+
+Theorem pos_eq_refl : forall m n, pos_eq m n = true -> m = n.
+induction m;simpl;intro n;destruct n;congruence ||
+(intro e;apply f_equal with positive;auto).
+Defined.
+
+Theorem refl_pos_eq : forall m, pos_eq m m = true.
+induction m;simpl;auto.
+Qed.
+
+Definition pos_eq_dec (m n:positive) :{m=n}+{m<>n} .
+fix 1;intros [mm|mm|] [nn|nn|];try (right;congruence).
+case (pos_eq_dec mm nn).
+intro e;left;apply (f_equal xI e).
+intro ne;right;congruence.
+case (pos_eq_dec mm nn).
+intro e;left;apply (f_equal xO e).
+intro ne;right;congruence.
+left;reflexivity.
+Defined.
+
+Theorem pos_eq_dec_refl : forall m, pos_eq_dec m m = left (m<>m) (refl_equal m) .
+fix 1;intros [mm|mm|].
+simpl; rewrite pos_eq_dec_refl; reflexivity.
+simpl; rewrite pos_eq_dec_refl; reflexivity.
+reflexivity.
+Qed.
+
+Theorem pos_eq_dec_ex : forall m n,
+ pos_eq m n =true -> exists h:m=n,
+ pos_eq_dec m n = left (m<>n) h.
+fix 1;intros [mm|mm|] [nn|nn|];try (simpl;congruence).
+simpl;intro e.
+elim (pos_eq_dec_ex _ _ e).
+intros x ex; rewrite ex.
+exists (f_equal xI x).
+reflexivity.
+simpl;intro e.
+elim (pos_eq_dec_ex _ _ e).
+intros x ex; rewrite ex.
+exists (f_equal xO x).
+reflexivity.
+simpl.
+exists (refl_equal xH).
+reflexivity.
+Qed.
+
+Fixpoint nat_eq (m n:nat) {struct m}: bool:=
+match m, n with
+O,O => true
+| S mm,S nn => nat_eq mm nn
+| _,_ => false
+end.
+
+Theorem nat_eq_refl : forall m n, nat_eq m n = true -> m = n.
+induction m;simpl;intro n;destruct n;congruence ||
+(intro e;apply f_equal with nat;auto).
+Defined.
+
+Theorem refl_nat_eq : forall n, nat_eq n n = true.
+induction n;simpl;trivial.
+Defined.
+
+Fixpoint Lget (A:Set) (n:nat) (l:list A) {struct l}:option A :=
+match l with nil => None
+| x::q =>
+match n with O => Some x
+| S m => Lget A m q
+end end .
+
+Implicit Arguments Lget [A].
+
+Lemma map_app : forall (A B:Set) (f:A -> B) l m,
+List.map f (l ++ m) = List.map f l ++ List.map f m.
+induction l.
+reflexivity.
+simpl.
+intro m ; apply f_equal with (list B);apply IHl.
+Qed.
+
+Lemma length_map : forall (A B:Set) (f:A -> B) l,
+length (List.map f l) = length l.
+induction l.
+reflexivity.
+simpl; apply f_equal with nat;apply IHl.
+Qed.
+
+Lemma Lget_map : forall (A B:Set) (f:A -> B) i l,
+Lget i (List.map f l) =
+match Lget i l with Some a =>
+Some (f a) | None => None end.
+induction i;intros [ | x l ] ;trivial.
+simpl;auto.
+Qed.
+
+Lemma Lget_app : forall (A:Set) (a:A) l i,
+Lget i (l ++ a :: nil) = if nat_eq i (length l) then Some a else Lget i l.
+induction l;simpl Lget;simpl length.
+intros [ | i];simpl;reflexivity.
+intros [ | i];simpl.
+reflexivity.
+auto.
+Qed.
+
+Lemma Lget_app_Some : forall (A:Set) l delta i (a: A),
+Lget i l = Some a ->
+Lget i (l ++ delta) = Some a.
+induction l;destruct i;simpl;try congruence;auto.
+Qed.
+
+Section Store.
+
+Variable A:Type.
+
+Inductive Poption : Type:=
+ PSome : A -> Poption
+| PNone : Poption.
+
+Inductive Tree : Type :=
+ Tempty : Tree
+ | Branch0 : Tree -> Tree -> Tree
+ | Branch1 : A -> Tree -> Tree -> Tree.
+
+Fixpoint Tget (p:positive) (T:Tree) {struct p} : Poption :=
+ match T with
+ Tempty => PNone
+ | Branch0 T1 T2 =>
+ match p with
+ xI pp => Tget pp T2
+ | xO pp => Tget pp T1
+ | xH => PNone
+ end
+ | Branch1 a T1 T2 =>
+ match p with
+ xI pp => Tget pp T2
+ | xO pp => Tget pp T1
+ | xH => PSome a
+ end
+end.
+
+Fixpoint Tadd (p:positive) (a:A) (T:Tree) {struct p}: Tree :=
+ match T with
+ | Tempty =>
+ match p with
+ | xI pp => Branch0 Tempty (Tadd pp a Tempty)
+ | xO pp => Branch0 (Tadd pp a Tempty) Tempty
+ | xH => Branch1 a Tempty Tempty
+ end
+ | Branch0 T1 T2 =>
+ match p with
+ | xI pp => Branch0 T1 (Tadd pp a T2)
+ | xO pp => Branch0 (Tadd pp a T1) T2
+ | xH => Branch1 a T1 T2
+ end
+ | Branch1 b T1 T2 =>
+ match p with
+ | xI pp => Branch1 b T1 (Tadd pp a T2)
+ | xO pp => Branch1 b (Tadd pp a T1) T2
+ | xH => Branch1 a T1 T2
+ end
+ end.
+
+Definition mkBranch0 (T1 T2:Tree) :=
+ match T1,T2 with
+ Tempty ,Tempty => Tempty
+ | _,_ => Branch0 T1 T2
+ end.
+
+Fixpoint Tremove (p:positive) (T:Tree) {struct p}: Tree :=
+ match T with
+ | Tempty => Tempty
+ | Branch0 T1 T2 =>
+ match p with
+ | xI pp => mkBranch0 T1 (Tremove pp T2)
+ | xO pp => mkBranch0 (Tremove pp T1) T2
+ | xH => T
+ end
+ | Branch1 b T1 T2 =>
+ match p with
+ | xI pp => Branch1 b T1 (Tremove pp T2)
+ | xO pp => Branch1 b (Tremove pp T1) T2
+ | xH => mkBranch0 T1 T2
+ end
+ end.
+
+
+Theorem Tget_Tempty: forall (p : positive), Tget p (Tempty) = PNone.
+destruct p;reflexivity.
+Qed.
+
+Theorem Tget_Tadd: forall i j a T,
+ Tget i (Tadd j a T) =
+ match (i ?= j) Eq with
+ Eq => PSome a
+ | Lt => Tget i T
+ | Gt => Tget i T
+ end.
+intros i j.
+caseq ((i ?= j) Eq).
+intro H;rewrite (Pcompare_Eq_eq _ _ H);intros a;clear i H.
+induction j;destruct T;simpl;try (apply IHj);congruence.
+generalize i;clear i;induction j;destruct T;simpl in H|-*;
+destruct i;simpl;try rewrite (IHj _ H);try (destruct i;simpl;congruence);reflexivity|| congruence.
+generalize i;clear i;induction j;destruct T;simpl in H|-*;
+destruct i;simpl;try rewrite (IHj _ H);try (destruct i;simpl;congruence);reflexivity|| congruence.
+Qed.
+
+Record Store : Type :=
+mkStore {index:positive;contents:Tree}.
+
+Definition empty := mkStore xH Tempty.
+
+Definition push a S :=
+mkStore (Psucc (index S)) (Tadd (index S) a (contents S)).
+
+Definition get i S := Tget i (contents S).
+
+Lemma get_empty : forall i, get i empty = PNone.
+intro i; case i; unfold empty,get; simpl;reflexivity.
+Qed.
+
+Inductive Full : Store -> Type:=
+ F_empty : Full empty
+ | F_push : forall a S, Full S -> Full (push a S).
+
+Theorem get_Full_Gt : forall S, Full S ->
+ forall i, (i ?= index S) Eq = Gt -> get i S = PNone.
+intros S W;induction W.
+unfold empty,index,get,contents;intros;apply Tget_Tempty.
+unfold index,get,push;simpl contents.
+intros i e;rewrite Tget_Tadd.
+rewrite (Gt_Psucc _ _ e).
+unfold get in IHW.
+apply IHW;apply Gt_Psucc;assumption.
+Qed.
+
+Theorem get_Full_Eq : forall S, Full S -> get (index S) S = PNone.
+intros [index0 contents0] F.
+case F.
+unfold empty,index,get,contents;intros;apply Tget_Tempty.
+unfold index,get,push;simpl contents.
+intros a S.
+rewrite Tget_Tadd.
+rewrite Psucc_Gt.
+intro W.
+change (get (Psucc (index S)) S =PNone).
+apply get_Full_Gt; auto.
+apply Psucc_Gt.
+Qed.
+
+Theorem get_push_Full :
+ forall i a S, Full S ->
+ get i (push a S) =
+ match (i ?= index S) Eq with
+ Eq => PSome a
+ | Lt => get i S
+ | Gt => PNone
+end.
+intros i a S F.
+caseq ((i ?= index S) Eq).
+intro e;rewrite (Pcompare_Eq_eq _ _ e).
+destruct S;unfold get,push,index;simpl contents;rewrite Tget_Tadd.
+rewrite Pcompare_refl;reflexivity.
+intros;destruct S;unfold get,push,index;simpl contents;rewrite Tget_Tadd.
+simpl index in H;rewrite H;reflexivity.
+intro H;generalize H;clear H.
+unfold get,push;simpl index;simpl contents.
+rewrite Tget_Tadd;intro e;rewrite e.
+change (get i S=PNone).
+apply get_Full_Gt;auto.
+Qed.
+
+Lemma Full_push_compat : forall i a S, Full S ->
+forall x, get i S = PSome x ->
+ get i (push a S) = PSome x.
+intros i a S F x H.
+caseq ((i ?= index S) Eq);intro test.
+rewrite (Pcompare_Eq_eq _ _ test) in H.
+rewrite (get_Full_Eq _ F) in H;congruence.
+rewrite <- H.
+rewrite (get_push_Full i a).
+rewrite test;reflexivity.
+assumption.
+rewrite (get_Full_Gt _ F) in H;congruence.
+Qed.
+
+Lemma Full_index_one_empty : forall S, Full S -> index S = 1 -> S=empty.
+intros [ind cont] F one; inversion F.
+reflexivity.
+simpl index in one;assert (h:=Psucc_not_one (index S)).
+congruence.
+Qed.
+
+Lemma push_not_empty: forall a S, (push a S) <> empty.
+intros a [ind cont];unfold push,empty.
+simpl;intro H;injection H; intros _ ; apply Psucc_not_one.
+Qed.
+
+Fixpoint In (x:A) (S:Store) (F:Full S) {struct F}: Prop :=
+match F with
+F_empty => False
+| F_push a SS FF => x=a \/ In x SS FF
+end.
+
+Lemma get_In : forall (x:A) (S:Store) (F:Full S) i ,
+get i S = PSome x -> In x S F.
+induction F.
+intro i;rewrite get_empty; congruence.
+intro i;rewrite get_push_Full;trivial.
+caseq ((i ?= index S) Eq);simpl.
+left;congruence.
+right;eauto.
+congruence.
+Qed.
+
+End Store.
+
+Implicit Arguments PNone [A].
+Implicit Arguments PSome [A].
+
+Implicit Arguments Tempty [A].
+Implicit Arguments Branch0 [A].
+Implicit Arguments Branch1 [A].
+
+Implicit Arguments Tget [A].
+Implicit Arguments Tadd [A].
+
+Implicit Arguments Tget_Tempty [A].
+Implicit Arguments Tget_Tadd [A].
+
+Implicit Arguments mkStore [A].
+Implicit Arguments index [A].
+Implicit Arguments contents [A].
+
+Implicit Arguments empty [A].
+Implicit Arguments get [A].
+Implicit Arguments push [A].
+
+Implicit Arguments get_empty [A].
+Implicit Arguments get_push_Full [A].
+
+Implicit Arguments Full [A].
+Implicit Arguments F_empty [A].
+Implicit Arguments F_push [A].
+Implicit Arguments In [A].
+
+Section Map.
+
+Variables A B:Set.
+
+Variable f: A -> B.
+
+Fixpoint Tmap (T: Tree A) : Tree B :=
+match T with
+Tempty => Tempty
+| Branch0 t1 t2 => Branch0 (Tmap t1) (Tmap t2)
+| Branch1 a t1 t2 => Branch1 (f a) (Tmap t1) (Tmap t2)
+end.
+
+Lemma Tget_Tmap: forall T i,
+Tget i (Tmap T)= match Tget i T with PNone => PNone
+| PSome a => PSome (f a) end.
+induction T;intro i;case i;simpl;auto.
+Defined.
+
+Lemma Tmap_Tadd: forall i a T,
+Tmap (Tadd i a T) = Tadd i (f a) (Tmap T).
+induction i;intros a T;case T;simpl;intros;try (rewrite IHi);simpl;reflexivity.
+Defined.
+
+Definition map (S:Store A) : Store B :=
+mkStore (index S) (Tmap (contents S)).
+
+Lemma get_map: forall i S,
+get i (map S)= match get i S with PNone => PNone
+| PSome a => PSome (f a) end.
+destruct S;unfold get,map,contents,index;apply Tget_Tmap.
+Defined.
+
+Lemma map_push: forall a S,
+map (push a S) = push (f a) (map S).
+intros a S.
+case S.
+unfold push,map,contents,index.
+intros;rewrite Tmap_Tadd;reflexivity.
+Defined.
+
+Theorem Full_map : forall S, Full S -> Full (map S).
+intros S F.
+induction F.
+exact F_empty.
+rewrite map_push;constructor 2;assumption.
+Defined.
+
+End Map.
+
+Implicit Arguments Tmap [A B].
+Implicit Arguments map [A B].
+Implicit Arguments Full_map [A B f].
+
+Notation "hyps \ A" := (push A hyps) (at level 72,left associativity).