summaryrefslogtreecommitdiff
path: root/contrib/romega
diff options
context:
space:
mode:
authorGravatar Stephane Glondu <steph@glondu.net>2010-07-21 09:46:51 +0200
committerGravatar Stephane Glondu <steph@glondu.net>2010-07-21 09:46:51 +0200
commit5b7eafd0f00a16d78f99a27f5c7d5a0de77dc7e6 (patch)
tree631ad791a7685edafeb1fb2e8faeedc8379318ae /contrib/romega
parentda178a880e3ace820b41d38b191d3785b82991f5 (diff)
Imported Upstream snapshot 8.3~beta0+13298
Diffstat (limited to 'contrib/romega')
-rw-r--r--contrib/romega/README6
-rw-r--r--contrib/romega/ROmega.v12
-rw-r--r--contrib/romega/ReflOmegaCore.v3216
-rw-r--r--contrib/romega/const_omega.ml350
-rw-r--r--contrib/romega/const_omega.mli176
-rw-r--r--contrib/romega/g_romega.ml442
-rw-r--r--contrib/romega/refl_omega.ml1299
7 files changed, 0 insertions, 5101 deletions
diff --git a/contrib/romega/README b/contrib/romega/README
deleted file mode 100644
index 86c9e58a..00000000
--- a/contrib/romega/README
+++ /dev/null
@@ -1,6 +0,0 @@
-This work was done for the RNRT Project Calife.
-As such it is distributed under the LGPL licence.
-
-Report bugs to :
- pierre.cregut@francetelecom.com
-
diff --git a/contrib/romega/ROmega.v b/contrib/romega/ROmega.v
deleted file mode 100644
index 4281cc57..00000000
--- a/contrib/romega/ROmega.v
+++ /dev/null
@@ -1,12 +0,0 @@
-(*************************************************************************
-
- PROJET RNRT Calife - 2001
- Author: Pierre Crégut - France Télécom R&D
- Licence : LGPL version 2.1
-
- *************************************************************************)
-
-Require Import ReflOmegaCore.
-Require Export Setoid.
-Require Export PreOmega.
-Require Export ZArith_base.
diff --git a/contrib/romega/ReflOmegaCore.v b/contrib/romega/ReflOmegaCore.v
deleted file mode 100644
index 12176d66..00000000
--- a/contrib/romega/ReflOmegaCore.v
+++ /dev/null
@@ -1,3216 +0,0 @@
-(* -*- coding: utf-8 -*- *)
-(*************************************************************************
-
- PROJET RNRT Calife - 2001
- Author: Pierre Crégut - France Télécom R&D
- Licence du projet : LGPL version 2.1
-
- *************************************************************************)
-
-Require Import List Bool Sumbool EqNat Setoid Ring_theory Decidable ZArith_base.
-Delimit Scope Int_scope with I.
-
-(* Abstract Integers. *)
-
-Module Type Int.
-
- Parameter int : Set.
-
- Parameter zero : int.
- Parameter one : int.
- Parameter plus : int -> int -> int.
- Parameter opp : int -> int.
- Parameter minus : int -> int -> int.
- Parameter mult : int -> int -> int.
-
- Notation "0" := zero : Int_scope.
- Notation "1" := one : Int_scope.
- Infix "+" := plus : Int_scope.
- Infix "-" := minus : Int_scope.
- Infix "*" := mult : Int_scope.
- Notation "- x" := (opp x) : Int_scope.
-
- Open Scope Int_scope.
-
- (* First, int is a ring: *)
- Axiom ring : @ring_theory int 0 1 plus mult minus opp (@eq int).
-
- (* int should also be ordered: *)
-
- Parameter le : int -> int -> Prop.
- Parameter lt : int -> int -> Prop.
- Parameter ge : int -> int -> Prop.
- Parameter gt : int -> int -> Prop.
- Notation "x <= y" := (le x y): Int_scope.
- Notation "x < y" := (lt x y) : Int_scope.
- Notation "x >= y" := (ge x y) : Int_scope.
- Notation "x > y" := (gt x y): Int_scope.
- Axiom le_lt_iff : forall i j, (i<=j) <-> ~(j<i).
- Axiom ge_le_iff : forall i j, (i>=j) <-> (j<=i).
- Axiom gt_lt_iff : forall i j, (i>j) <-> (j<i).
-
- (* Basic properties of this order *)
- Axiom lt_trans : forall i j k, i<j -> j<k -> i<k.
- Axiom lt_not_eq : forall i j, i<j -> i<>j.
-
- (* Compatibilities *)
- Axiom lt_0_1 : 0<1.
- Axiom plus_le_compat : forall i j k l, i<=j -> k<=l -> i+k<=j+l.
- Axiom opp_le_compat : forall i j, i<=j -> (-j)<=(-i).
- Axiom mult_lt_compat_l :
- forall i j k, 0 < k -> i < j -> k*i<k*j.
-
- (* We should have a way to decide the equality and the order*)
- Parameter compare : int -> int -> comparison.
- Infix "?=" := compare (at level 70, no associativity) : Int_scope.
- Axiom compare_Eq : forall i j, compare i j = Eq <-> i=j.
- Axiom compare_Lt : forall i j, compare i j = Lt <-> i<j.
- Axiom compare_Gt : forall i j, compare i j = Gt <-> i>j.
-
- (* Up to here, these requirements could be fulfilled
- by any totally ordered ring. Let's now be int-specific: *)
- Axiom le_lt_int : forall x y, x<y <-> x<=y+-(1).
-
- (* Btw, lt_0_1 could be deduced from this last axiom *)
-
-End Int.
-
-
-
-(* Of course, Z is a model for our abstract int *)
-
-Module Z_as_Int <: Int.
-
- Open Scope Z_scope.
-
- Definition int := Z.
- Definition zero := 0.
- Definition one := 1.
- Definition plus := Zplus.
- Definition opp := Zopp.
- Definition minus := Zminus.
- Definition mult := Zmult.
-
- Lemma ring : @ring_theory int zero one plus mult minus opp (@eq int).
- Proof.
- constructor.
- exact Zplus_0_l.
- exact Zplus_comm.
- exact Zplus_assoc.
- exact Zmult_1_l.
- exact Zmult_comm.
- exact Zmult_assoc.
- exact Zmult_plus_distr_l.
- unfold minus, Zminus; auto.
- exact Zplus_opp_r.
- Qed.
-
- Definition le := Zle.
- Definition lt := Zlt.
- Definition ge := Zge.
- Definition gt := Zgt.
- Lemma le_lt_iff : forall i j, (i<=j) <-> ~(j<i).
- Proof.
- split; intros.
- apply Zle_not_lt; auto.
- rewrite <- Zge_iff_le.
- apply Znot_lt_ge; auto.
- Qed.
- Definition ge_le_iff := Zge_iff_le.
- Definition gt_lt_iff := Zgt_iff_lt.
-
- Definition lt_trans := Zlt_trans.
- Definition lt_not_eq := Zlt_not_eq.
-
- Definition lt_0_1 := Zlt_0_1.
- Definition plus_le_compat := Zplus_le_compat.
- Definition mult_lt_compat_l := Zmult_lt_compat_l.
- Lemma opp_le_compat : forall i j, i<=j -> (-j)<=(-i).
- Proof.
- unfold Zle; intros; rewrite <- Zcompare_opp; auto.
- Qed.
-
- Definition compare := Zcompare.
- Definition compare_Eq := Zcompare_Eq_iff_eq.
- Lemma compare_Lt : forall i j, compare i j = Lt <-> i<j.
- Proof. intros; unfold compare, Zlt; intuition. Qed.
- Lemma compare_Gt : forall i j, compare i j = Gt <-> i>j.
- Proof. intros; unfold compare, Zgt; intuition. Qed.
-
- Lemma le_lt_int : forall x y, x<y <-> x<=y+-(1).
- Proof.
- intros; split; intros.
- generalize (Zlt_left _ _ H); simpl; intros.
- apply Zle_left_rev; auto.
- apply Zlt_0_minus_lt.
- generalize (Zplus_le_lt_compat x (y+-1) (-x) (-x+1) H).
- rewrite Zplus_opp_r.
- rewrite <-Zplus_assoc.
- rewrite (Zplus_permute (-1)).
- simpl in *.
- rewrite Zplus_0_r.
- intro H'; apply H'.
- replace (-x+1) with (Zsucc (-x)); auto.
- apply Zlt_succ.
- Qed.
-
-End Z_as_Int.
-
-
-
-
-Module IntProperties (I:Int).
- Import I.
-
- (* Primo, some consequences of being a ring theory... *)
-
- Definition two := 1+1.
- Notation "2" := two : Int_scope.
-
- (* Aliases for properties packed in the ring record. *)
-
- Definition plus_assoc := ring.(Radd_assoc).
- Definition plus_comm := ring.(Radd_comm).
- Definition plus_0_l := ring.(Radd_0_l).
- Definition mult_assoc := ring.(Rmul_assoc).
- Definition mult_comm := ring.(Rmul_comm).
- Definition mult_1_l := ring.(Rmul_1_l).
- Definition mult_plus_distr_r := ring.(Rdistr_l).
- Definition opp_def := ring.(Ropp_def).
- Definition minus_def := ring.(Rsub_def).
-
- Opaque plus_assoc plus_comm plus_0_l mult_assoc mult_comm mult_1_l
- mult_plus_distr_r opp_def minus_def.
-
- (* More facts about plus *)
-
- Lemma plus_0_r : forall x, x+0 = x.
- Proof. intros; rewrite plus_comm; apply plus_0_l. Qed.
-
- Lemma plus_0_r_reverse : forall x, x = x+0.
- Proof. intros; symmetry; apply plus_0_r. Qed.
-
- Lemma plus_assoc_reverse : forall x y z, x+y+z = x+(y+z).
- Proof. intros; symmetry; apply plus_assoc. Qed.
-
- Lemma plus_permute : forall x y z, x+(y+z) = y+(x+z).
- Proof. intros; do 2 rewrite plus_assoc; f_equal; apply plus_comm. Qed.
-
- Lemma plus_reg_l : forall x y z, x+y = x+z -> y = z.
- Proof.
- intros.
- rewrite (plus_0_r_reverse y), (plus_0_r_reverse z), <-(opp_def x).
- now rewrite plus_permute, plus_assoc, H, <- plus_assoc, plus_permute.
- Qed.
-
- (* More facts about mult *)
-
- Lemma mult_assoc_reverse : forall x y z, x*y*z = x*(y*z).
- Proof. intros; symmetry; apply mult_assoc. Qed.
-
- Lemma mult_plus_distr_l : forall x y z, x*(y+z)=x*y+x*z.
- Proof.
- intros.
- rewrite (mult_comm x (y+z)), (mult_comm x y), (mult_comm x z).
- apply mult_plus_distr_r.
- Qed.
-
- Lemma mult_0_l : forall x, 0*x = 0.
- Proof.
- intros.
- generalize (mult_plus_distr_r 0 1 x).
- rewrite plus_0_l, mult_1_l, plus_comm; intros.
- apply plus_reg_l with x.
- rewrite <- H.
- apply plus_0_r_reverse.
- Qed.
-
-
- (* More facts about opp *)
-
- Definition plus_opp_r := opp_def.
-
- Lemma plus_opp_l : forall x, -x + x = 0.
- Proof. intros; now rewrite plus_comm, opp_def. Qed.
-
- Lemma mult_opp_comm : forall x y, - x * y = x * - y.
- Proof.
- intros.
- apply plus_reg_l with (x*y).
- rewrite <- mult_plus_distr_l, <- mult_plus_distr_r.
- now rewrite opp_def, opp_def, mult_0_l, mult_comm, mult_0_l.
- Qed.
-
- Lemma opp_eq_mult_neg_1 : forall x, -x = x * -(1).
- Proof.
- intros; now rewrite mult_comm, mult_opp_comm, mult_1_l.
- Qed.
-
- Lemma opp_involutive : forall x, -(-x) = x.
- Proof.
- intros.
- apply plus_reg_l with (-x).
- now rewrite opp_def, plus_comm, opp_def.
- Qed.
-
- Lemma opp_plus_distr : forall x y, -(x+y) = -x + -y.
- Proof.
- intros.
- apply plus_reg_l with (x+y).
- rewrite opp_def.
- rewrite plus_permute.
- do 2 rewrite plus_assoc.
- now rewrite (plus_comm (-x)), opp_def, plus_0_l, opp_def.
- Qed.
-
- Lemma opp_mult_distr_r : forall x y, -(x*y) = x * -y.
- Proof.
- intros.
- rewrite <- mult_opp_comm.
- apply plus_reg_l with (x*y).
- now rewrite opp_def, <-mult_plus_distr_r, opp_def, mult_0_l.
- Qed.
-
- Lemma egal_left : forall n m, n=m -> n+-m = 0.
- Proof. intros; subst; apply opp_def. Qed.
-
- Lemma ne_left_2 : forall x y : int, x<>y -> 0<>(x + - y).
- Proof.
- intros; contradict H.
- apply (plus_reg_l (-y)).
- now rewrite plus_opp_l, plus_comm, H.
- Qed.
-
- (* Special lemmas for factorisation. *)
-
- Lemma red_factor0 : forall n, n = n*1.
- Proof. symmetry; rewrite mult_comm; apply mult_1_l. Qed.
-
- Lemma red_factor1 : forall n, n+n = n*2.
- Proof.
- intros; unfold two.
- now rewrite mult_comm, mult_plus_distr_r, mult_1_l.
- Qed.
-
- Lemma red_factor2 : forall n m, n + n*m = n * (1+m).
- Proof.
- intros; rewrite mult_plus_distr_l.
- f_equal; now rewrite mult_comm, mult_1_l.
- Qed.
-
- Lemma red_factor3 : forall n m, n*m + n = n*(1+m).
- Proof. intros; now rewrite plus_comm, red_factor2. Qed.
-
- Lemma red_factor4 : forall n m p, n*m + n*p = n*(m+p).
- Proof.
- intros; now rewrite mult_plus_distr_l.
- Qed.
-
- Lemma red_factor5 : forall n m , n * 0 + m = m.
- Proof. intros; now rewrite mult_comm, mult_0_l, plus_0_l. Qed.
-
- Definition red_factor6 := plus_0_r_reverse.
-
-
- (* Specialized distributivities *)
-
- Hint Rewrite mult_plus_distr_l mult_plus_distr_r mult_assoc : int.
- Hint Rewrite <- plus_assoc : int.
-
- Lemma OMEGA10 :
- forall v c1 c2 l1 l2 k1 k2 : int,
- (v * c1 + l1) * k1 + (v * c2 + l2) * k2 =
- v * (c1 * k1 + c2 * k2) + (l1 * k1 + l2 * k2).
- Proof.
- intros; autorewrite with int; f_equal; now rewrite plus_permute.
- Qed.
-
- Lemma OMEGA11 :
- forall v1 c1 l1 l2 k1 : int,
- (v1 * c1 + l1) * k1 + l2 = v1 * (c1 * k1) + (l1 * k1 + l2).
- Proof.
- intros; now autorewrite with int.
- Qed.
-
- Lemma OMEGA12 :
- forall v2 c2 l1 l2 k2 : int,
- l1 + (v2 * c2 + l2) * k2 = v2 * (c2 * k2) + (l1 + l2 * k2).
- Proof.
- intros; autorewrite with int; now rewrite plus_permute.
- Qed.
-
- Lemma OMEGA13 :
- forall v l1 l2 x : int,
- v * -x + l1 + (v * x + l2) = l1 + l2.
- Proof.
- intros; autorewrite with int.
- rewrite plus_permute; f_equal.
- rewrite plus_assoc.
- now rewrite <- mult_plus_distr_l, plus_opp_l, mult_comm, mult_0_l, plus_0_l.
- Qed.
-
- Lemma OMEGA15 :
- forall v c1 c2 l1 l2 k2 : int,
- v * c1 + l1 + (v * c2 + l2) * k2 = v * (c1 + c2 * k2) + (l1 + l2 * k2).
- Proof.
- intros; autorewrite with int; f_equal; now rewrite plus_permute.
- Qed.
-
- Lemma OMEGA16 : forall v c l k : int, (v * c + l) * k = v * (c * k) + l * k.
- Proof.
- intros; now autorewrite with int.
- Qed.
-
- Lemma sum1 : forall a b c d : int, 0 = a -> 0 = b -> 0 = a * c + b * d.
- Proof.
- intros; elim H; elim H0; simpl in |- *; auto.
- now rewrite mult_0_l, mult_0_l, plus_0_l.
- Qed.
-
-
- (* Secondo, some results about order (and equality) *)
-
- Lemma lt_irrefl : forall n, ~ n<n.
- Proof.
- intros n H.
- elim (lt_not_eq _ _ H); auto.
- Qed.
-
- Lemma lt_antisym : forall n m, n<m -> m<n -> False.
- Proof.
- intros; elim (lt_irrefl _ (lt_trans _ _ _ H H0)); auto.
- Qed.
-
- Lemma lt_le_weak : forall n m, n<m -> n<=m.
- Proof.
- intros; rewrite le_lt_iff; intro H'; eapply lt_antisym; eauto.
- Qed.
-
- Lemma le_refl : forall n, n<=n.
- Proof.
- intros; rewrite le_lt_iff; apply lt_irrefl; auto.
- Qed.
-
- Lemma le_antisym : forall n m, n<=m -> m<=n -> n=m.
- Proof.
- intros n m; do 2 rewrite le_lt_iff; intros.
- rewrite <- compare_Lt in H0.
- rewrite <- gt_lt_iff, <- compare_Gt in H.
- rewrite <- compare_Eq.
- destruct compare; intuition.
- Qed.
-
- Lemma lt_eq_lt_dec : forall n m, { n<m }+{ n=m }+{ m<n }.
- Proof.
- intros.
- generalize (compare_Lt n m)(compare_Eq n m)(compare_Gt n m).
- destruct compare; [ left; right | left; left | right ]; intuition.
- rewrite gt_lt_iff in H1; intuition.
- Qed.
-
- Lemma lt_dec : forall n m: int, { n<m } + { ~n<m }.
- Proof.
- intros.
- generalize (compare_Lt n m)(compare_Eq n m)(compare_Gt n m).
- destruct compare; [ right | left | right ]; intuition discriminate.
- Qed.
-
- Lemma lt_le_iff : forall n m, (n<m) <-> ~(m<=n).
- Proof.
- intros.
- rewrite le_lt_iff.
- destruct (lt_dec n m); intuition.
- Qed.
-
- Lemma le_dec : forall n m: int, { n<=m } + { ~n<=m }.
- Proof.
- intros; destruct (lt_dec m n); [right|left]; rewrite le_lt_iff; intuition.
- Qed.
-
- Lemma le_lt_dec : forall n m, { n<=m } + { m<n }.
- Proof.
- intros; destruct (le_dec n m); [left|right]; auto; now rewrite lt_le_iff.
- Qed.
-
-
- Definition beq i j := match compare i j with Eq => true | _ => false end.
-
- Lemma beq_iff : forall i j, beq i j = true <-> i=j.
- Proof.
- intros; unfold beq; generalize (compare_Eq i j).
- destruct compare; intuition discriminate.
- Qed.
-
- Lemma beq_true : forall i j, beq i j = true -> i=j.
- Proof.
- intros.
- rewrite <- beq_iff; auto.
- Qed.
-
- Lemma beq_false : forall i j, beq i j = false -> i<>j.
- Proof.
- intros.
- intro H'.
- rewrite <- beq_iff in H'; rewrite H' in H; discriminate.
- Qed.
-
- Lemma eq_dec : forall n m:int, { n=m } + { n<>m }.
- Proof.
- intros; generalize (beq_iff n m); destruct beq; [left|right]; intuition.
- Qed.
-
- Definition bgt i j := match compare i j with Gt => true | _ => false end.
-
- Lemma bgt_iff : forall i j, bgt i j = true <-> i>j.
- Proof.
- intros; unfold bgt; generalize (compare_Gt i j).
- destruct compare; intuition discriminate.
- Qed.
-
- Lemma bgt_true : forall i j, bgt i j = true -> i>j.
- Proof. intros; now rewrite <- bgt_iff. Qed.
-
- Lemma bgt_false : forall i j, bgt i j = false -> i<=j.
- Proof.
- intros.
- rewrite le_lt_iff, <-gt_lt_iff, <-bgt_iff; intro H'; now rewrite H' in H.
- Qed.
-
- Lemma le_is_lt_or_eq : forall n m, n<=m -> { n<m } + { n=m }.
- Proof.
- intros.
- destruct (eq_dec n m) as [H'|H'].
- right; intuition.
- left; rewrite lt_le_iff.
- contradict H'.
- apply le_antisym; auto.
- Qed.
-
- Lemma le_neq_lt : forall n m, n<=m -> n<>m -> n<m.
- Proof.
- intros.
- destruct (le_is_lt_or_eq _ _ H); intuition.
- Qed.
-
- Lemma le_trans : forall n m p, n<=m -> m<=p -> n<=p.
- Proof.
- intros n m p; do 3 rewrite le_lt_iff; intros A B C.
- destruct (lt_eq_lt_dec p m) as [[H|H]|H]; subst; auto.
- generalize (lt_trans _ _ _ H C); intuition.
- Qed.
-
- (* order and operations *)
-
- Lemma le_0_neg : forall n, 0 <= n <-> -n <= 0.
- Proof.
- intros.
- pattern 0 at 2; rewrite <- (mult_0_l (-(1))).
- rewrite <- opp_eq_mult_neg_1.
- split; intros.
- apply opp_le_compat; auto.
- rewrite <-(opp_involutive 0), <-(opp_involutive n).
- apply opp_le_compat; auto.
- Qed.
-
- Lemma le_0_neg' : forall n, n <= 0 <-> 0 <= -n.
- Proof.
- intros; rewrite le_0_neg, opp_involutive; intuition.
- Qed.
-
- Lemma plus_le_reg_r : forall n m p, n + p <= m + p -> n <= m.
- Proof.
- intros.
- replace n with ((n+p)+-p).
- replace m with ((m+p)+-p).
- apply plus_le_compat; auto.
- apply le_refl.
- now rewrite <- plus_assoc, opp_def, plus_0_r.
- now rewrite <- plus_assoc, opp_def, plus_0_r.
- Qed.
-
- Lemma plus_le_lt_compat : forall n m p q, n<=m -> p<q -> n+p<m+q.
- Proof.
- intros.
- apply le_neq_lt.
- apply plus_le_compat; auto.
- apply lt_le_weak; auto.
- rewrite lt_le_iff in H0.
- contradict H0.
- apply plus_le_reg_r with m.
- rewrite (plus_comm q m), <-H0, (plus_comm p m).
- apply plus_le_compat; auto.
- apply le_refl; auto.
- Qed.
-
- Lemma plus_lt_compat : forall n m p q, n<m -> p<q -> n+p<m+q.
- Proof.
- intros.
- apply plus_le_lt_compat; auto.
- apply lt_le_weak; auto.
- Qed.
-
- Lemma opp_lt_compat : forall n m, n<m -> -m < -n.
- Proof.
- intros n m; do 2 rewrite lt_le_iff; intros H; contradict H.
- rewrite <-(opp_involutive m), <-(opp_involutive n).
- apply opp_le_compat; auto.
- Qed.
-
- Lemma lt_0_neg : forall n, 0 < n <-> -n < 0.
- Proof.
- intros.
- pattern 0 at 2; rewrite <- (mult_0_l (-(1))).
- rewrite <- opp_eq_mult_neg_1.
- split; intros.
- apply opp_lt_compat; auto.
- rewrite <-(opp_involutive 0), <-(opp_involutive n).
- apply opp_lt_compat; auto.
- Qed.
-
- Lemma lt_0_neg' : forall n, n < 0 <-> 0 < -n.
- Proof.
- intros; rewrite lt_0_neg, opp_involutive; intuition.
- Qed.
-
- Lemma mult_lt_0_compat : forall n m, 0 < n -> 0 < m -> 0 < n*m.
- Proof.
- intros.
- rewrite <- (mult_0_l n), mult_comm.
- apply mult_lt_compat_l; auto.
- Qed.
-
- Lemma mult_integral : forall n m, n * m = 0 -> n = 0 \/ m = 0.
- Proof.
- intros.
- destruct (lt_eq_lt_dec n 0) as [[Hn|Hn]|Hn]; auto;
- destruct (lt_eq_lt_dec m 0) as [[Hm|Hm]|Hm]; auto; elimtype False.
-
- rewrite lt_0_neg' in Hn.
- rewrite lt_0_neg' in Hm.
- generalize (mult_lt_0_compat _ _ Hn Hm).
- rewrite <- opp_mult_distr_r, mult_comm, <- opp_mult_distr_r, opp_involutive.
- rewrite mult_comm, H.
- exact (lt_irrefl 0).
-
- rewrite lt_0_neg' in Hn.
- generalize (mult_lt_0_compat _ _ Hn Hm).
- rewrite mult_comm, <- opp_mult_distr_r, mult_comm.
- rewrite H.
- rewrite opp_eq_mult_neg_1, mult_0_l.
- exact (lt_irrefl 0).
-
- rewrite lt_0_neg' in Hm.
- generalize (mult_lt_0_compat _ _ Hn Hm).
- rewrite <- opp_mult_distr_r.
- rewrite H.
- rewrite opp_eq_mult_neg_1, mult_0_l.
- exact (lt_irrefl 0).
-
- generalize (mult_lt_0_compat _ _ Hn Hm).
- rewrite H.
- exact (lt_irrefl 0).
- Qed.
-
- Lemma mult_le_compat :
- forall i j k l, i<=j -> k<=l -> 0<=i -> 0<=k -> i*k<=j*l.
- Proof.
- intros.
- destruct (le_is_lt_or_eq _ _ H1).
-
- apply le_trans with (i*l).
- destruct (le_is_lt_or_eq _ _ H0); [ | subst; apply le_refl].
- apply lt_le_weak.
- apply mult_lt_compat_l; auto.
-
- generalize (le_trans _ _ _ H2 H0); clear H0 H1 H2; intros.
- rewrite (mult_comm i), (mult_comm j).
- destruct (le_is_lt_or_eq _ _ H0);
- [ | subst; do 2 rewrite mult_0_l; apply le_refl].
- destruct (le_is_lt_or_eq _ _ H);
- [ | subst; apply le_refl].
- apply lt_le_weak.
- apply mult_lt_compat_l; auto.
-
- subst i.
- rewrite mult_0_l.
- generalize (le_trans _ _ _ H2 H0); clear H0 H1 H2; intros.
- destruct (le_is_lt_or_eq _ _ H);
- [ | subst; rewrite mult_0_l; apply le_refl].
- destruct (le_is_lt_or_eq _ _ H0);
- [ | subst; rewrite mult_comm, mult_0_l; apply le_refl].
- apply lt_le_weak.
- apply mult_lt_0_compat; auto.
- Qed.
-
- Lemma sum5 :
- forall a b c d : int, c <> 0 -> 0 <> a -> 0 = b -> 0 <> a * c + b * d.
- Proof.
- intros.
- subst b; rewrite mult_0_l, plus_0_r.
- contradict H.
- symmetry in H; destruct (mult_integral _ _ H); congruence.
- Qed.
-
- Lemma one_neq_zero : 1 <> 0.
- Proof.
- red; intro.
- symmetry in H.
- apply (lt_not_eq 0 1); auto.
- apply lt_0_1.
- Qed.
-
- Lemma minus_one_neq_zero : -(1) <> 0.
- Proof.
- apply lt_not_eq.
- rewrite <- lt_0_neg.
- apply lt_0_1.
- Qed.
-
- Lemma le_left : forall n m, n <= m -> 0 <= m + - n.
- Proof.
- intros.
- rewrite <- (opp_def m).
- apply plus_le_compat.
- apply le_refl.
- apply opp_le_compat; auto.
- Qed.
-
- Lemma OMEGA2 : forall x y, 0 <= x -> 0 <= y -> 0 <= x + y.
- Proof.
- intros.
- replace 0 with (0+0).
- apply plus_le_compat; auto.
- rewrite plus_0_l; auto.
- Qed.
-
- Lemma OMEGA8 : forall x y, 0 <= x -> 0 <= y -> x = - y -> x = 0.
- Proof.
- intros.
- assert (y=-x).
- subst x; symmetry; apply opp_involutive.
- clear H1; subst y.
- destruct (eq_dec 0 x) as [H'|H']; auto.
- assert (H'':=le_neq_lt _ _ H H').
- generalize (plus_le_lt_compat _ _ _ _ H0 H'').
- rewrite plus_opp_l, plus_0_l.
- intros.
- elim (lt_not_eq _ _ H1); auto.
- Qed.
-
- Lemma sum2 :
- forall a b c d : int, 0 <= d -> 0 = a -> 0 <= b -> 0 <= a * c + b * d.
- Proof.
- intros.
- subst a; rewrite mult_0_l, plus_0_l.
- rewrite <- (mult_0_l 0).
- apply mult_le_compat; auto; apply le_refl.
- Qed.
-
- Lemma sum3 :
- forall a b c d : int,
- 0 <= c -> 0 <= d -> 0 <= a -> 0 <= b -> 0 <= a * c + b * d.
- Proof.
- intros.
- rewrite <- (plus_0_l 0).
- apply plus_le_compat; auto.
- rewrite <- (mult_0_l 0).
- apply mult_le_compat; auto; apply le_refl.
- rewrite <- (mult_0_l 0).
- apply mult_le_compat; auto; apply le_refl.
- Qed.
-
- Lemma sum4 : forall k : int, k>0 -> 0 <= k.
- Proof.
- intros k; rewrite gt_lt_iff; apply lt_le_weak.
- Qed.
-
- (* Lemmas specific to integers (they use lt_le_int) *)
-
- Lemma lt_left : forall n m, n < m -> 0 <= m + -(1) + - n.
- Proof.
- intros; apply le_left.
- now rewrite <- le_lt_int.
- Qed.
-
- Lemma lt_left_inv : forall x y, 0 <= y + -(1) + - x -> x < y.
- Proof.
- intros.
- generalize (plus_le_compat _ _ _ _ H (le_refl x)); clear H.
- now rewrite plus_0_l, <-plus_assoc, plus_opp_l, plus_0_r, le_lt_int.
- Qed.
-
- Lemma OMEGA4 : forall x y z, x > 0 -> y > x -> z * y + x <> 0.
- Proof.
- intros.
- intro H'.
- rewrite gt_lt_iff in H,H0.
- destruct (lt_eq_lt_dec z 0) as [[G|G]|G].
-
- rewrite lt_0_neg' in G.
- generalize (plus_le_lt_compat _ _ _ _ (le_refl (z*y)) H0).
- rewrite H'.
- pattern y at 2; rewrite <-(mult_1_l y), <-mult_plus_distr_r.
- intros.
- rewrite le_lt_int in G.
- rewrite <- opp_plus_distr in G.
- assert (0 < y) by (apply lt_trans with x; auto).
- generalize (mult_le_compat _ _ _ _ G (lt_le_weak _ _ H2) (le_refl 0) (le_refl 0)).
- rewrite mult_0_l, mult_comm, <- opp_mult_distr_r, mult_comm, <-le_0_neg', le_lt_iff.
- intuition.
-
- subst; rewrite mult_0_l, plus_0_l in H'; subst.
- apply (lt_not_eq _ _ H); auto.
-
- apply (lt_not_eq 0 (z*y+x)); auto.
- rewrite <- (plus_0_l 0).
- apply plus_lt_compat; auto.
- apply mult_lt_0_compat; auto.
- apply lt_trans with x; auto.
- Qed.
-
- Lemma OMEGA19 : forall x, x<>0 -> 0 <= x + -(1) \/ 0 <= x * -(1) + -(1).
- Proof.
- intros.
- do 2 rewrite <- le_lt_int.
- rewrite <- opp_eq_mult_neg_1.
- destruct (lt_eq_lt_dec 0 x) as [[H'|H']|H'].
- auto.
- congruence.
- right.
- rewrite <-(mult_0_l (-(1))), <-(opp_eq_mult_neg_1 0).
- apply opp_lt_compat; auto.
- Qed.
-
- Lemma mult_le_approx :
- forall n m p, n > 0 -> n > p -> 0 <= m * n + p -> 0 <= m.
- Proof.
- intros n m p.
- do 2 rewrite gt_lt_iff.
- do 2 rewrite le_lt_iff; intros.
- contradict H1.
- rewrite lt_0_neg' in H1.
- rewrite lt_0_neg'.
- rewrite opp_plus_distr.
- rewrite mult_comm, opp_mult_distr_r.
- rewrite le_lt_int.
- rewrite <- plus_assoc, (plus_comm (-p)), plus_assoc.
- apply lt_left.
- rewrite le_lt_int.
- rewrite le_lt_int in H0.
- apply le_trans with (n+-(1)); auto.
- apply plus_le_compat; [ | apply le_refl ].
- rewrite le_lt_int in H1.
- generalize (mult_le_compat _ _ _ _ (lt_le_weak _ _ H) H1 (le_refl 0) (le_refl 0)).
- rewrite mult_0_l.
- rewrite mult_plus_distr_l.
- rewrite <- opp_eq_mult_neg_1.
- intros.
- generalize (plus_le_compat _ _ _ _ (le_refl n) H2).
- now rewrite plus_permute, opp_def, plus_0_r, plus_0_r.
- Qed.
-
- (* Some decidabilities *)
-
- Lemma dec_eq : forall i j:int, decidable (i=j).
- Proof.
- red; intros; destruct (eq_dec i j); auto.
- Qed.
-
- Lemma dec_ne : forall i j:int, decidable (i<>j).
- Proof.
- red; intros; destruct (eq_dec i j); auto.
- Qed.
-
- Lemma dec_le : forall i j:int, decidable (i<=j).
- Proof.
- red; intros; destruct (le_dec i j); auto.
- Qed.
-
- Lemma dec_lt : forall i j:int, decidable (i<j).
- Proof.
- red; intros; destruct (lt_dec i j); auto.
- Qed.
-
- Lemma dec_ge : forall i j:int, decidable (i>=j).
- Proof.
- red; intros; rewrite ge_le_iff; destruct (le_dec j i); auto.
- Qed.
-
- Lemma dec_gt : forall i j:int, decidable (i>j).
- Proof.
- red; intros; rewrite gt_lt_iff; destruct (lt_dec j i); auto.
- Qed.
-
-End IntProperties.
-
-
-
-
-Module IntOmega (I:Int).
-Import I.
-Module IP:=IntProperties(I).
-Import IP.
-
-(* \subsubsection{Definition of reified integer expressions}
- Terms are either:
- \begin{itemize}
- \item integers [Tint]
- \item variables [Tvar]
- \item operation over integers (addition, product, opposite, subtraction)
- The last two are translated in additions and products. *)
-
-Inductive term : Set :=
- | Tint : int -> term
- | Tplus : term -> term -> term
- | Tmult : term -> term -> term
- | Tminus : term -> term -> term
- | Topp : term -> term
- | Tvar : nat -> term.
-
-Delimit Scope romega_scope with term.
-Arguments Scope Tint [Int_scope].
-Arguments Scope Tplus [romega_scope romega_scope].
-Arguments Scope Tmult [romega_scope romega_scope].
-Arguments Scope Tminus [romega_scope romega_scope].
-Arguments Scope Topp [romega_scope romega_scope].
-
-Infix "+" := Tplus : romega_scope.
-Infix "*" := Tmult : romega_scope.
-Infix "-" := Tminus : romega_scope.
-Notation "- x" := (Topp x) : romega_scope.
-Notation "[ x ]" := (Tvar x) (at level 0) : romega_scope.
-
-(* \subsubsection{Definition of reified goals} *)
-
-(* Very restricted definition of handled predicates that should be extended
- to cover a wider set of operations.
- Taking care of negations and disequations require solving more than a
- goal in parallel. This is a major improvement over previous versions. *)
-
-Inductive proposition : Set :=
- | EqTerm : term -> term -> proposition (* equality between terms *)
- | LeqTerm : term -> term -> proposition (* less or equal on terms *)
- | TrueTerm : proposition (* true *)
- | FalseTerm : proposition (* false *)
- | Tnot : proposition -> proposition (* negation *)
- | GeqTerm : term -> term -> proposition
- | GtTerm : term -> term -> proposition
- | LtTerm : term -> term -> proposition
- | NeqTerm : term -> term -> proposition
- | Tor : proposition -> proposition -> proposition
- | Tand : proposition -> proposition -> proposition
- | Timp : proposition -> proposition -> proposition
- | Tprop : nat -> proposition.
-
-(* Definition of goals as a list of hypothesis *)
-Notation hyps := (list proposition).
-
-(* Definition of lists of subgoals (set of open goals) *)
-Notation lhyps := (list hyps).
-
-(* a single goal packed in a subgoal list *)
-Notation singleton := (fun a : hyps => a :: nil).
-
-(* an absurd goal *)
-Definition absurd := FalseTerm :: nil.
-
-(* \subsubsection{Traces for merging equations}
- This inductive type describes how the monomial of two equations should be
- merged when the equations are added.
-
- For [F_equal], both equations have the same head variable and coefficient
- must be added, furthermore if coefficients are opposite, [F_cancel] should
- be used to collapse the term. [F_left] and [F_right] indicate which monomial
- should be put first in the result *)
-
-Inductive t_fusion : Set :=
- | F_equal : t_fusion
- | F_cancel : t_fusion
- | F_left : t_fusion
- | F_right : t_fusion.
-
-(* \subsubsection{Rewriting steps to normalize terms} *)
-Inductive step : Set :=
- (* apply the rewriting steps to both subterms of an operation *)
- | C_DO_BOTH : step -> step -> step
- (* apply the rewriting step to the first branch *)
- | C_LEFT : step -> step
- (* apply the rewriting step to the second branch *)
- | C_RIGHT : step -> step
- (* apply two steps consecutively to a term *)
- | C_SEQ : step -> step -> step
- (* empty step *)
- | C_NOP : step
- (* the following operations correspond to actual rewriting *)
- | C_OPP_PLUS : step
- | C_OPP_OPP : step
- | C_OPP_MULT_R : step
- | C_OPP_ONE : step
- (* This is a special step that reduces the term (computation) *)
- | C_REDUCE : step
- | C_MULT_PLUS_DISTR : step
- | C_MULT_OPP_LEFT : step
- | C_MULT_ASSOC_R : step
- | C_PLUS_ASSOC_R : step
- | C_PLUS_ASSOC_L : step
- | C_PLUS_PERMUTE : step
- | C_PLUS_COMM : step
- | C_RED0 : step
- | C_RED1 : step
- | C_RED2 : step
- | C_RED3 : step
- | C_RED4 : step
- | C_RED5 : step
- | C_RED6 : step
- | C_MULT_ASSOC_REDUCED : step
- | C_MINUS : step
- | C_MULT_COMM : step.
-
-(* \subsubsection{Omega steps} *)
-(* The following inductive type describes steps as they can be found in
- the trace coming from the decision procedure Omega. *)
-
-Inductive t_omega : Set :=
- (* n = 0 and n!= 0 *)
- | O_CONSTANT_NOT_NUL : nat -> t_omega
- | O_CONSTANT_NEG : nat -> t_omega
- (* division and approximation of an equation *)
- | O_DIV_APPROX : int -> int -> term -> nat -> t_omega -> nat -> t_omega
- (* no solution because no exact division *)
- | O_NOT_EXACT_DIVIDE : int -> int -> term -> nat -> nat -> t_omega
- (* exact division *)
- | O_EXACT_DIVIDE : int -> term -> nat -> t_omega -> nat -> t_omega
- | O_SUM : int -> nat -> int -> nat -> list t_fusion -> t_omega -> t_omega
- | O_CONTRADICTION : nat -> nat -> nat -> t_omega
- | O_MERGE_EQ : nat -> nat -> nat -> t_omega -> t_omega
- | O_SPLIT_INEQ : nat -> nat -> t_omega -> t_omega -> t_omega
- | O_CONSTANT_NUL : nat -> t_omega
- | O_NEGATE_CONTRADICT : nat -> nat -> t_omega
- | O_NEGATE_CONTRADICT_INV : nat -> nat -> nat -> t_omega
- | O_STATE : int -> step -> nat -> nat -> t_omega -> t_omega.
-
-(* \subsubsection{Rules for normalizing the hypothesis} *)
-(* These rules indicate how to normalize useful propositions
- of each useful hypothesis before the decomposition of hypothesis.
- The rules include the inversion phase for negation removal. *)
-
-Inductive p_step : Set :=
- | P_LEFT : p_step -> p_step
- | P_RIGHT : p_step -> p_step
- | P_INVERT : step -> p_step
- | P_STEP : step -> p_step
- | P_NOP : p_step.
-
-(* List of normalizations to perform : with a constructor of type
- [p_step] allowing to visit both left and right branches, we would be
- able to restrict to only one normalization by hypothesis.
- And since all hypothesis are useful (otherwise they wouldn't be included),
- we would be able to replace [h_step] by a simple list. *)
-
-Inductive h_step : Set :=
- pair_step : nat -> p_step -> h_step.
-
-(* \subsubsection{Rules for decomposing the hypothesis} *)
-(* This type allows to navigate in the logical constructors that
- form the predicats of the hypothesis in order to decompose them.
- This allows in particular to extract one hypothesis from a
- conjonction with possibly the right level of negations. *)
-
-Inductive direction : Set :=
- | D_left : direction
- | D_right : direction
- | D_mono : direction.
-
-(* This type allows to extract useful components from hypothesis, either
- hypothesis generated by splitting a disjonction, or equations.
- The last constructor indicates how to solve the obtained system
- via the use of the trace type of Omega [t_omega] *)
-
-Inductive e_step : Set :=
- | E_SPLIT : nat -> list direction -> e_step -> e_step -> e_step
- | E_EXTRACT : nat -> list direction -> e_step -> e_step
- | E_SOLVE : t_omega -> e_step.
-
-(* \subsection{Efficient decidable equality} *)
-(* For each reified data-type, we define an efficient equality test.
- It is not the one produced by [Decide Equality].
-
- Then we prove two theorem allowing to eliminate such equalities :
- \begin{verbatim}
- (t1,t2: typ) (eq_typ t1 t2) = true -> t1 = t2.
- (t1,t2: typ) (eq_typ t1 t2) = false -> ~ t1 = t2.
- \end{verbatim} *)
-
-(* \subsubsection{Reified terms} *)
-
-Open Scope romega_scope.
-
-Fixpoint eq_term (t1 t2 : term) {struct t2} : bool :=
- match t1, t2 with
- | Tint st1, Tint st2 => beq st1 st2
- | (st11 + st12), (st21 + st22) => eq_term st11 st21 && eq_term st12 st22
- | (st11 * st12), (st21 * st22) => eq_term st11 st21 && eq_term st12 st22
- | (st11 - st12), (st21 - st22) => eq_term st11 st21 && eq_term st12 st22
- | (- st1), (- st2) => eq_term st1 st2
- | [st1], [st2] => beq_nat st1 st2
- | _, _ => false
- end.
-
-Close Scope romega_scope.
-
-Theorem eq_term_true : forall t1 t2 : term, eq_term t1 t2 = true -> t1 = t2.
-Proof.
- simple induction t1; intros until t2; case t2; simpl in *;
- try (intros; discriminate; fail);
- [ intros; elim beq_true with (1 := H); trivial
- | intros t21 t22 H3; elim andb_prop with (1 := H3); intros H4 H5;
- elim H with (1 := H4); elim H0 with (1 := H5);
- trivial
- | intros t21 t22 H3; elim andb_prop with (1 := H3); intros H4 H5;
- elim H with (1 := H4); elim H0 with (1 := H5);
- trivial
- | intros t21 t22 H3; elim andb_prop with (1 := H3); intros H4 H5;
- elim H with (1 := H4); elim H0 with (1 := H5);
- trivial
- | intros t21 H3; elim H with (1 := H3); trivial
- | intros; elim beq_nat_true with (1 := H); trivial ].
-Qed.
-
-Ltac trivial_case := unfold not in |- *; intros; discriminate.
-
-Theorem eq_term_false :
- forall t1 t2 : term, eq_term t1 t2 = false -> t1 <> t2.
-Proof.
- simple induction t1;
- [ intros z t2; case t2; try trivial_case; simpl in |- *; unfold not in |- *;
- intros; elim beq_false with (1 := H); simplify_eq H0;
- auto
- | intros t11 H1 t12 H2 t2; case t2; try trivial_case; simpl in |- *;
- intros t21 t22 H3; unfold not in |- *; intro H4;
- elim andb_false_elim with (1 := H3); intros H5;
- [ elim H1 with (1 := H5); simplify_eq H4; auto
- | elim H2 with (1 := H5); simplify_eq H4; auto ]
- | intros t11 H1 t12 H2 t2; case t2; try trivial_case; simpl in |- *;
- intros t21 t22 H3; unfold not in |- *; intro H4;
- elim andb_false_elim with (1 := H3); intros H5;
- [ elim H1 with (1 := H5); simplify_eq H4; auto
- | elim H2 with (1 := H5); simplify_eq H4; auto ]
- | intros t11 H1 t12 H2 t2; case t2; try trivial_case; simpl in |- *;
- intros t21 t22 H3; unfold not in |- *; intro H4;
- elim andb_false_elim with (1 := H3); intros H5;
- [ elim H1 with (1 := H5); simplify_eq H4; auto
- | elim H2 with (1 := H5); simplify_eq H4; auto ]
- | intros t11 H1 t2; case t2; try trivial_case; simpl in |- *; intros t21 H3;
- unfold not in |- *; intro H4; elim H1 with (1 := H3);
- simplify_eq H4; auto
- | intros n t2; case t2; try trivial_case; simpl in |- *; unfold not in |- *;
- intros; elim beq_nat_false with (1 := H); simplify_eq H0;
- auto ].
-Qed.
-
-(* \subsubsection{Tactiques pour éliminer ces tests}
-
- Si on se contente de faire un [Case (eq_typ t1 t2)] on perd
- totalement dans chaque branche le fait que [t1=t2] ou [~t1=t2].
-
- Initialement, les développements avaient été réalisés avec les
- tests rendus par [Decide Equality], c'est à dire un test rendant
- des termes du type [{t1=t2}+{~t1=t2}]. Faire une élimination sur un
- tel test préserve bien l'information voulue mais calculatoirement de
- telles fonctions sont trop lentes. *)
-
-(* Les tactiques définies si après se comportent exactement comme si on
- avait utilisé le test précédent et fait une elimination dessus. *)
-
-Ltac elim_eq_term t1 t2 :=
- pattern (eq_term t1 t2) in |- *; apply bool_eq_ind; intro Aux;
- [ generalize (eq_term_true t1 t2 Aux); clear Aux
- | generalize (eq_term_false t1 t2 Aux); clear Aux ].
-
-Ltac elim_beq t1 t2 :=
- pattern (beq t1 t2) in |- *; apply bool_eq_ind; intro Aux;
- [ generalize (beq_true t1 t2 Aux); clear Aux
- | generalize (beq_false t1 t2 Aux); clear Aux ].
-
-Ltac elim_bgt t1 t2 :=
- pattern (bgt t1 t2) in |- *; apply bool_eq_ind; intro Aux;
- [ generalize (bgt_true t1 t2 Aux); clear Aux
- | generalize (bgt_false t1 t2 Aux); clear Aux ].
-
-
-(* \subsection{Interprétations}
- \subsubsection{Interprétation des termes dans Z} *)
-
-Fixpoint interp_term (env : list int) (t : term) {struct t} : int :=
- match t with
- | Tint x => x
- | (t1 + t2)%term => interp_term env t1 + interp_term env t2
- | (t1 * t2)%term => interp_term env t1 * interp_term env t2
- | (t1 - t2)%term => interp_term env t1 - interp_term env t2
- | (- t)%term => - interp_term env t
- | [n]%term => nth n env 0
- end.
-
-(* \subsubsection{Interprétation des prédicats} *)
-
-Fixpoint interp_proposition (envp : list Prop) (env : list int)
- (p : proposition) {struct p} : Prop :=
- match p with
- | EqTerm t1 t2 => interp_term env t1 = interp_term env t2
- | LeqTerm t1 t2 => interp_term env t1 <= interp_term env t2
- | TrueTerm => True
- | FalseTerm => False
- | Tnot p' => ~ interp_proposition envp env p'
- | GeqTerm t1 t2 => interp_term env t1 >= interp_term env t2
- | GtTerm t1 t2 => interp_term env t1 > interp_term env t2
- | LtTerm t1 t2 => interp_term env t1 < interp_term env t2
- | NeqTerm t1 t2 => (interp_term env t1)<>(interp_term env t2)
- | Tor p1 p2 =>
- interp_proposition envp env p1 \/ interp_proposition envp env p2
- | Tand p1 p2 =>
- interp_proposition envp env p1 /\ interp_proposition envp env p2
- | Timp p1 p2 =>
- interp_proposition envp env p1 -> interp_proposition envp env p2
- | Tprop n => nth n envp True
- end.
-
-(* \subsubsection{Inteprétation des listes d'hypothèses}
- \paragraph{Sous forme de conjonction}
- Interprétation sous forme d'une conjonction d'hypothèses plus faciles
- à manipuler individuellement *)
-
-Fixpoint interp_hyps (envp : list Prop) (env : list int)
- (l : hyps) {struct l} : Prop :=
- match l with
- | nil => True
- | p' :: l' => interp_proposition envp env p' /\ interp_hyps envp env l'
- end.
-
-(* \paragraph{sous forme de but}
- C'est cette interpétation que l'on utilise sur le but (car on utilise
- [Generalize] et qu'une conjonction est forcément lourde (répétition des
- types dans les conjonctions intermédiaires) *)
-
-Fixpoint interp_goal_concl (c : proposition) (envp : list Prop)
- (env : list int) (l : hyps) {struct l} : Prop :=
- match l with
- | nil => interp_proposition envp env c
- | p' :: l' =>
- interp_proposition envp env p' -> interp_goal_concl c envp env l'
- end.
-
-Notation interp_goal := (interp_goal_concl FalseTerm).
-
-(* Les théorèmes qui suivent assurent la correspondance entre les deux
- interprétations. *)
-
-Theorem goal_to_hyps :
- forall (envp : list Prop) (env : list int) (l : hyps),
- (interp_hyps envp env l -> False) -> interp_goal envp env l.
-Proof.
- simple induction l;
- [ simpl in |- *; auto
- | simpl in |- *; intros a l1 H1 H2 H3; apply H1; intro H4; apply H2; auto ].
-Qed.
-
-Theorem hyps_to_goal :
- forall (envp : list Prop) (env : list int) (l : hyps),
- interp_goal envp env l -> interp_hyps envp env l -> False.
-Proof.
- simple induction l; simpl in |- *; [ auto | intros; apply H; elim H1; auto ].
-Qed.
-
-(* \subsection{Manipulations sur les hypothèses} *)
-
-(* \subsubsection{Définitions de base de stabilité pour la réflexion} *)
-(* Une opération laisse un terme stable si l'égalité est préservée *)
-Definition term_stable (f : term -> term) :=
- forall (e : list int) (t : term), interp_term e t = interp_term e (f t).
-
-(* Une opération est valide sur une hypothèse, si l'hypothèse implique le
- résultat de l'opération. \emph{Attention : cela ne concerne que des
- opérations sur les hypothèses et non sur les buts (contravariance)}.
- On définit la validité pour une opération prenant une ou deux propositions
- en argument (cela suffit pour omega). *)
-
-Definition valid1 (f : proposition -> proposition) :=
- forall (ep : list Prop) (e : list int) (p1 : proposition),
- interp_proposition ep e p1 -> interp_proposition ep e (f p1).
-
-Definition valid2 (f : proposition -> proposition -> proposition) :=
- forall (ep : list Prop) (e : list int) (p1 p2 : proposition),
- interp_proposition ep e p1 ->
- interp_proposition ep e p2 -> interp_proposition ep e (f p1 p2).
-
-(* Dans cette notion de validité, la fonction prend directement une
- liste de propositions et rend une nouvelle liste de proposition.
- On reste contravariant *)
-
-Definition valid_hyps (f : hyps -> hyps) :=
- forall (ep : list Prop) (e : list int) (lp : hyps),
- interp_hyps ep e lp -> interp_hyps ep e (f lp).
-
-(* Enfin ce théorème élimine la contravariance et nous ramène à une
- opération sur les buts *)
-
-Theorem valid_goal :
- forall (ep : list Prop) (env : list int) (l : hyps) (a : hyps -> hyps),
- valid_hyps a -> interp_goal ep env (a l) -> interp_goal ep env l.
-Proof.
- intros; simpl in |- *; apply goal_to_hyps; intro H1;
- apply (hyps_to_goal ep env (a l) H0); apply H; assumption.
-Qed.
-
-(* \subsubsection{Généralisation a des listes de buts (disjonctions)} *)
-
-
-Fixpoint interp_list_hyps (envp : list Prop) (env : list int)
- (l : lhyps) {struct l} : Prop :=
- match l with
- | nil => False
- | h :: l' => interp_hyps envp env h \/ interp_list_hyps envp env l'
- end.
-
-Fixpoint interp_list_goal (envp : list Prop) (env : list int)
- (l : lhyps) {struct l} : Prop :=
- match l with
- | nil => True
- | h :: l' => interp_goal envp env h /\ interp_list_goal envp env l'
- end.
-
-Theorem list_goal_to_hyps :
- forall (envp : list Prop) (env : list int) (l : lhyps),
- (interp_list_hyps envp env l -> False) -> interp_list_goal envp env l.
-Proof.
- simple induction l; simpl in |- *;
- [ auto
- | intros h1 l1 H H1; split;
- [ apply goal_to_hyps; intro H2; apply H1; auto
- | apply H; intro H2; apply H1; auto ] ].
-Qed.
-
-Theorem list_hyps_to_goal :
- forall (envp : list Prop) (env : list int) (l : lhyps),
- interp_list_goal envp env l -> interp_list_hyps envp env l -> False.
-Proof.
- simple induction l; simpl in |- *;
- [ auto
- | intros h1 l1 H (H1, H2) H3; elim H3; intro H4;
- [ apply hyps_to_goal with (1 := H1); assumption | auto ] ].
-Qed.
-
-Definition valid_list_hyps (f : hyps -> lhyps) :=
- forall (ep : list Prop) (e : list int) (lp : hyps),
- interp_hyps ep e lp -> interp_list_hyps ep e (f lp).
-
-Definition valid_list_goal (f : hyps -> lhyps) :=
- forall (ep : list Prop) (e : list int) (lp : hyps),
- interp_list_goal ep e (f lp) -> interp_goal ep e lp.
-
-Theorem goal_valid :
- forall f : hyps -> lhyps, valid_list_hyps f -> valid_list_goal f.
-Proof.
- unfold valid_list_goal in |- *; intros f H ep e lp H1; apply goal_to_hyps;
- intro H2; apply list_hyps_to_goal with (1 := H1);
- apply (H ep e lp); assumption.
-Qed.
-
-Theorem append_valid :
- forall (ep : list Prop) (e : list int) (l1 l2 : lhyps),
- interp_list_hyps ep e l1 \/ interp_list_hyps ep e l2 ->
- interp_list_hyps ep e (l1 ++ l2).
-Proof.
- intros ep e; simple induction l1;
- [ simpl in |- *; intros l2 [H| H]; [ contradiction | trivial ]
- | simpl in |- *; intros h1 t1 HR l2 [[H| H]| H];
- [ auto
- | right; apply (HR l2); left; trivial
- | right; apply (HR l2); right; trivial ] ].
-
-Qed.
-
-(* \subsubsection{Opérateurs valides sur les hypothèses} *)
-
-(* Extraire une hypothèse de la liste *)
-Definition nth_hyps (n : nat) (l : hyps) := nth n l TrueTerm.
-
-Theorem nth_valid :
- forall (ep : list Prop) (e : list int) (i : nat) (l : hyps),
- interp_hyps ep e l -> interp_proposition ep e (nth_hyps i l).
-Proof.
- unfold nth_hyps in |- *; simple induction i;
- [ simple induction l; simpl in |- *; [ auto | intros; elim H0; auto ]
- | intros n H; simple induction l;
- [ simpl in |- *; trivial
- | intros; simpl in |- *; apply H; elim H1; auto ] ].
-Qed.
-
-(* Appliquer une opération (valide) sur deux hypothèses extraites de
- la liste et ajouter le résultat à la liste. *)
-Definition apply_oper_2 (i j : nat)
- (f : proposition -> proposition -> proposition) (l : hyps) :=
- f (nth_hyps i l) (nth_hyps j l) :: l.
-
-Theorem apply_oper_2_valid :
- forall (i j : nat) (f : proposition -> proposition -> proposition),
- valid2 f -> valid_hyps (apply_oper_2 i j f).
-Proof.
- intros i j f Hf; unfold apply_oper_2, valid_hyps in |- *; simpl in |- *;
- intros lp Hlp; split; [ apply Hf; apply nth_valid; assumption | assumption ].
-Qed.
-
-(* Modifier une hypothèse par application d'une opération valide *)
-
-Fixpoint apply_oper_1 (i : nat) (f : proposition -> proposition)
- (l : hyps) {struct i} : hyps :=
- match l with
- | nil => nil (A:=proposition)
- | p :: l' =>
- match i with
- | O => f p :: l'
- | S j => p :: apply_oper_1 j f l'
- end
- end.
-
-Theorem apply_oper_1_valid :
- forall (i : nat) (f : proposition -> proposition),
- valid1 f -> valid_hyps (apply_oper_1 i f).
-Proof.
- unfold valid_hyps in |- *; intros i f Hf ep e; elim i;
- [ intro lp; case lp;
- [ simpl in |- *; trivial
- | simpl in |- *; intros p l' (H1, H2); split;
- [ apply Hf with (1 := H1) | assumption ] ]
- | intros n Hrec lp; case lp;
- [ simpl in |- *; auto
- | simpl in |- *; intros p l' (H1, H2); split;
- [ assumption | apply Hrec; assumption ] ] ].
-Qed.
-
-(* \subsubsection{Manipulations de termes} *)
-(* Les fonctions suivantes permettent d'appliquer une fonction de
- réécriture sur un sous terme du terme principal. Avec la composition,
- cela permet de construire des réécritures complexes proches des
- tactiques de conversion *)
-
-Definition apply_left (f : term -> term) (t : term) :=
- match t with
- | (x + y)%term => (f x + y)%term
- | (x * y)%term => (f x * y)%term
- | (- x)%term => (- f x)%term
- | x => x
- end.
-
-Definition apply_right (f : term -> term) (t : term) :=
- match t with
- | (x + y)%term => (x + f y)%term
- | (x * y)%term => (x * f y)%term
- | x => x
- end.
-
-Definition apply_both (f g : term -> term) (t : term) :=
- match t with
- | (x + y)%term => (f x + g y)%term
- | (x * y)%term => (f x * g y)%term
- | x => x
- end.
-
-(* Les théorèmes suivants montrent la stabilité (conditionnée) des
- fonctions. *)
-
-Theorem apply_left_stable :
- forall f : term -> term, term_stable f -> term_stable (apply_left f).
-Proof.
- unfold term_stable in |- *; intros f H e t; case t; auto; simpl in |- *;
- intros; elim H; trivial.
-Qed.
-
-Theorem apply_right_stable :
- forall f : term -> term, term_stable f -> term_stable (apply_right f).
-Proof.
- unfold term_stable in |- *; intros f H e t; case t; auto; simpl in |- *;
- intros t0 t1; elim H; trivial.
-Qed.
-
-Theorem apply_both_stable :
- forall f g : term -> term,
- term_stable f -> term_stable g -> term_stable (apply_both f g).
-Proof.
- unfold term_stable in |- *; intros f g H1 H2 e t; case t; auto; simpl in |- *;
- intros t0 t1; elim H1; elim H2; trivial.
-Qed.
-
-Theorem compose_term_stable :
- forall f g : term -> term,
- term_stable f -> term_stable g -> term_stable (fun t : term => f (g t)).
-Proof.
- unfold term_stable in |- *; intros f g Hf Hg e t; elim Hf; apply Hg.
-Qed.
-
-(* \subsection{Les règles de réécriture} *)
-(* Chacune des règles de réécriture est accompagnée par sa preuve de
- stabilité. Toutes ces preuves ont la même forme : il faut analyser
- suivant la forme du terme (élimination de chaque Case). On a besoin d'une
- élimination uniquement dans les cas d'utilisation d'égalité décidable.
-
- Cette tactique itère la décomposition des Case. Elle est
- constituée de deux fonctions s'appelant mutuellement :
- \begin{itemize}
- \item une fonction d'enrobage qui lance la recherche sur le but,
- \item une fonction récursive qui décompose ce but. Quand elle a trouvé un
- Case, elle l'élimine.
- \end{itemize}
- Les motifs sur les cas sont très imparfaits et dans certains cas, il
- semble que cela ne marche pas. On aimerait plutot un motif de la
- forme [ Case (?1 :: T) of _ end ] permettant de s'assurer que l'on
- utilise le bon type.
-
- Chaque élimination introduit correctement exactement le nombre d'hypothèses
- nécessaires et conserve dans le cas d'une égalité la connaissance du
- résultat du test en faisant la réécriture. Pour un test de comparaison,
- on conserve simplement le résultat.
-
- Cette fonction déborde très largement la résolution des réécritures
- simples et fait une bonne partie des preuves des pas de Omega.
-*)
-
-(* \subsubsection{La tactique pour prouver la stabilité} *)
-
-Ltac loop t :=
- match t with
- (* Global *)
- | (?X1 = ?X2) => loop X1 || loop X2
- | (_ -> ?X1) => loop X1
- (* Interpretations *)
- | (interp_hyps _ _ ?X1) => loop X1
- | (interp_list_hyps _ _ ?X1) => loop X1
- | (interp_proposition _ _ ?X1) => loop X1
- | (interp_term _ ?X1) => loop X1
- (* Propositions *)
- | (EqTerm ?X1 ?X2) => loop X1 || loop X2
- | (LeqTerm ?X1 ?X2) => loop X1 || loop X2
- (* Termes *)
- | (?X1 + ?X2)%term => loop X1 || loop X2
- | (?X1 - ?X2)%term => loop X1 || loop X2
- | (?X1 * ?X2)%term => loop X1 || loop X2
- | (- ?X1)%term => loop X1
- | (Tint ?X1) => loop X1
- (* Eliminations *)
- | match ?X1 with
- | EqTerm x x0 => _
- | LeqTerm x x0 => _
- | TrueTerm => _
- | FalseTerm => _
- | Tnot x => _
- | GeqTerm x x0 => _
- | GtTerm x x0 => _
- | LtTerm x x0 => _
- | NeqTerm x x0 => _
- | Tor x x0 => _
- | Tand x x0 => _
- | Timp x x0 => _
- | Tprop x => _
- end => destruct X1; auto; Simplify
- | match ?X1 with
- | Tint x => _
- | (x + x0)%term => _
- | (x * x0)%term => _
- | (x - x0)%term => _
- | (- x)%term => _
- | [x]%term => _
- end => destruct X1; auto; Simplify
- | (if beq ?X1 ?X2 then _ else _) =>
- let H := fresh "H" in
- elim_beq X1 X2; intro H; try (rewrite H in *; clear H);
- simpl in |- *; auto; Simplify
- | (if bgt ?X1 ?X2 then _ else _) =>
- let H := fresh "H" in
- elim_bgt X1 X2; intro H; simpl in |- *; auto; Simplify
- | (if eq_term ?X1 ?X2 then _ else _) =>
- let H := fresh "H" in
- elim_eq_term X1 X2; intro H; try (rewrite H in *; clear H);
- simpl in |- *; auto; Simplify
- | (if _ && _ then _ else _) => rewrite andb_if; Simplify
- | (if negb _ then _ else _) => rewrite negb_if; Simplify
- | _ => fail
- end
-
-with Simplify := match goal with
- | |- ?X1 => try loop X1
- | _ => idtac
- end.
-
-Ltac prove_stable x th :=
- match constr:x with
- | ?X1 =>
- unfold term_stable, X1 in |- *; intros; Simplify; simpl in |- *;
- apply th
- end.
-
-(* \subsubsection{Les règles elle mêmes} *)
-Definition Tplus_assoc_l (t : term) :=
- match t with
- | (n + (m + p))%term => (n + m + p)%term
- | _ => t
- end.
-
-Theorem Tplus_assoc_l_stable : term_stable Tplus_assoc_l.
-Proof.
- prove_stable Tplus_assoc_l (ring.(Radd_assoc)).
-Qed.
-
-Definition Tplus_assoc_r (t : term) :=
- match t with
- | (n + m + p)%term => (n + (m + p))%term
- | _ => t
- end.
-
-Theorem Tplus_assoc_r_stable : term_stable Tplus_assoc_r.
-Proof.
- prove_stable Tplus_assoc_r plus_assoc_reverse.
-Qed.
-
-Definition Tmult_assoc_r (t : term) :=
- match t with
- | (n * m * p)%term => (n * (m * p))%term
- | _ => t
- end.
-
-Theorem Tmult_assoc_r_stable : term_stable Tmult_assoc_r.
-Proof.
- prove_stable Tmult_assoc_r mult_assoc_reverse.
-Qed.
-
-Definition Tplus_permute (t : term) :=
- match t with
- | (n + (m + p))%term => (m + (n + p))%term
- | _ => t
- end.
-
-Theorem Tplus_permute_stable : term_stable Tplus_permute.
-Proof.
- prove_stable Tplus_permute plus_permute.
-Qed.
-
-Definition Tplus_comm (t : term) :=
- match t with
- | (x + y)%term => (y + x)%term
- | _ => t
- end.
-
-Theorem Tplus_comm_stable : term_stable Tplus_comm.
-Proof.
- prove_stable Tplus_comm plus_comm.
-Qed.
-
-Definition Tmult_comm (t : term) :=
- match t with
- | (x * y)%term => (y * x)%term
- | _ => t
- end.
-
-Theorem Tmult_comm_stable : term_stable Tmult_comm.
-Proof.
- prove_stable Tmult_comm mult_comm.
-Qed.
-
-Definition T_OMEGA10 (t : term) :=
- match t with
- | ((v * Tint c1 + l1) * Tint k1 + (v' * Tint c2 + l2) * Tint k2)%term =>
- if eq_term v v'
- then (v * Tint (c1 * k1 + c2 * k2)%I + (l1 * Tint k1 + l2 * Tint k2))%term
- else t
- | _ => t
- end.
-
-Theorem T_OMEGA10_stable : term_stable T_OMEGA10.
-Proof.
- prove_stable T_OMEGA10 OMEGA10.
-Qed.
-
-Definition T_OMEGA11 (t : term) :=
- match t with
- | ((v1 * Tint c1 + l1) * Tint k1 + l2)%term =>
- (v1 * Tint (c1 * k1) + (l1 * Tint k1 + l2))%term
- | _ => t
- end.
-
-Theorem T_OMEGA11_stable : term_stable T_OMEGA11.
-Proof.
- prove_stable T_OMEGA11 OMEGA11.
-Qed.
-
-Definition T_OMEGA12 (t : term) :=
- match t with
- | (l1 + (v2 * Tint c2 + l2) * Tint k2)%term =>
- (v2 * Tint (c2 * k2) + (l1 + l2 * Tint k2))%term
- | _ => t
- end.
-
-Theorem T_OMEGA12_stable : term_stable T_OMEGA12.
-Proof.
- prove_stable T_OMEGA12 OMEGA12.
-Qed.
-
-Definition T_OMEGA13 (t : term) :=
- match t with
- | (v * Tint x + l1 + (v' * Tint x' + l2))%term =>
- if eq_term v v' && beq x (-x')
- then (l1+l2)%term
- else t
- | _ => t
- end.
-
-Theorem T_OMEGA13_stable : term_stable T_OMEGA13.
-Proof.
- unfold term_stable, T_OMEGA13 in |- *; intros; Simplify; simpl in |- *;
- apply OMEGA13.
-Qed.
-
-Definition T_OMEGA15 (t : term) :=
- match t with
- | (v * Tint c1 + l1 + (v' * Tint c2 + l2) * Tint k2)%term =>
- if eq_term v v'
- then (v * Tint (c1 + c2 * k2)%I + (l1 + l2 * Tint k2))%term
- else t
- | _ => t
- end.
-
-Theorem T_OMEGA15_stable : term_stable T_OMEGA15.
-Proof.
- prove_stable T_OMEGA15 OMEGA15.
-Qed.
-
-Definition T_OMEGA16 (t : term) :=
- match t with
- | ((v * Tint c + l) * Tint k)%term => (v * Tint (c * k) + l * Tint k)%term
- | _ => t
- end.
-
-
-Theorem T_OMEGA16_stable : term_stable T_OMEGA16.
-Proof.
- prove_stable T_OMEGA16 OMEGA16.
-Qed.
-
-Definition Tred_factor5 (t : term) :=
- match t with
- | (x * Tint c + y)%term => if beq c 0 then y else t
- | _ => t
- end.
-
-Theorem Tred_factor5_stable : term_stable Tred_factor5.
-Proof.
- prove_stable Tred_factor5 red_factor5.
-Qed.
-
-Definition Topp_plus (t : term) :=
- match t with
- | (- (x + y))%term => (- x + - y)%term
- | _ => t
- end.
-
-Theorem Topp_plus_stable : term_stable Topp_plus.
-Proof.
- prove_stable Topp_plus opp_plus_distr.
-Qed.
-
-
-Definition Topp_opp (t : term) :=
- match t with
- | (- - x)%term => x
- | _ => t
- end.
-
-Theorem Topp_opp_stable : term_stable Topp_opp.
-Proof.
- prove_stable Topp_opp opp_involutive.
-Qed.
-
-Definition Topp_mult_r (t : term) :=
- match t with
- | (- (x * Tint k))%term => (x * Tint (- k))%term
- | _ => t
- end.
-
-Theorem Topp_mult_r_stable : term_stable Topp_mult_r.
-Proof.
- prove_stable Topp_mult_r opp_mult_distr_r.
-Qed.
-
-Definition Topp_one (t : term) :=
- match t with
- | (- x)%term => (x * Tint (-(1)))%term
- | _ => t
- end.
-
-Theorem Topp_one_stable : term_stable Topp_one.
-Proof.
- prove_stable Topp_one opp_eq_mult_neg_1.
-Qed.
-
-Definition Tmult_plus_distr (t : term) :=
- match t with
- | ((n + m) * p)%term => (n * p + m * p)%term
- | _ => t
- end.
-
-Theorem Tmult_plus_distr_stable : term_stable Tmult_plus_distr.
-Proof.
- prove_stable Tmult_plus_distr mult_plus_distr_r.
-Qed.
-
-Definition Tmult_opp_left (t : term) :=
- match t with
- | (- x * Tint y)%term => (x * Tint (- y))%term
- | _ => t
- end.
-
-Theorem Tmult_opp_left_stable : term_stable Tmult_opp_left.
-Proof.
- prove_stable Tmult_opp_left mult_opp_comm.
-Qed.
-
-Definition Tmult_assoc_reduced (t : term) :=
- match t with
- | (n * Tint m * Tint p)%term => (n * Tint (m * p))%term
- | _ => t
- end.
-
-Theorem Tmult_assoc_reduced_stable : term_stable Tmult_assoc_reduced.
-Proof.
- prove_stable Tmult_assoc_reduced mult_assoc_reverse.
-Qed.
-
-Definition Tred_factor0 (t : term) := (t * Tint 1)%term.
-
-Theorem Tred_factor0_stable : term_stable Tred_factor0.
-Proof.
- prove_stable Tred_factor0 red_factor0.
-Qed.
-
-Definition Tred_factor1 (t : term) :=
- match t with
- | (x + y)%term =>
- if eq_term x y
- then (x * Tint 2)%term
- else t
- | _ => t
- end.
-
-Theorem Tred_factor1_stable : term_stable Tred_factor1.
-Proof.
- prove_stable Tred_factor1 red_factor1.
-Qed.
-
-Definition Tred_factor2 (t : term) :=
- match t with
- | (x + y * Tint k)%term =>
- if eq_term x y
- then (x * Tint (1 + k))%term
- else t
- | _ => t
- end.
-
-Theorem Tred_factor2_stable : term_stable Tred_factor2.
-Proof.
- prove_stable Tred_factor2 red_factor2.
-Qed.
-
-Definition Tred_factor3 (t : term) :=
- match t with
- | (x * Tint k + y)%term =>
- if eq_term x y
- then (x * Tint (1 + k))%term
- else t
- | _ => t
- end.
-
-Theorem Tred_factor3_stable : term_stable Tred_factor3.
-Proof.
- prove_stable Tred_factor3 red_factor3.
-Qed.
-
-
-Definition Tred_factor4 (t : term) :=
- match t with
- | (x * Tint k1 + y * Tint k2)%term =>
- if eq_term x y
- then (x * Tint (k1 + k2))%term
- else t
- | _ => t
- end.
-
-Theorem Tred_factor4_stable : term_stable Tred_factor4.
-Proof.
- prove_stable Tred_factor4 red_factor4.
-Qed.
-
-Definition Tred_factor6 (t : term) := (t + Tint 0)%term.
-
-Theorem Tred_factor6_stable : term_stable Tred_factor6.
-Proof.
- prove_stable Tred_factor6 red_factor6.
-Qed.
-
-Definition Tminus_def (t : term) :=
- match t with
- | (x - y)%term => (x + - y)%term
- | _ => t
- end.
-
-Theorem Tminus_def_stable : term_stable Tminus_def.
-Proof.
- prove_stable Tminus_def minus_def.
-Qed.
-
-(* \subsection{Fonctions de réécriture complexes} *)
-
-(* \subsubsection{Fonction de réduction} *)
-(* Cette fonction réduit un terme dont la forme normale est un entier. Il
- suffit pour cela d'échanger le constructeur [Tint] avec les opérateurs
- réifiés. La réduction est ``gratuite''. *)
-
-Fixpoint reduce (t : term) : term :=
- match t with
- | (x + y)%term =>
- match reduce x with
- | Tint x' =>
- match reduce y with
- | Tint y' => Tint (x' + y')
- | y' => (Tint x' + y')%term
- end
- | x' => (x' + reduce y)%term
- end
- | (x * y)%term =>
- match reduce x with
- | Tint x' =>
- match reduce y with
- | Tint y' => Tint (x' * y')
- | y' => (Tint x' * y')%term
- end
- | x' => (x' * reduce y)%term
- end
- | (x - y)%term =>
- match reduce x with
- | Tint x' =>
- match reduce y with
- | Tint y' => Tint (x' - y')
- | y' => (Tint x' - y')%term
- end
- | x' => (x' - reduce y)%term
- end
- | (- x)%term =>
- match reduce x with
- | Tint x' => Tint (- x')
- | x' => (- x')%term
- end
- | _ => t
- end.
-
-Theorem reduce_stable : term_stable reduce.
-Proof.
- unfold term_stable in |- *; intros e t; elim t; auto;
- try
- (intros t0 H0 t1 H1; simpl in |- *; rewrite H0; rewrite H1;
- (case (reduce t0);
- [ intro z0; case (reduce t1); intros; auto
- | intros; auto
- | intros; auto
- | intros; auto
- | intros; auto
- | intros; auto ])); intros t0 H0; simpl in |- *;
- rewrite H0; case (reduce t0); intros; auto.
-Qed.
-
-(* \subsubsection{Fusions}
- \paragraph{Fusion de deux équations} *)
-(* On donne une somme de deux équations qui sont supposées normalisées.
- Cette fonction prend une trace de fusion en argument et transforme
- le terme en une équation normalisée. C'est une version très simplifiée
- du moteur de réécriture [rewrite]. *)
-
-Fixpoint fusion (trace : list t_fusion) (t : term) {struct trace} : term :=
- match trace with
- | nil => reduce t
- | step :: trace' =>
- match step with
- | F_equal => apply_right (fusion trace') (T_OMEGA10 t)
- | F_cancel => fusion trace' (Tred_factor5 (T_OMEGA10 t))
- | F_left => apply_right (fusion trace') (T_OMEGA11 t)
- | F_right => apply_right (fusion trace') (T_OMEGA12 t)
- end
- end.
-
-Theorem fusion_stable : forall t : list t_fusion, term_stable (fusion t).
-Proof.
- simple induction t; simpl in |- *;
- [ exact reduce_stable
- | intros stp l H; case stp;
- [ apply compose_term_stable;
- [ apply apply_right_stable; assumption | exact T_OMEGA10_stable ]
- | unfold term_stable in |- *; intros e t1; rewrite T_OMEGA10_stable;
- rewrite Tred_factor5_stable; apply H
- | apply compose_term_stable;
- [ apply apply_right_stable; assumption | exact T_OMEGA11_stable ]
- | apply compose_term_stable;
- [ apply apply_right_stable; assumption | exact T_OMEGA12_stable ] ] ].
-Qed.
-
-(* \paragraph{Fusion de deux équations dont une sans coefficient} *)
-
-Definition fusion_right (trace : list t_fusion) (t : term) : term :=
- match trace with
- | nil => reduce t (* Il faut mettre un compute *)
- | step :: trace' =>
- match step with
- | F_equal => apply_right (fusion trace') (T_OMEGA15 t)
- | F_cancel => fusion trace' (Tred_factor5 (T_OMEGA15 t))
- | F_left => apply_right (fusion trace') (Tplus_assoc_r t)
- | F_right => apply_right (fusion trace') (T_OMEGA12 t)
- end
- end.
-
-(* \paragraph{Fusion avec annihilation} *)
-(* Normalement le résultat est une constante *)
-
-Fixpoint fusion_cancel (trace : nat) (t : term) {struct trace} : term :=
- match trace with
- | O => reduce t
- | S trace' => fusion_cancel trace' (T_OMEGA13 t)
- end.
-
-Theorem fusion_cancel_stable : forall t : nat, term_stable (fusion_cancel t).
-Proof.
- unfold term_stable, fusion_cancel in |- *; intros trace e; elim trace;
- [ exact (reduce_stable e)
- | intros n H t; elim H; exact (T_OMEGA13_stable e t) ].
-Qed.
-
-(* \subsubsection{Opérations affines sur une équation} *)
-(* \paragraph{Multiplication scalaire et somme d'une constante} *)
-
-Fixpoint scalar_norm_add (trace : nat) (t : term) {struct trace} : term :=
- match trace with
- | O => reduce t
- | S trace' => apply_right (scalar_norm_add trace') (T_OMEGA11 t)
- end.
-
-Theorem scalar_norm_add_stable :
- forall t : nat, term_stable (scalar_norm_add t).
-Proof.
- unfold term_stable, scalar_norm_add in |- *; intros trace; elim trace;
- [ exact reduce_stable
- | intros n H e t; elim apply_right_stable;
- [ exact (T_OMEGA11_stable e t) | exact H ] ].
-Qed.
-
-(* \paragraph{Multiplication scalaire} *)
-Fixpoint scalar_norm (trace : nat) (t : term) {struct trace} : term :=
- match trace with
- | O => reduce t
- | S trace' => apply_right (scalar_norm trace') (T_OMEGA16 t)
- end.
-
-Theorem scalar_norm_stable : forall t : nat, term_stable (scalar_norm t).
-Proof.
- unfold term_stable, scalar_norm in |- *; intros trace; elim trace;
- [ exact reduce_stable
- | intros n H e t; elim apply_right_stable;
- [ exact (T_OMEGA16_stable e t) | exact H ] ].
-Qed.
-
-(* \paragraph{Somme d'une constante} *)
-Fixpoint add_norm (trace : nat) (t : term) {struct trace} : term :=
- match trace with
- | O => reduce t
- | S trace' => apply_right (add_norm trace') (Tplus_assoc_r t)
- end.
-
-Theorem add_norm_stable : forall t : nat, term_stable (add_norm t).
-Proof.
- unfold term_stable, add_norm in |- *; intros trace; elim trace;
- [ exact reduce_stable
- | intros n H e t; elim apply_right_stable;
- [ exact (Tplus_assoc_r_stable e t) | exact H ] ].
-Qed.
-
-(* \subsection{La fonction de normalisation des termes (moteur de réécriture)} *)
-
-
-Fixpoint rewrite (s : step) : term -> term :=
- match s with
- | C_DO_BOTH s1 s2 => apply_both (rewrite s1) (rewrite s2)
- | C_LEFT s => apply_left (rewrite s)
- | C_RIGHT s => apply_right (rewrite s)
- | C_SEQ s1 s2 => fun t : term => rewrite s2 (rewrite s1 t)
- | C_NOP => fun t : term => t
- | C_OPP_PLUS => Topp_plus
- | C_OPP_OPP => Topp_opp
- | C_OPP_MULT_R => Topp_mult_r
- | C_OPP_ONE => Topp_one
- | C_REDUCE => reduce
- | C_MULT_PLUS_DISTR => Tmult_plus_distr
- | C_MULT_OPP_LEFT => Tmult_opp_left
- | C_MULT_ASSOC_R => Tmult_assoc_r
- | C_PLUS_ASSOC_R => Tplus_assoc_r
- | C_PLUS_ASSOC_L => Tplus_assoc_l
- | C_PLUS_PERMUTE => Tplus_permute
- | C_PLUS_COMM => Tplus_comm
- | C_RED0 => Tred_factor0
- | C_RED1 => Tred_factor1
- | C_RED2 => Tred_factor2
- | C_RED3 => Tred_factor3
- | C_RED4 => Tred_factor4
- | C_RED5 => Tred_factor5
- | C_RED6 => Tred_factor6
- | C_MULT_ASSOC_REDUCED => Tmult_assoc_reduced
- | C_MINUS => Tminus_def
- | C_MULT_COMM => Tmult_comm
- end.
-
-Theorem rewrite_stable : forall s : step, term_stable (rewrite s).
-Proof.
- simple induction s; simpl in |- *;
- [ intros; apply apply_both_stable; auto
- | intros; apply apply_left_stable; auto
- | intros; apply apply_right_stable; auto
- | unfold term_stable in |- *; intros; elim H0; apply H
- | unfold term_stable in |- *; auto
- | exact Topp_plus_stable
- | exact Topp_opp_stable
- | exact Topp_mult_r_stable
- | exact Topp_one_stable
- | exact reduce_stable
- | exact Tmult_plus_distr_stable
- | exact Tmult_opp_left_stable
- | exact Tmult_assoc_r_stable
- | exact Tplus_assoc_r_stable
- | exact Tplus_assoc_l_stable
- | exact Tplus_permute_stable
- | exact Tplus_comm_stable
- | exact Tred_factor0_stable
- | exact Tred_factor1_stable
- | exact Tred_factor2_stable
- | exact Tred_factor3_stable
- | exact Tred_factor4_stable
- | exact Tred_factor5_stable
- | exact Tred_factor6_stable
- | exact Tmult_assoc_reduced_stable
- | exact Tminus_def_stable
- | exact Tmult_comm_stable ].
-Qed.
-
-(* \subsection{tactiques de résolution d'un but omega normalisé}
- Trace de la procédure
-\subsubsection{Tactiques générant une contradiction}
-\paragraph{[O_CONSTANT_NOT_NUL]} *)
-
-Definition constant_not_nul (i : nat) (h : hyps) :=
- match nth_hyps i h with
- | EqTerm (Tint Nul) (Tint n) =>
- if beq n Nul then h else absurd
- | _ => h
- end.
-
-Theorem constant_not_nul_valid :
- forall i : nat, valid_hyps (constant_not_nul i).
-Proof.
- unfold valid_hyps, constant_not_nul in |- *; intros;
- generalize (nth_valid ep e i lp); Simplify; simpl in |- *.
-
- elim_beq i1 i0; auto; simpl in |- *; intros H1 H2;
- elim H1; symmetry in |- *; auto.
-Qed.
-
-(* \paragraph{[O_CONSTANT_NEG]} *)
-
-Definition constant_neg (i : nat) (h : hyps) :=
- match nth_hyps i h with
- | LeqTerm (Tint Nul) (Tint Neg) =>
- if bgt Nul Neg then absurd else h
- | _ => h
- end.
-
-Theorem constant_neg_valid : forall i : nat, valid_hyps (constant_neg i).
-Proof.
- unfold valid_hyps, constant_neg in |- *; intros;
- generalize (nth_valid ep e i lp); Simplify; simpl in |- *.
- rewrite gt_lt_iff in H0; rewrite le_lt_iff; intuition.
-Qed.
-
-(* \paragraph{[NOT_EXACT_DIVIDE]} *)
-Definition not_exact_divide (k1 k2 : int) (body : term)
- (t i : nat) (l : hyps) :=
- match nth_hyps i l with
- | EqTerm (Tint Nul) b =>
- if beq Nul 0 &&
- eq_term (scalar_norm_add t (body * Tint k1 + Tint k2)%term) b &&
- bgt k2 0 &&
- bgt k1 k2
- then absurd
- else l
- | _ => l
- end.
-
-Theorem not_exact_divide_valid :
- forall (k1 k2 : int) (body : term) (t i : nat),
- valid_hyps (not_exact_divide k1 k2 body t i).
-Proof.
- unfold valid_hyps, not_exact_divide in |- *; intros;
- generalize (nth_valid ep e i lp); Simplify.
- rewrite (scalar_norm_add_stable t e), <-H1.
- do 2 rewrite <- scalar_norm_add_stable; simpl in *; intros.
- absurd (interp_term e body * k1 + k2 = 0);
- [ now apply OMEGA4 | symmetry; auto ].
-Qed.
-
-(* \paragraph{[O_CONTRADICTION]} *)
-
-Definition contradiction (t i j : nat) (l : hyps) :=
- match nth_hyps i l with
- | LeqTerm (Tint Nul) b1 =>
- match nth_hyps j l with
- | LeqTerm (Tint Nul') b2 =>
- match fusion_cancel t (b1 + b2)%term with
- | Tint k => if beq Nul 0 && beq Nul' 0 && bgt 0 k
- then absurd
- else l
- | _ => l
- end
- | _ => l
- end
- | _ => l
- end.
-
-Theorem contradiction_valid :
- forall t i j : nat, valid_hyps (contradiction t i j).
-Proof.
- unfold valid_hyps, contradiction in |- *; intros t i j ep e l H;
- generalize (nth_valid _ _ i _ H); generalize (nth_valid _ _ j _ H);
- case (nth_hyps i l); auto; intros t1 t2; case t1;
- auto; case (nth_hyps j l);
- auto; intros t3 t4; case t3; auto;
- simpl in |- *; intros z z' H1 H2;
- generalize (refl_equal (interp_term e (fusion_cancel t (t2 + t4)%term)));
- pattern (fusion_cancel t (t2 + t4)%term) at 2 3 in |- *;
- case (fusion_cancel t (t2 + t4)%term); simpl in |- *;
- auto; intro k; elim (fusion_cancel_stable t); simpl in |- *.
- Simplify; intro H3.
- generalize (OMEGA2 _ _ H2 H1); rewrite H3.
- rewrite gt_lt_iff in H0; rewrite le_lt_iff; intuition.
-Qed.
-
-(* \paragraph{[O_NEGATE_CONTRADICT]} *)
-
-Definition negate_contradict (i1 i2 : nat) (h : hyps) :=
- match nth_hyps i1 h with
- | EqTerm (Tint Nul) b1 =>
- match nth_hyps i2 h with
- | NeqTerm (Tint Nul') b2 =>
- if beq Nul 0 && beq Nul' 0 && eq_term b1 b2
- then absurd
- else h
- | _ => h
- end
- | NeqTerm (Tint Nul) b1 =>
- match nth_hyps i2 h with
- | EqTerm (Tint Nul') b2 =>
- if beq Nul 0 && beq Nul' 0 && eq_term b1 b2
- then absurd
- else h
- | _ => h
- end
- | _ => h
- end.
-
-Definition negate_contradict_inv (t i1 i2 : nat) (h : hyps) :=
- match nth_hyps i1 h with
- | EqTerm (Tint Nul) b1 =>
- match nth_hyps i2 h with
- | NeqTerm (Tint Nul') b2 =>
- if beq Nul 0 && beq Nul' 0 &&
- eq_term b1 (scalar_norm t (b2 * Tint (-(1)))%term)
- then absurd
- else h
- | _ => h
- end
- | NeqTerm (Tint Nul) b1 =>
- match nth_hyps i2 h with
- | EqTerm (Tint Nul') b2 =>
- if beq Nul 0 && beq Nul' 0 &&
- eq_term b1 (scalar_norm t (b2 * Tint (-(1)))%term)
- then absurd
- else h
- | _ => h
- end
- | _ => h
- end.
-
-Theorem negate_contradict_valid :
- forall i j : nat, valid_hyps (negate_contradict i j).
-Proof.
- unfold valid_hyps, negate_contradict in |- *; intros i j ep e l H;
- generalize (nth_valid _ _ i _ H); generalize (nth_valid _ _ j _ H);
- case (nth_hyps i l); auto; intros t1 t2; case t1;
- auto; intros z; auto; case (nth_hyps j l);
- auto; intros t3 t4; case t3; auto; intros z';
- auto; simpl in |- *; intros H1 H2; Simplify.
-Qed.
-
-Theorem negate_contradict_inv_valid :
- forall t i j : nat, valid_hyps (negate_contradict_inv t i j).
-Proof.
- unfold valid_hyps, negate_contradict_inv in |- *; intros t i j ep e l H;
- generalize (nth_valid _ _ i _ H); generalize (nth_valid _ _ j _ H);
- case (nth_hyps i l); auto; intros t1 t2; case t1;
- auto; intros z; auto; case (nth_hyps j l);
- auto; intros t3 t4; case t3; auto; intros z';
- auto; simpl in |- *; intros H1 H2; Simplify;
- [
- rewrite <- scalar_norm_stable in H2; simpl in *;
- elim (mult_integral (interp_term e t4) (-(1))); intuition;
- elim minus_one_neq_zero; auto
- |
- elim H2; clear H2;
- rewrite <- scalar_norm_stable; simpl in *;
- now rewrite <- H1, mult_0_l
- ].
-Qed.
-
-(* \subsubsection{Tactiques générant une nouvelle équation} *)
-(* \paragraph{[O_SUM]}
- C'est une oper2 valide mais elle traite plusieurs cas à la fois (suivant
- les opérateurs de comparaison des deux arguments) d'où une
- preuve un peu compliquée. On utilise quelques lemmes qui sont des
- généralisations des théorèmes utilisés par OMEGA. *)
-
-Definition sum (k1 k2 : int) (trace : list t_fusion)
- (prop1 prop2 : proposition) :=
- match prop1 with
- | EqTerm (Tint Null) b1 =>
- match prop2 with
- | EqTerm (Tint Null') b2 =>
- if beq Null 0 && beq Null' 0
- then EqTerm (Tint 0) (fusion trace (b1 * Tint k1 + b2 * Tint k2)%term)
- else TrueTerm
- | LeqTerm (Tint Null') b2 =>
- if beq Null 0 && beq Null' 0 && bgt k2 0
- then LeqTerm (Tint 0)
- (fusion trace (b1 * Tint k1 + b2 * Tint k2)%term)
- else TrueTerm
- | _ => TrueTerm
- end
- | LeqTerm (Tint Null) b1 =>
- if beq Null 0 && bgt k1 0
- then match prop2 with
- | EqTerm (Tint Null') b2 =>
- if beq Null' 0 then
- LeqTerm (Tint 0)
- (fusion trace (b1 * Tint k1 + b2 * Tint k2)%term)
- else TrueTerm
- | LeqTerm (Tint Null') b2 =>
- if beq Null' 0 && bgt k2 0
- then LeqTerm (Tint 0)
- (fusion trace (b1 * Tint k1 + b2 * Tint k2)%term)
- else TrueTerm
- | _ => TrueTerm
- end
- else TrueTerm
- | NeqTerm (Tint Null) b1 =>
- match prop2 with
- | EqTerm (Tint Null') b2 =>
- if beq Null 0 && beq Null' 0 && (negb (beq k1 0))
- then NeqTerm (Tint 0)
- (fusion trace (b1 * Tint k1 + b2 * Tint k2)%term)
- else TrueTerm
- | _ => TrueTerm
- end
- | _ => TrueTerm
- end.
-
-
-Theorem sum_valid :
- forall (k1 k2 : int) (t : list t_fusion), valid2 (sum k1 k2 t).
-Proof.
- unfold valid2 in |- *; intros k1 k2 t ep e p1 p2; unfold sum in |- *;
- Simplify; simpl in |- *; auto; try elim (fusion_stable t);
- simpl in |- *; intros;
- [ apply sum1; assumption
- | apply sum2; try assumption; apply sum4; assumption
- | rewrite plus_comm; apply sum2; try assumption; apply sum4; assumption
- | apply sum3; try assumption; apply sum4; assumption
- | apply sum5; auto ].
-Qed.
-
-(* \paragraph{[O_EXACT_DIVIDE]}
- c'est une oper1 valide mais on préfère une substitution a ce point la *)
-
-Definition exact_divide (k : int) (body : term) (t : nat)
- (prop : proposition) :=
- match prop with
- | EqTerm (Tint Null) b =>
- if beq Null 0 &&
- eq_term (scalar_norm t (body * Tint k)%term) b &&
- negb (beq k 0)
- then EqTerm (Tint 0) body
- else TrueTerm
- | NeqTerm (Tint Null) b =>
- if beq Null 0 &&
- eq_term (scalar_norm t (body * Tint k)%term) b &&
- negb (beq k 0)
- then NeqTerm (Tint 0) body
- else TrueTerm
- | _ => TrueTerm
- end.
-
-Theorem exact_divide_valid :
- forall (k : int) (t : term) (n : nat), valid1 (exact_divide k t n).
-Proof.
- unfold valid1, exact_divide in |- *; intros k1 k2 t ep e p1;
- Simplify; simpl; auto; subst;
- rewrite <- scalar_norm_stable; simpl; intros;
- [ destruct (mult_integral _ _ (sym_eq H0)); intuition
- | contradict H0; rewrite <- H0, mult_0_l; auto
- ].
-Qed.
-
-
-(* \paragraph{[O_DIV_APPROX]}
- La preuve reprend le schéma de la précédente mais on
- est sur une opération de type valid1 et non sur une opération terminale. *)
-
-Definition divide_and_approx (k1 k2 : int) (body : term)
- (t : nat) (prop : proposition) :=
- match prop with
- | LeqTerm (Tint Null) b =>
- if beq Null 0 &&
- eq_term (scalar_norm_add t (body * Tint k1 + Tint k2)%term) b &&
- bgt k1 0 &&
- bgt k1 k2
- then LeqTerm (Tint 0) body
- else prop
- | _ => prop
- end.
-
-Theorem divide_and_approx_valid :
- forall (k1 k2 : int) (body : term) (t : nat),
- valid1 (divide_and_approx k1 k2 body t).
-Proof.
- unfold valid1, divide_and_approx in |- *; intros k1 k2 body t ep e p1;
- Simplify; simpl; auto; subst;
- elim (scalar_norm_add_stable t e); simpl in |- *.
- intro H2; apply mult_le_approx with (3 := H2); assumption.
-Qed.
-
-(* \paragraph{[MERGE_EQ]} *)
-
-Definition merge_eq (t : nat) (prop1 prop2 : proposition) :=
- match prop1 with
- | LeqTerm (Tint Null) b1 =>
- match prop2 with
- | LeqTerm (Tint Null') b2 =>
- if beq Null 0 && beq Null' 0 &&
- eq_term b1 (scalar_norm t (b2 * Tint (-(1)))%term)
- then EqTerm (Tint 0) b1
- else TrueTerm
- | _ => TrueTerm
- end
- | _ => TrueTerm
- end.
-
-Theorem merge_eq_valid : forall n : nat, valid2 (merge_eq n).
-Proof.
- unfold valid2, merge_eq in |- *; intros n ep e p1 p2; Simplify; simpl in |- *;
- auto; elim (scalar_norm_stable n e); simpl in |- *;
- intros; symmetry in |- *; apply OMEGA8 with (2 := H0);
- [ assumption | elim opp_eq_mult_neg_1; trivial ].
-Qed.
-
-
-
-(* \paragraph{[O_CONSTANT_NUL]} *)
-
-Definition constant_nul (i : nat) (h : hyps) :=
- match nth_hyps i h with
- | NeqTerm (Tint Null) (Tint Null') =>
- if beq Null Null' then absurd else h
- | _ => h
- end.
-
-Theorem constant_nul_valid : forall i : nat, valid_hyps (constant_nul i).
-Proof.
- unfold valid_hyps, constant_nul in |- *; intros;
- generalize (nth_valid ep e i lp); Simplify; simpl in |- *;
- intro H1; absurd (0 = 0); intuition.
-Qed.
-
-(* \paragraph{[O_STATE]} *)
-
-Definition state (m : int) (s : step) (prop1 prop2 : proposition) :=
- match prop1 with
- | EqTerm (Tint Null) b1 =>
- match prop2 with
- | EqTerm b2 b3 =>
- if beq Null 0
- then EqTerm (Tint 0) (rewrite s (b1 + (- b3 + b2) * Tint m)%term)
- else TrueTerm
- | _ => TrueTerm
- end
- | _ => TrueTerm
- end.
-
-Theorem state_valid : forall (m : int) (s : step), valid2 (state m s).
-Proof.
- unfold valid2 in |- *; intros m s ep e p1 p2; unfold state in |- *; Simplify;
- simpl in |- *; auto; elim (rewrite_stable s e); simpl in |- *;
- intros H1 H2; elim H1.
- now rewrite H2, plus_opp_l, plus_0_l, mult_0_l.
-Qed.
-
-(* \subsubsection{Tactiques générant plusieurs but}
- \paragraph{[O_SPLIT_INEQ]}
- La seule pour le moment (tant que la normalisation n'est pas réfléchie). *)
-
-Definition split_ineq (i t : nat) (f1 f2 : hyps -> lhyps)
- (l : hyps) :=
- match nth_hyps i l with
- | NeqTerm (Tint Null) b1 =>
- if beq Null 0 then
- f1 (LeqTerm (Tint 0) (add_norm t (b1 + Tint (-(1)))%term) :: l) ++
- f2
- (LeqTerm (Tint 0)
- (scalar_norm_add t (b1 * Tint (-(1)) + Tint (-(1)))%term) :: l)
- else l :: nil
- | _ => l :: nil
- end.
-
-Theorem split_ineq_valid :
- forall (i t : nat) (f1 f2 : hyps -> lhyps),
- valid_list_hyps f1 ->
- valid_list_hyps f2 -> valid_list_hyps (split_ineq i t f1 f2).
-Proof.
- unfold valid_list_hyps, split_ineq in |- *; intros i t f1 f2 H1 H2 ep e lp H;
- generalize (nth_valid _ _ i _ H); case (nth_hyps i lp);
- simpl in |- *; auto; intros t1 t2; case t1; simpl in |- *;
- auto; intros z; simpl in |- *; auto; intro H3.
- Simplify.
- apply append_valid; elim (OMEGA19 (interp_term e t2));
- [ intro H4; left; apply H1; simpl in |- *; elim (add_norm_stable t);
- simpl in |- *; auto
- | intro H4; right; apply H2; simpl in |- *; elim (scalar_norm_add_stable t);
- simpl in |- *; auto
- | generalize H3; unfold not in |- *; intros E1 E2; apply E1;
- symmetry in |- *; trivial ].
-Qed.
-
-
-(* \subsection{La fonction de rejeu de la trace} *)
-
-Fixpoint execute_omega (t : t_omega) (l : hyps) {struct t} : lhyps :=
- match t with
- | O_CONSTANT_NOT_NUL n => singleton (constant_not_nul n l)
- | O_CONSTANT_NEG n => singleton (constant_neg n l)
- | O_DIV_APPROX k1 k2 body t cont n =>
- execute_omega cont (apply_oper_1 n (divide_and_approx k1 k2 body t) l)
- | O_NOT_EXACT_DIVIDE k1 k2 body t i =>
- singleton (not_exact_divide k1 k2 body t i l)
- | O_EXACT_DIVIDE k body t cont n =>
- execute_omega cont (apply_oper_1 n (exact_divide k body t) l)
- | O_SUM k1 i1 k2 i2 t cont =>
- execute_omega cont (apply_oper_2 i1 i2 (sum k1 k2 t) l)
- | O_CONTRADICTION t i j => singleton (contradiction t i j l)
- | O_MERGE_EQ t i1 i2 cont =>
- execute_omega cont (apply_oper_2 i1 i2 (merge_eq t) l)
- | O_SPLIT_INEQ t i cont1 cont2 =>
- split_ineq i t (execute_omega cont1) (execute_omega cont2) l
- | O_CONSTANT_NUL i => singleton (constant_nul i l)
- | O_NEGATE_CONTRADICT i j => singleton (negate_contradict i j l)
- | O_NEGATE_CONTRADICT_INV t i j =>
- singleton (negate_contradict_inv t i j l)
- | O_STATE m s i1 i2 cont =>
- execute_omega cont (apply_oper_2 i1 i2 (state m s) l)
- end.
-
-Theorem omega_valid : forall t : t_omega, valid_list_hyps (execute_omega t).
-Proof.
- simple induction t; simpl in |- *;
- [ unfold valid_list_hyps in |- *; simpl in |- *; intros; left;
- apply (constant_not_nul_valid n ep e lp H)
- | unfold valid_list_hyps in |- *; simpl in |- *; intros; left;
- apply (constant_neg_valid n ep e lp H)
- | unfold valid_list_hyps, valid_hyps in |- *;
- intros k1 k2 body n t' Ht' m ep e lp H; apply Ht';
- apply
- (apply_oper_1_valid m (divide_and_approx k1 k2 body n)
- (divide_and_approx_valid k1 k2 body n) ep e lp H)
- | unfold valid_list_hyps in |- *; simpl in |- *; intros; left;
- apply (not_exact_divide_valid i i0 t0 n n0 ep e lp H)
- | unfold valid_list_hyps, valid_hyps in |- *;
- intros k body n t' Ht' m ep e lp H; apply Ht';
- apply
- (apply_oper_1_valid m (exact_divide k body n)
- (exact_divide_valid k body n) ep e lp H)
- | unfold valid_list_hyps, valid_hyps in |- *;
- intros k1 i1 k2 i2 trace t' Ht' ep e lp H; apply Ht';
- apply
- (apply_oper_2_valid i1 i2 (sum k1 k2 trace) (sum_valid k1 k2 trace) ep e
- lp H)
- | unfold valid_list_hyps in |- *; simpl in |- *; intros; left;
- apply (contradiction_valid n n0 n1 ep e lp H)
- | unfold valid_list_hyps, valid_hyps in |- *;
- intros trace i1 i2 t' Ht' ep e lp H; apply Ht';
- apply
- (apply_oper_2_valid i1 i2 (merge_eq trace) (merge_eq_valid trace) ep e
- lp H)
- | intros t' i k1 H1 k2 H2; unfold valid_list_hyps in |- *; simpl in |- *;
- intros ep e lp H;
- apply
- (split_ineq_valid i t' (execute_omega k1) (execute_omega k2) H1 H2 ep e
- lp H)
- | unfold valid_list_hyps in |- *; simpl in |- *; intros i ep e lp H; left;
- apply (constant_nul_valid i ep e lp H)
- | unfold valid_list_hyps in |- *; simpl in |- *; intros i j ep e lp H; left;
- apply (negate_contradict_valid i j ep e lp H)
- | unfold valid_list_hyps in |- *; simpl in |- *; intros n i j ep e lp H;
- left; apply (negate_contradict_inv_valid n i j ep e lp H)
- | unfold valid_list_hyps, valid_hyps in |- *;
- intros m s i1 i2 t' Ht' ep e lp H; apply Ht';
- apply (apply_oper_2_valid i1 i2 (state m s) (state_valid m s) ep e lp H) ].
-Qed.
-
-
-(* \subsection{Les opérations globales sur le but}
- \subsubsection{Normalisation} *)
-
-Definition move_right (s : step) (p : proposition) :=
- match p with
- | EqTerm t1 t2 => EqTerm (Tint 0) (rewrite s (t1 + - t2)%term)
- | LeqTerm t1 t2 => LeqTerm (Tint 0) (rewrite s (t2 + - t1)%term)
- | GeqTerm t1 t2 => LeqTerm (Tint 0) (rewrite s (t1 + - t2)%term)
- | LtTerm t1 t2 => LeqTerm (Tint 0) (rewrite s (t2 + Tint (-(1)) + - t1)%term)
- | GtTerm t1 t2 => LeqTerm (Tint 0) (rewrite s (t1 + Tint (-(1)) + - t2)%term)
- | NeqTerm t1 t2 => NeqTerm (Tint 0) (rewrite s (t1 + - t2)%term)
- | p => p
- end.
-
-Theorem move_right_valid : forall s : step, valid1 (move_right s).
-Proof.
- unfold valid1, move_right in |- *; intros s ep e p; Simplify; simpl in |- *;
- elim (rewrite_stable s e); simpl in |- *;
- [ symmetry in |- *; apply egal_left; assumption
- | intro; apply le_left; assumption
- | intro; apply le_left; rewrite <- ge_le_iff; assumption
- | intro; apply lt_left; rewrite <- gt_lt_iff; assumption
- | intro; apply lt_left; assumption
- | intro; apply ne_left_2; assumption ].
-Qed.
-
-Definition do_normalize (i : nat) (s : step) := apply_oper_1 i (move_right s).
-
-Theorem do_normalize_valid :
- forall (i : nat) (s : step), valid_hyps (do_normalize i s).
-Proof.
- intros; unfold do_normalize in |- *; apply apply_oper_1_valid;
- apply move_right_valid.
-Qed.
-
-Fixpoint do_normalize_list (l : list step) (i : nat)
- (h : hyps) {struct l} : hyps :=
- match l with
- | s :: l' => do_normalize_list l' (S i) (do_normalize i s h)
- | nil => h
- end.
-
-Theorem do_normalize_list_valid :
- forall (l : list step) (i : nat), valid_hyps (do_normalize_list l i).
-Proof.
- simple induction l; simpl in |- *; unfold valid_hyps in |- *;
- [ auto
- | intros a l' Hl' i ep e lp H; unfold valid_hyps in Hl'; apply Hl';
- apply (do_normalize_valid i a ep e lp); assumption ].
-Qed.
-
-Theorem normalize_goal :
- forall (s : list step) (ep : list Prop) (env : list int) (l : hyps),
- interp_goal ep env (do_normalize_list s 0 l) -> interp_goal ep env l.
-Proof.
- intros; apply valid_goal with (2 := H); apply do_normalize_list_valid.
-Qed.
-
-(* \subsubsection{Exécution de la trace} *)
-
-Theorem execute_goal :
- forall (t : t_omega) (ep : list Prop) (env : list int) (l : hyps),
- interp_list_goal ep env (execute_omega t l) -> interp_goal ep env l.
-Proof.
- intros; apply (goal_valid (execute_omega t) (omega_valid t) ep env l H).
-Qed.
-
-
-Theorem append_goal :
- forall (ep : list Prop) (e : list int) (l1 l2 : lhyps),
- interp_list_goal ep e l1 /\ interp_list_goal ep e l2 ->
- interp_list_goal ep e (l1 ++ l2).
-Proof.
- intros ep e; simple induction l1;
- [ simpl in |- *; intros l2 (H1, H2); assumption
- | simpl in |- *; intros h1 t1 HR l2 ((H1, H2), H3); split; auto ].
-Qed.
-
-(* A simple decidability checker : if the proposition belongs to the
- simple grammar describe below then it is decidable. Proof is by
- induction and uses well known theorem about arithmetic and propositional
- calculus *)
-
-Fixpoint decidability (p : proposition) : bool :=
- match p with
- | EqTerm _ _ => true
- | LeqTerm _ _ => true
- | GeqTerm _ _ => true
- | GtTerm _ _ => true
- | LtTerm _ _ => true
- | NeqTerm _ _ => true
- | FalseTerm => true
- | TrueTerm => true
- | Tnot t => decidability t
- | Tand t1 t2 => decidability t1 && decidability t2
- | Timp t1 t2 => decidability t1 && decidability t2
- | Tor t1 t2 => decidability t1 && decidability t2
- | Tprop _ => false
- end.
-
-Theorem decidable_correct :
- forall (ep : list Prop) (e : list int) (p : proposition),
- decidability p = true -> decidable (interp_proposition ep e p).
-Proof.
- simple induction p; simpl in |- *; intros;
- [ apply dec_eq
- | apply dec_le
- | left; auto
- | right; unfold not in |- *; auto
- | apply dec_not; auto
- | apply dec_ge
- | apply dec_gt
- | apply dec_lt
- | apply dec_ne
- | apply dec_or; elim andb_prop with (1 := H1); auto
- | apply dec_and; elim andb_prop with (1 := H1); auto
- | apply dec_imp; elim andb_prop with (1 := H1); auto
- | discriminate H ].
-Qed.
-
-(* An interpretation function for a complete goal with an explicit
- conclusion. We use an intermediate fixpoint. *)
-
-Fixpoint interp_full_goal (envp : list Prop) (env : list int)
- (c : proposition) (l : hyps) {struct l} : Prop :=
- match l with
- | nil => interp_proposition envp env c
- | p' :: l' =>
- interp_proposition envp env p' -> interp_full_goal envp env c l'
- end.
-
-Definition interp_full (ep : list Prop) (e : list int)
- (lc : hyps * proposition) : Prop :=
- match lc with
- | (l, c) => interp_full_goal ep e c l
- end.
-
-(* Relates the interpretation of a complete goal with the interpretation
- of its hypothesis and conclusion *)
-
-Theorem interp_full_false :
- forall (ep : list Prop) (e : list int) (l : hyps) (c : proposition),
- (interp_hyps ep e l -> interp_proposition ep e c) -> interp_full ep e (l, c).
-Proof.
- simple induction l; unfold interp_full in |- *; simpl in |- *;
- [ auto | intros a l1 H1 c H2 H3; apply H1; auto ].
-Qed.
-
-(* Push the conclusion in the list of hypothesis using a double negation
- If the decidability cannot be "proven", then just forget about the
- conclusion (equivalent of replacing it with false) *)
-
-Definition to_contradict (lc : hyps * proposition) :=
- match lc with
- | (l, c) => if decidability c then Tnot c :: l else l
- end.
-
-(* The previous operation is valid in the sense that the new list of
- hypothesis implies the original goal *)
-
-Theorem to_contradict_valid :
- forall (ep : list Prop) (e : list int) (lc : hyps * proposition),
- interp_goal ep e (to_contradict lc) -> interp_full ep e lc.
-Proof.
- intros ep e lc; case lc; intros l c; simpl in |- *;
- pattern (decidability c) in |- *; apply bool_eq_ind;
- [ simpl in |- *; intros H H1; apply interp_full_false; intros H2;
- apply not_not;
- [ apply decidable_correct; assumption
- | unfold not at 1 in |- *; intro H3; apply hyps_to_goal with (2 := H2);
- auto ]
- | intros H1 H2; apply interp_full_false; intro H3;
- elim hyps_to_goal with (1 := H2); assumption ].
-Qed.
-
-(* [map_cons x l] adds [x] at the head of each list in [l] (which is a list
- of lists *)
-
-Fixpoint map_cons (A : Set) (x : A) (l : list (list A)) {struct l} :
- list (list A) :=
- match l with
- | nil => nil
- | l :: ll => (x :: l) :: map_cons A x ll
- end.
-
-(* This function breaks up a list of hypothesis in a list of simpler
- list of hypothesis that together implie the original one. The goal
- of all this is to transform the goal in a list of solvable problems.
- Note that :
- - we need a way to drive the analysis as some hypotheis may not
- require a split.
- - this procedure must be perfectly mimicked by the ML part otherwise
- hypothesis will get desynchronised and this will be a mess.
- *)
-
-Fixpoint destructure_hyps (nn : nat) (ll : hyps) {struct nn} : lhyps :=
- match nn with
- | O => ll :: nil
- | S n =>
- match ll with
- | nil => nil :: nil
- | Tor p1 p2 :: l =>
- destructure_hyps n (p1 :: l) ++ destructure_hyps n (p2 :: l)
- | Tand p1 p2 :: l => destructure_hyps n (p1 :: p2 :: l)
- | Timp p1 p2 :: l =>
- if decidability p1
- then
- destructure_hyps n (Tnot p1 :: l) ++ destructure_hyps n (p2 :: l)
- else map_cons _ (Timp p1 p2) (destructure_hyps n l)
- | Tnot p :: l =>
- match p with
- | Tnot p1 =>
- if decidability p1
- then destructure_hyps n (p1 :: l)
- else map_cons _ (Tnot (Tnot p1)) (destructure_hyps n l)
- | Tor p1 p2 => destructure_hyps n (Tnot p1 :: Tnot p2 :: l)
- | Tand p1 p2 =>
- if decidability p1
- then
- destructure_hyps n (Tnot p1 :: l) ++
- destructure_hyps n (Tnot p2 :: l)
- else map_cons _ (Tnot p) (destructure_hyps n l)
- | _ => map_cons _ (Tnot p) (destructure_hyps n l)
- end
- | x :: l => map_cons _ x (destructure_hyps n l)
- end
- end.
-
-Theorem map_cons_val :
- forall (ep : list Prop) (e : list int) (p : proposition) (l : lhyps),
- interp_proposition ep e p ->
- interp_list_hyps ep e l -> interp_list_hyps ep e (map_cons _ p l).
-Proof.
- simple induction l; simpl in |- *; [ auto | intros; elim H1; intro H2; auto ].
-Qed.
-
-Hint Resolve map_cons_val append_valid decidable_correct.
-
-Theorem destructure_hyps_valid :
- forall n : nat, valid_list_hyps (destructure_hyps n).
-Proof.
- simple induction n;
- [ unfold valid_list_hyps in |- *; simpl in |- *; auto
- | unfold valid_list_hyps at 2 in |- *; intros n1 H ep e lp; case lp;
- [ simpl in |- *; auto
- | intros p l; case p;
- try
- (simpl in |- *; intros; apply map_cons_val; simpl in |- *; elim H0;
- auto);
- [ intro p'; case p';
- try
- (simpl in |- *; intros; apply map_cons_val; simpl in |- *; elim H0;
- auto);
- [ simpl in |- *; intros p1 (H1, H2);
- pattern (decidability p1) in |- *; apply bool_eq_ind;
- intro H3;
- [ apply H; simpl in |- *; split;
- [ apply not_not; auto | assumption ]
- | auto ]
- | simpl in |- *; intros p1 p2 (H1, H2); apply H; simpl in |- *;
- elim not_or with (1 := H1); auto
- | simpl in |- *; intros p1 p2 (H1, H2);
- pattern (decidability p1) in |- *; apply bool_eq_ind;
- intro H3;
- [ apply append_valid; elim not_and with (2 := H1);
- [ intro; left; apply H; simpl in |- *; auto
- | intro; right; apply H; simpl in |- *; auto
- | auto ]
- | auto ] ]
- | simpl in |- *; intros p1 p2 (H1, H2); apply append_valid;
- (elim H1; intro H3; simpl in |- *; [ left | right ]);
- apply H; simpl in |- *; auto
- | simpl in |- *; intros; apply H; simpl in |- *; tauto
- | simpl in |- *; intros p1 p2 (H1, H2);
- pattern (decidability p1) in |- *; apply bool_eq_ind;
- intro H3;
- [ apply append_valid; elim imp_simp with (2 := H1);
- [ intro H4; left; simpl in |- *; apply H; simpl in |- *; auto
- | intro H4; right; simpl in |- *; apply H; simpl in |- *; auto
- | auto ]
- | auto ] ] ] ].
-Qed.
-
-Definition prop_stable (f : proposition -> proposition) :=
- forall (ep : list Prop) (e : list int) (p : proposition),
- interp_proposition ep e p <-> interp_proposition ep e (f p).
-
-Definition p_apply_left (f : proposition -> proposition)
- (p : proposition) :=
- match p with
- | Timp x y => Timp (f x) y
- | Tor x y => Tor (f x) y
- | Tand x y => Tand (f x) y
- | Tnot x => Tnot (f x)
- | x => x
- end.
-
-Theorem p_apply_left_stable :
- forall f : proposition -> proposition,
- prop_stable f -> prop_stable (p_apply_left f).
-Proof.
- unfold prop_stable in |- *; intros f H ep e p; split;
- (case p; simpl in |- *; auto; intros p1; elim (H ep e p1); tauto).
-Qed.
-
-Definition p_apply_right (f : proposition -> proposition)
- (p : proposition) :=
- match p with
- | Timp x y => Timp x (f y)
- | Tor x y => Tor x (f y)
- | Tand x y => Tand x (f y)
- | Tnot x => Tnot (f x)
- | x => x
- end.
-
-Theorem p_apply_right_stable :
- forall f : proposition -> proposition,
- prop_stable f -> prop_stable (p_apply_right f).
-Proof.
- unfold prop_stable in |- *; intros f H ep e p; split;
- (case p; simpl in |- *; auto;
- [ intros p1; elim (H ep e p1); tauto
- | intros p1 p2; elim (H ep e p2); tauto
- | intros p1 p2; elim (H ep e p2); tauto
- | intros p1 p2; elim (H ep e p2); tauto ]).
-Qed.
-
-Definition p_invert (f : proposition -> proposition)
- (p : proposition) :=
- match p with
- | EqTerm x y => Tnot (f (NeqTerm x y))
- | LeqTerm x y => Tnot (f (GtTerm x y))
- | GeqTerm x y => Tnot (f (LtTerm x y))
- | GtTerm x y => Tnot (f (LeqTerm x y))
- | LtTerm x y => Tnot (f (GeqTerm x y))
- | NeqTerm x y => Tnot (f (EqTerm x y))
- | x => x
- end.
-
-Theorem p_invert_stable :
- forall f : proposition -> proposition,
- prop_stable f -> prop_stable (p_invert f).
-Proof.
- unfold prop_stable in |- *; intros f H ep e p; split;
- (case p; simpl in |- *; auto;
- [ intros t1 t2; elim (H ep e (NeqTerm t1 t2)); simpl in |- *;
- generalize (dec_eq (interp_term e t1) (interp_term e t2));
- unfold decidable in |- *; tauto
- | intros t1 t2; elim (H ep e (GtTerm t1 t2)); simpl in |- *;
- generalize (dec_gt (interp_term e t1) (interp_term e t2));
- unfold decidable in |- *; rewrite le_lt_iff, <- gt_lt_iff; tauto
- | intros t1 t2; elim (H ep e (LtTerm t1 t2)); simpl in |- *;
- generalize (dec_lt (interp_term e t1) (interp_term e t2));
- unfold decidable in |- *; rewrite ge_le_iff, le_lt_iff; tauto
- | intros t1 t2; elim (H ep e (LeqTerm t1 t2)); simpl in |- *;
- generalize (dec_gt (interp_term e t1) (interp_term e t2));
- unfold decidable in |- *; repeat rewrite le_lt_iff;
- repeat rewrite gt_lt_iff; tauto
- | intros t1 t2; elim (H ep e (GeqTerm t1 t2)); simpl in |- *;
- generalize (dec_lt (interp_term e t1) (interp_term e t2));
- unfold decidable in |- *; repeat rewrite ge_le_iff;
- repeat rewrite le_lt_iff; tauto
- | intros t1 t2; elim (H ep e (EqTerm t1 t2)); simpl in |- *;
- generalize (dec_eq (interp_term e t1) (interp_term e t2));
- unfold decidable; tauto ]).
-Qed.
-
-Theorem move_right_stable : forall s : step, prop_stable (move_right s).
-Proof.
- unfold move_right, prop_stable in |- *; intros s ep e p; split;
- [ Simplify; simpl in |- *; elim (rewrite_stable s e); simpl in |- *;
- [ symmetry in |- *; apply egal_left; assumption
- | intro; apply le_left; assumption
- | intro; apply le_left; rewrite <- ge_le_iff; assumption
- | intro; apply lt_left; rewrite <- gt_lt_iff; assumption
- | intro; apply lt_left; assumption
- | intro; apply ne_left_2; assumption ]
- | case p; simpl in |- *; intros; auto; generalize H; elim (rewrite_stable s);
- simpl in |- *; intro H1;
- [ rewrite (plus_0_r_reverse (interp_term e t0)); rewrite H1;
- rewrite plus_permute; rewrite plus_opp_r;
- rewrite plus_0_r; trivial
- | apply (fun a b => plus_le_reg_r a b (- interp_term e t));
- rewrite plus_opp_r; assumption
- | rewrite ge_le_iff;
- apply (fun a b => plus_le_reg_r a b (- interp_term e t0));
- rewrite plus_opp_r; assumption
- | rewrite gt_lt_iff; apply lt_left_inv; assumption
- | apply lt_left_inv; assumption
- | unfold not in |- *; intro H2; apply H1;
- rewrite H2; rewrite plus_opp_r; trivial ] ].
-Qed.
-
-
-Fixpoint p_rewrite (s : p_step) : proposition -> proposition :=
- match s with
- | P_LEFT s => p_apply_left (p_rewrite s)
- | P_RIGHT s => p_apply_right (p_rewrite s)
- | P_STEP s => move_right s
- | P_INVERT s => p_invert (move_right s)
- | P_NOP => fun p : proposition => p
- end.
-
-Theorem p_rewrite_stable : forall s : p_step, prop_stable (p_rewrite s).
-Proof.
- simple induction s; simpl in |- *;
- [ intros; apply p_apply_left_stable; trivial
- | intros; apply p_apply_right_stable; trivial
- | intros; apply p_invert_stable; apply move_right_stable
- | apply move_right_stable
- | unfold prop_stable in |- *; simpl in |- *; intros; split; auto ].
-Qed.
-
-Fixpoint normalize_hyps (l : list h_step) (lh : hyps) {struct l} : hyps :=
- match l with
- | nil => lh
- | pair_step i s :: r => normalize_hyps r (apply_oper_1 i (p_rewrite s) lh)
- end.
-
-Theorem normalize_hyps_valid :
- forall l : list h_step, valid_hyps (normalize_hyps l).
-Proof.
- simple induction l; unfold valid_hyps in |- *; simpl in |- *;
- [ auto
- | intros n_s r; case n_s; intros n s H ep e lp H1; apply H;
- apply apply_oper_1_valid;
- [ unfold valid1 in |- *; intros ep1 e1 p1 H2;
- elim (p_rewrite_stable s ep1 e1 p1); auto
- | assumption ] ].
-Qed.
-
-Theorem normalize_hyps_goal :
- forall (s : list h_step) (ep : list Prop) (env : list int) (l : hyps),
- interp_goal ep env (normalize_hyps s l) -> interp_goal ep env l.
-Proof.
- intros; apply valid_goal with (2 := H); apply normalize_hyps_valid.
-Qed.
-
-Fixpoint extract_hyp_pos (s : list direction) (p : proposition) {struct s} :
- proposition :=
- match s with
- | D_left :: l =>
- match p with
- | Tand x y => extract_hyp_pos l x
- | _ => p
- end
- | D_right :: l =>
- match p with
- | Tand x y => extract_hyp_pos l y
- | _ => p
- end
- | D_mono :: l => match p with
- | Tnot x => extract_hyp_neg l x
- | _ => p
- end
- | _ => p
- end
-
- with extract_hyp_neg (s : list direction) (p : proposition) {struct s} :
- proposition :=
- match s with
- | D_left :: l =>
- match p with
- | Tor x y => extract_hyp_neg l x
- | Timp x y => if decidability x then extract_hyp_pos l x else Tnot p
- | _ => Tnot p
- end
- | D_right :: l =>
- match p with
- | Tor x y => extract_hyp_neg l y
- | Timp x y => extract_hyp_neg l y
- | _ => Tnot p
- end
- | D_mono :: l =>
- match p with
- | Tnot x => if decidability x then extract_hyp_pos l x else Tnot p
- | _ => Tnot p
- end
- | _ =>
- match p with
- | Tnot x => if decidability x then x else Tnot p
- | _ => Tnot p
- end
- end.
-
-Definition co_valid1 (f : proposition -> proposition) :=
- forall (ep : list Prop) (e : list int) (p1 : proposition),
- interp_proposition ep e (Tnot p1) -> interp_proposition ep e (f p1).
-
-Theorem extract_valid :
- forall s : list direction,
- valid1 (extract_hyp_pos s) /\ co_valid1 (extract_hyp_neg s).
-Proof.
- unfold valid1, co_valid1 in |- *; simple induction s;
- [ split;
- [ simpl in |- *; auto
- | intros ep e p1; case p1; simpl in |- *; auto; intro p;
- pattern (decidability p) in |- *; apply bool_eq_ind;
- [ intro H; generalize (decidable_correct ep e p H);
- unfold decidable in |- *; tauto
- | simpl in |- *; auto ] ]
- | intros a s' (H1, H2); simpl in H2; split; intros ep e p; case a; auto;
- case p; auto; simpl in |- *; intros;
- (apply H1; tauto) ||
- (apply H2; tauto) ||
- (pattern (decidability p0) in |- *; apply bool_eq_ind;
- [ intro H3; generalize (decidable_correct ep e p0 H3);
- unfold decidable in |- *; intro H4; apply H1;
- tauto
- | intro; tauto ]) ].
-Qed.
-
-Fixpoint decompose_solve (s : e_step) (h : hyps) {struct s} : lhyps :=
- match s with
- | E_SPLIT i dl s1 s2 =>
- match extract_hyp_pos dl (nth_hyps i h) with
- | Tor x y => decompose_solve s1 (x :: h) ++ decompose_solve s2 (y :: h)
- | Tnot (Tand x y) =>
- if decidability x
- then
- decompose_solve s1 (Tnot x :: h) ++
- decompose_solve s2 (Tnot y :: h)
- else h :: nil
- | Timp x y =>
- if decidability x then
- decompose_solve s1 (Tnot x :: h) ++ decompose_solve s2 (y :: h)
- else h::nil
- | _ => h :: nil
- end
- | E_EXTRACT i dl s1 =>
- decompose_solve s1 (extract_hyp_pos dl (nth_hyps i h) :: h)
- | E_SOLVE t => execute_omega t h
- end.
-
-Theorem decompose_solve_valid :
- forall s : e_step, valid_list_goal (decompose_solve s).
-Proof.
- intro s; apply goal_valid; unfold valid_list_hyps in |- *; elim s;
- simpl in |- *; intros;
- [ cut (interp_proposition ep e1 (extract_hyp_pos l (nth_hyps n lp)));
- [ case (extract_hyp_pos l (nth_hyps n lp)); simpl in |- *; auto;
- [ intro p; case p; simpl in |- *; auto; intros p1 p2 H2;
- pattern (decidability p1) in |- *; apply bool_eq_ind;
- [ intro H3; generalize (decidable_correct ep e1 p1 H3); intro H4;
- apply append_valid; elim H4; intro H5;
- [ right; apply H0; simpl in |- *; tauto
- | left; apply H; simpl in |- *; tauto ]
- | simpl in |- *; auto ]
- | intros p1 p2 H2; apply append_valid; simpl in |- *; elim H2;
- [ intros H3; left; apply H; simpl in |- *; auto
- | intros H3; right; apply H0; simpl in |- *; auto ]
- | intros p1 p2 H2;
- pattern (decidability p1) in |- *; apply bool_eq_ind;
- [ intro H3; generalize (decidable_correct ep e1 p1 H3); intro H4;
- apply append_valid; elim H4; intro H5;
- [ right; apply H0; simpl in |- *; tauto
- | left; apply H; simpl in |- *; tauto ]
- | simpl in |- *; auto ] ]
- | elim (extract_valid l); intros H2 H3; apply H2; apply nth_valid; auto ]
- | intros; apply H; simpl in |- *; split;
- [ elim (extract_valid l); intros H2 H3; apply H2; apply nth_valid; auto
- | auto ]
- | apply omega_valid with (1 := H) ].
-Qed.
-
-(* \subsection{La dernière étape qui élimine tous les séquents inutiles} *)
-
-Definition valid_lhyps (f : lhyps -> lhyps) :=
- forall (ep : list Prop) (e : list int) (lp : lhyps),
- interp_list_hyps ep e lp -> interp_list_hyps ep e (f lp).
-
-Fixpoint reduce_lhyps (lp : lhyps) : lhyps :=
- match lp with
- | (FalseTerm :: nil) :: lp' => reduce_lhyps lp'
- | x :: lp' => x :: reduce_lhyps lp'
- | nil => nil (A:=hyps)
- end.
-
-Theorem reduce_lhyps_valid : valid_lhyps reduce_lhyps.
-Proof.
- unfold valid_lhyps in |- *; intros ep e lp; elim lp;
- [ simpl in |- *; auto
- | intros a l HR; elim a;
- [ simpl in |- *; tauto
- | intros a1 l1; case l1; case a1; simpl in |- *; try tauto ] ].
-Qed.
-
-Theorem do_reduce_lhyps :
- forall (envp : list Prop) (env : list int) (l : lhyps),
- interp_list_goal envp env (reduce_lhyps l) -> interp_list_goal envp env l.
-Proof.
- intros envp env l H; apply list_goal_to_hyps; intro H1;
- apply list_hyps_to_goal with (1 := H); apply reduce_lhyps_valid;
- assumption.
-Qed.
-
-Definition concl_to_hyp (p : proposition) :=
- if decidability p then Tnot p else TrueTerm.
-
-Definition do_concl_to_hyp :
- forall (envp : list Prop) (env : list int) (c : proposition) (l : hyps),
- interp_goal envp env (concl_to_hyp c :: l) ->
- interp_goal_concl c envp env l.
-Proof.
- simpl in |- *; intros envp env c l; induction l as [| a l Hrecl];
- [ simpl in |- *; unfold concl_to_hyp in |- *;
- pattern (decidability c) in |- *; apply bool_eq_ind;
- [ intro H; generalize (decidable_correct envp env c H);
- unfold decidable in |- *; simpl in |- *; tauto
- | simpl in |- *; intros H1 H2; elim H2; trivial ]
- | simpl in |- *; tauto ].
-Qed.
-
-Definition omega_tactic (t1 : e_step) (t2 : list h_step)
- (c : proposition) (l : hyps) :=
- reduce_lhyps (decompose_solve t1 (normalize_hyps t2 (concl_to_hyp c :: l))).
-
-Theorem do_omega :
- forall (t1 : e_step) (t2 : list h_step) (envp : list Prop)
- (env : list int) (c : proposition) (l : hyps),
- interp_list_goal envp env (omega_tactic t1 t2 c l) ->
- interp_goal_concl c envp env l.
-Proof.
- unfold omega_tactic in |- *; intros; apply do_concl_to_hyp;
- apply (normalize_hyps_goal t2); apply (decompose_solve_valid t1);
- apply do_reduce_lhyps; assumption.
-Qed.
-
-End IntOmega.
-
-(* For now, the above modular construction is instanciated on Z,
- in order to retrieve the initial ROmega. *)
-
-Module ZOmega := IntOmega(Z_as_Int).
diff --git a/contrib/romega/const_omega.ml b/contrib/romega/const_omega.ml
deleted file mode 100644
index bdec6bf4..00000000
--- a/contrib/romega/const_omega.ml
+++ /dev/null
@@ -1,350 +0,0 @@
-(*************************************************************************
-
- PROJET RNRT Calife - 2001
- Author: Pierre Crégut - France Télécom R&D
- Licence : LGPL version 2.1
-
- *************************************************************************)
-
-let module_refl_name = "ReflOmegaCore"
-let module_refl_path = ["Coq"; "romega"; module_refl_name]
-
-type result =
- Kvar of string
- | Kapp of string * Term.constr list
- | Kimp of Term.constr * Term.constr
- | Kufo;;
-
-let destructurate t =
- let c, args = Term.decompose_app t in
- match Term.kind_of_term c, args with
- | Term.Const sp, args ->
- Kapp (Names.string_of_id
- (Nametab.id_of_global (Libnames.ConstRef sp)),
- args)
- | Term.Construct csp , args ->
- Kapp (Names.string_of_id
- (Nametab.id_of_global (Libnames.ConstructRef csp)),
- args)
- | Term.Ind isp, args ->
- Kapp (Names.string_of_id
- (Nametab.id_of_global (Libnames.IndRef isp)),
- args)
- | Term.Var id,[] -> Kvar(Names.string_of_id id)
- | Term.Prod (Names.Anonymous,typ,body), [] -> Kimp(typ,body)
- | Term.Prod (Names.Name _,_,_),[] ->
- Util.error "Omega: Not a quantifier-free goal"
- | _ -> Kufo
-
-exception Destruct
-
-let dest_const_apply t =
- let f,args = Term.decompose_app t in
- let ref =
- match Term.kind_of_term f with
- | Term.Const sp -> Libnames.ConstRef sp
- | Term.Construct csp -> Libnames.ConstructRef csp
- | Term.Ind isp -> Libnames.IndRef isp
- | _ -> raise Destruct
- in Nametab.id_of_global ref, args
-
-let logic_dir = ["Coq";"Logic";"Decidable"]
-
-let coq_modules =
- Coqlib.init_modules @ [logic_dir] @ Coqlib.arith_modules @ Coqlib.zarith_base_modules
- @ [["Coq"; "Lists"; "List"]]
- @ [module_refl_path]
- @ [module_refl_path@["ZOmega"]]
-
-let constant = Coqlib.gen_constant_in_modules "Omega" coq_modules
-
-(* Logic *)
-let coq_eq = lazy(constant "eq")
-let coq_refl_equal = lazy(constant "refl_equal")
-let coq_and = lazy(constant "and")
-let coq_not = lazy(constant "not")
-let coq_or = lazy(constant "or")
-let coq_True = lazy(constant "True")
-let coq_False = lazy(constant "False")
-let coq_I = lazy(constant "I")
-
-(* ReflOmegaCore/ZOmega *)
-
-let coq_h_step = lazy (constant "h_step")
-let coq_pair_step = lazy (constant "pair_step")
-let coq_p_left = lazy (constant "P_LEFT")
-let coq_p_right = lazy (constant "P_RIGHT")
-let coq_p_invert = lazy (constant "P_INVERT")
-let coq_p_step = lazy (constant "P_STEP")
-
-let coq_t_int = lazy (constant "Tint")
-let coq_t_plus = lazy (constant "Tplus")
-let coq_t_mult = lazy (constant "Tmult")
-let coq_t_opp = lazy (constant "Topp")
-let coq_t_minus = lazy (constant "Tminus")
-let coq_t_var = lazy (constant "Tvar")
-
-let coq_proposition = lazy (constant "proposition")
-let coq_p_eq = lazy (constant "EqTerm")
-let coq_p_leq = lazy (constant "LeqTerm")
-let coq_p_geq = lazy (constant "GeqTerm")
-let coq_p_lt = lazy (constant "LtTerm")
-let coq_p_gt = lazy (constant "GtTerm")
-let coq_p_neq = lazy (constant "NeqTerm")
-let coq_p_true = lazy (constant "TrueTerm")
-let coq_p_false = lazy (constant "FalseTerm")
-let coq_p_not = lazy (constant "Tnot")
-let coq_p_or = lazy (constant "Tor")
-let coq_p_and = lazy (constant "Tand")
-let coq_p_imp = lazy (constant "Timp")
-let coq_p_prop = lazy (constant "Tprop")
-
-(* Constructors for shuffle tactic *)
-let coq_t_fusion = lazy (constant "t_fusion")
-let coq_f_equal = lazy (constant "F_equal")
-let coq_f_cancel = lazy (constant "F_cancel")
-let coq_f_left = lazy (constant "F_left")
-let coq_f_right = lazy (constant "F_right")
-
-(* Constructors for reordering tactics *)
-let coq_c_do_both = lazy (constant "C_DO_BOTH")
-let coq_c_do_left = lazy (constant "C_LEFT")
-let coq_c_do_right = lazy (constant "C_RIGHT")
-let coq_c_do_seq = lazy (constant "C_SEQ")
-let coq_c_nop = lazy (constant "C_NOP")
-let coq_c_opp_plus = lazy (constant "C_OPP_PLUS")
-let coq_c_opp_opp = lazy (constant "C_OPP_OPP")
-let coq_c_opp_mult_r = lazy (constant "C_OPP_MULT_R")
-let coq_c_opp_one = lazy (constant "C_OPP_ONE")
-let coq_c_reduce = lazy (constant "C_REDUCE")
-let coq_c_mult_plus_distr = lazy (constant "C_MULT_PLUS_DISTR")
-let coq_c_opp_left = lazy (constant "C_MULT_OPP_LEFT")
-let coq_c_mult_assoc_r = lazy (constant "C_MULT_ASSOC_R")
-let coq_c_plus_assoc_r = lazy (constant "C_PLUS_ASSOC_R")
-let coq_c_plus_assoc_l = lazy (constant "C_PLUS_ASSOC_L")
-let coq_c_plus_permute = lazy (constant "C_PLUS_PERMUTE")
-let coq_c_plus_comm = lazy (constant "C_PLUS_COMM")
-let coq_c_red0 = lazy (constant "C_RED0")
-let coq_c_red1 = lazy (constant "C_RED1")
-let coq_c_red2 = lazy (constant "C_RED2")
-let coq_c_red3 = lazy (constant "C_RED3")
-let coq_c_red4 = lazy (constant "C_RED4")
-let coq_c_red5 = lazy (constant "C_RED5")
-let coq_c_red6 = lazy (constant "C_RED6")
-let coq_c_mult_opp_left = lazy (constant "C_MULT_OPP_LEFT")
-let coq_c_mult_assoc_reduced = lazy (constant "C_MULT_ASSOC_REDUCED")
-let coq_c_minus = lazy (constant "C_MINUS")
-let coq_c_mult_comm = lazy (constant "C_MULT_COMM")
-
-let coq_s_constant_not_nul = lazy (constant "O_CONSTANT_NOT_NUL")
-let coq_s_constant_neg = lazy (constant "O_CONSTANT_NEG")
-let coq_s_div_approx = lazy (constant "O_DIV_APPROX")
-let coq_s_not_exact_divide = lazy (constant "O_NOT_EXACT_DIVIDE")
-let coq_s_exact_divide = lazy (constant "O_EXACT_DIVIDE")
-let coq_s_sum = lazy (constant "O_SUM")
-let coq_s_state = lazy (constant "O_STATE")
-let coq_s_contradiction = lazy (constant "O_CONTRADICTION")
-let coq_s_merge_eq = lazy (constant "O_MERGE_EQ")
-let coq_s_split_ineq =lazy (constant "O_SPLIT_INEQ")
-let coq_s_constant_nul =lazy (constant "O_CONSTANT_NUL")
-let coq_s_negate_contradict =lazy (constant "O_NEGATE_CONTRADICT")
-let coq_s_negate_contradict_inv =lazy (constant "O_NEGATE_CONTRADICT_INV")
-
-(* construction for the [extract_hyp] tactic *)
-let coq_direction = lazy (constant "direction")
-let coq_d_left = lazy (constant "D_left")
-let coq_d_right = lazy (constant "D_right")
-let coq_d_mono = lazy (constant "D_mono")
-
-let coq_e_split = lazy (constant "E_SPLIT")
-let coq_e_extract = lazy (constant "E_EXTRACT")
-let coq_e_solve = lazy (constant "E_SOLVE")
-
-let coq_interp_sequent = lazy (constant "interp_goal_concl")
-let coq_do_omega = lazy (constant "do_omega")
-
-(* \subsection{Construction d'expressions} *)
-
-let do_left t =
- if t = Lazy.force coq_c_nop then Lazy.force coq_c_nop
- else Term.mkApp (Lazy.force coq_c_do_left, [|t |] )
-
-let do_right t =
- if t = Lazy.force coq_c_nop then Lazy.force coq_c_nop
- else Term.mkApp (Lazy.force coq_c_do_right, [|t |])
-
-let do_both t1 t2 =
- if t1 = Lazy.force coq_c_nop then do_right t2
- else if t2 = Lazy.force coq_c_nop then do_left t1
- else Term.mkApp (Lazy.force coq_c_do_both , [|t1; t2 |])
-
-let do_seq t1 t2 =
- if t1 = Lazy.force coq_c_nop then t2
- else if t2 = Lazy.force coq_c_nop then t1
- else Term.mkApp (Lazy.force coq_c_do_seq, [|t1; t2 |])
-
-let rec do_list = function
- | [] -> Lazy.force coq_c_nop
- | [x] -> x
- | (x::l) -> do_seq x (do_list l)
-
-(* Nat *)
-
-let coq_S = lazy(constant "S")
-let coq_O = lazy(constant "O")
-
-let rec mk_nat = function
- | 0 -> Lazy.force coq_O
- | n -> Term.mkApp (Lazy.force coq_S, [| mk_nat (n-1) |])
-
-(* Lists *)
-
-let coq_cons = lazy (constant "cons")
-let coq_nil = lazy (constant "nil")
-
-let mk_list typ l =
- let rec loop = function
- | [] ->
- Term.mkApp (Lazy.force coq_nil, [|typ|])
- | (step :: l) ->
- Term.mkApp (Lazy.force coq_cons, [|typ; step; loop l |]) in
- loop l
-
-let mk_plist l = mk_list Term.mkProp l
-
-let mk_shuffle_list l = mk_list (Lazy.force coq_t_fusion) l
-
-
-type parse_term =
- | Tplus of Term.constr * Term.constr
- | Tmult of Term.constr * Term.constr
- | Tminus of Term.constr * Term.constr
- | Topp of Term.constr
- | Tsucc of Term.constr
- | Tnum of Bigint.bigint
- | Tother
-
-type parse_rel =
- | Req of Term.constr * Term.constr
- | Rne of Term.constr * Term.constr
- | Rlt of Term.constr * Term.constr
- | Rle of Term.constr * Term.constr
- | Rgt of Term.constr * Term.constr
- | Rge of Term.constr * Term.constr
- | Rtrue
- | Rfalse
- | Rnot of Term.constr
- | Ror of Term.constr * Term.constr
- | Rand of Term.constr * Term.constr
- | Rimp of Term.constr * Term.constr
- | Riff of Term.constr * Term.constr
- | Rother
-
-let parse_logic_rel c =
- try match destructurate c with
- | Kapp("True",[]) -> Rtrue
- | Kapp("False",[]) -> Rfalse
- | Kapp("not",[t]) -> Rnot t
- | Kapp("or",[t1;t2]) -> Ror (t1,t2)
- | Kapp("and",[t1;t2]) -> Rand (t1,t2)
- | Kimp(t1,t2) -> Rimp (t1,t2)
- | Kapp("iff",[t1;t2]) -> Riff (t1,t2)
- | _ -> Rother
- with e when Logic.catchable_exception e -> Rother
-
-
-module type Int = sig
- val typ : Term.constr Lazy.t
- val plus : Term.constr Lazy.t
- val mult : Term.constr Lazy.t
- val opp : Term.constr Lazy.t
- val minus : Term.constr Lazy.t
-
- val mk : Bigint.bigint -> Term.constr
- val parse_term : Term.constr -> parse_term
- val parse_rel : Proof_type.goal Tacmach.sigma -> Term.constr -> parse_rel
- (* check whether t is built only with numbers and + * - *)
- val is_scalar : Term.constr -> bool
-end
-
-module Z : Int = struct
-
-let typ = lazy (constant "Z")
-let plus = lazy (constant "Zplus")
-let mult = lazy (constant "Zmult")
-let opp = lazy (constant "Zopp")
-let minus = lazy (constant "Zminus")
-
-let coq_xH = lazy (constant "xH")
-let coq_xO = lazy (constant "xO")
-let coq_xI = lazy (constant "xI")
-let coq_Z0 = lazy (constant "Z0")
-let coq_Zpos = lazy (constant "Zpos")
-let coq_Zneg = lazy (constant "Zneg")
-
-let recognize t =
- let rec loop t =
- let f,l = dest_const_apply t in
- match Names.string_of_id f,l with
- "xI",[t] -> Bigint.add Bigint.one (Bigint.mult Bigint.two (loop t))
- | "xO",[t] -> Bigint.mult Bigint.two (loop t)
- | "xH",[] -> Bigint.one
- | _ -> failwith "not a number" in
- let f,l = dest_const_apply t in
- match Names.string_of_id f,l with
- "Zpos",[t] -> loop t
- | "Zneg",[t] -> Bigint.neg (loop t)
- | "Z0",[] -> Bigint.zero
- | _ -> failwith "not a number";;
-
-let rec mk_positive n =
- if n=Bigint.one then Lazy.force coq_xH
- else
- let (q,r) = Bigint.euclid n Bigint.two in
- Term.mkApp
- ((if r = Bigint.zero then Lazy.force coq_xO else Lazy.force coq_xI),
- [| mk_positive q |])
-
-let mk_Z n =
- if n = Bigint.zero then Lazy.force coq_Z0
- else if Bigint.is_strictly_pos n then
- Term.mkApp (Lazy.force coq_Zpos, [| mk_positive n |])
- else
- Term.mkApp (Lazy.force coq_Zneg, [| mk_positive (Bigint.neg n) |])
-
-let mk = mk_Z
-
-let parse_term t =
- try match destructurate t with
- | Kapp("Zplus",[t1;t2]) -> Tplus (t1,t2)
- | Kapp("Zminus",[t1;t2]) -> Tminus (t1,t2)
- | Kapp("Zmult",[t1;t2]) -> Tmult (t1,t2)
- | Kapp("Zopp",[t]) -> Topp t
- | Kapp("Zsucc",[t]) -> Tsucc t
- | Kapp("Zpred",[t]) -> Tplus(t, mk_Z (Bigint.neg Bigint.one))
- | Kapp(("Zpos"|"Zneg"|"Z0"),_) ->
- (try Tnum (recognize t) with _ -> Tother)
- | _ -> Tother
- with e when Logic.catchable_exception e -> Tother
-
-let parse_rel gl t =
- try match destructurate t with
- | Kapp("eq",[typ;t1;t2])
- when destructurate (Tacmach.pf_nf gl typ) = Kapp("Z",[]) -> Req (t1,t2)
- | Kapp("Zne",[t1;t2]) -> Rne (t1,t2)
- | Kapp("Zle",[t1;t2]) -> Rle (t1,t2)
- | Kapp("Zlt",[t1;t2]) -> Rlt (t1,t2)
- | Kapp("Zge",[t1;t2]) -> Rge (t1,t2)
- | Kapp("Zgt",[t1;t2]) -> Rgt (t1,t2)
- | _ -> parse_logic_rel t
- with e when Logic.catchable_exception e -> Rother
-
-let is_scalar t =
- let rec aux t = match destructurate t with
- | Kapp(("Zplus"|"Zminus"|"Zmult"),[t1;t2]) -> aux t1 & aux t2
- | Kapp(("Zopp"|"Zsucc"|"Zpred"),[t]) -> aux t
- | Kapp(("Zpos"|"Zneg"|"Z0"),_) -> let _ = recognize t in true
- | _ -> false in
- try aux t with _ -> false
-
-end
diff --git a/contrib/romega/const_omega.mli b/contrib/romega/const_omega.mli
deleted file mode 100644
index 0f00e918..00000000
--- a/contrib/romega/const_omega.mli
+++ /dev/null
@@ -1,176 +0,0 @@
-(*************************************************************************
-
- PROJET RNRT Calife - 2001
- Author: Pierre Crégut - France Télécom R&D
- Licence : LGPL version 2.1
-
- *************************************************************************)
-
-
-(** Coq objects used in romega *)
-
-(* from Logic *)
-val coq_refl_equal : Term.constr lazy_t
-val coq_and : Term.constr lazy_t
-val coq_not : Term.constr lazy_t
-val coq_or : Term.constr lazy_t
-val coq_True : Term.constr lazy_t
-val coq_False : Term.constr lazy_t
-val coq_I : Term.constr lazy_t
-
-(* from ReflOmegaCore/ZOmega *)
-val coq_h_step : Term.constr lazy_t
-val coq_pair_step : Term.constr lazy_t
-val coq_p_left : Term.constr lazy_t
-val coq_p_right : Term.constr lazy_t
-val coq_p_invert : Term.constr lazy_t
-val coq_p_step : Term.constr lazy_t
-
-val coq_t_int : Term.constr lazy_t
-val coq_t_plus : Term.constr lazy_t
-val coq_t_mult : Term.constr lazy_t
-val coq_t_opp : Term.constr lazy_t
-val coq_t_minus : Term.constr lazy_t
-val coq_t_var : Term.constr lazy_t
-
-val coq_proposition : Term.constr lazy_t
-val coq_p_eq : Term.constr lazy_t
-val coq_p_leq : Term.constr lazy_t
-val coq_p_geq : Term.constr lazy_t
-val coq_p_lt : Term.constr lazy_t
-val coq_p_gt : Term.constr lazy_t
-val coq_p_neq : Term.constr lazy_t
-val coq_p_true : Term.constr lazy_t
-val coq_p_false : Term.constr lazy_t
-val coq_p_not : Term.constr lazy_t
-val coq_p_or : Term.constr lazy_t
-val coq_p_and : Term.constr lazy_t
-val coq_p_imp : Term.constr lazy_t
-val coq_p_prop : Term.constr lazy_t
-
-val coq_f_equal : Term.constr lazy_t
-val coq_f_cancel : Term.constr lazy_t
-val coq_f_left : Term.constr lazy_t
-val coq_f_right : Term.constr lazy_t
-
-val coq_c_do_both : Term.constr lazy_t
-val coq_c_do_left : Term.constr lazy_t
-val coq_c_do_right : Term.constr lazy_t
-val coq_c_do_seq : Term.constr lazy_t
-val coq_c_nop : Term.constr lazy_t
-val coq_c_opp_plus : Term.constr lazy_t
-val coq_c_opp_opp : Term.constr lazy_t
-val coq_c_opp_mult_r : Term.constr lazy_t
-val coq_c_opp_one : Term.constr lazy_t
-val coq_c_reduce : Term.constr lazy_t
-val coq_c_mult_plus_distr : Term.constr lazy_t
-val coq_c_opp_left : Term.constr lazy_t
-val coq_c_mult_assoc_r : Term.constr lazy_t
-val coq_c_plus_assoc_r : Term.constr lazy_t
-val coq_c_plus_assoc_l : Term.constr lazy_t
-val coq_c_plus_permute : Term.constr lazy_t
-val coq_c_plus_comm : Term.constr lazy_t
-val coq_c_red0 : Term.constr lazy_t
-val coq_c_red1 : Term.constr lazy_t
-val coq_c_red2 : Term.constr lazy_t
-val coq_c_red3 : Term.constr lazy_t
-val coq_c_red4 : Term.constr lazy_t
-val coq_c_red5 : Term.constr lazy_t
-val coq_c_red6 : Term.constr lazy_t
-val coq_c_mult_opp_left : Term.constr lazy_t
-val coq_c_mult_assoc_reduced : Term.constr lazy_t
-val coq_c_minus : Term.constr lazy_t
-val coq_c_mult_comm : Term.constr lazy_t
-
-val coq_s_constant_not_nul : Term.constr lazy_t
-val coq_s_constant_neg : Term.constr lazy_t
-val coq_s_div_approx : Term.constr lazy_t
-val coq_s_not_exact_divide : Term.constr lazy_t
-val coq_s_exact_divide : Term.constr lazy_t
-val coq_s_sum : Term.constr lazy_t
-val coq_s_state : Term.constr lazy_t
-val coq_s_contradiction : Term.constr lazy_t
-val coq_s_merge_eq : Term.constr lazy_t
-val coq_s_split_ineq : Term.constr lazy_t
-val coq_s_constant_nul : Term.constr lazy_t
-val coq_s_negate_contradict : Term.constr lazy_t
-val coq_s_negate_contradict_inv : Term.constr lazy_t
-
-val coq_direction : Term.constr lazy_t
-val coq_d_left : Term.constr lazy_t
-val coq_d_right : Term.constr lazy_t
-val coq_d_mono : Term.constr lazy_t
-
-val coq_e_split : Term.constr lazy_t
-val coq_e_extract : Term.constr lazy_t
-val coq_e_solve : Term.constr lazy_t
-
-val coq_interp_sequent : Term.constr lazy_t
-val coq_do_omega : Term.constr lazy_t
-
-(** Building expressions *)
-
-val do_left : Term.constr -> Term.constr
-val do_right : Term.constr -> Term.constr
-val do_both : Term.constr -> Term.constr -> Term.constr
-val do_seq : Term.constr -> Term.constr -> Term.constr
-val do_list : Term.constr list -> Term.constr
-
-val mk_nat : int -> Term.constr
-val mk_list : Term.constr -> Term.constr list -> Term.constr
-val mk_plist : Term.types list -> Term.types
-val mk_shuffle_list : Term.constr list -> Term.constr
-
-(** Analyzing a coq term *)
-
-(* The generic result shape of the analysis of a term.
- One-level depth, except when a number is found *)
-type parse_term =
- Tplus of Term.constr * Term.constr
- | Tmult of Term.constr * Term.constr
- | Tminus of Term.constr * Term.constr
- | Topp of Term.constr
- | Tsucc of Term.constr
- | Tnum of Bigint.bigint
- | Tother
-
-(* The generic result shape of the analysis of a relation.
- One-level depth. *)
-type parse_rel =
- Req of Term.constr * Term.constr
- | Rne of Term.constr * Term.constr
- | Rlt of Term.constr * Term.constr
- | Rle of Term.constr * Term.constr
- | Rgt of Term.constr * Term.constr
- | Rge of Term.constr * Term.constr
- | Rtrue
- | Rfalse
- | Rnot of Term.constr
- | Ror of Term.constr * Term.constr
- | Rand of Term.constr * Term.constr
- | Rimp of Term.constr * Term.constr
- | Riff of Term.constr * Term.constr
- | Rother
-
-(* A module factorizing what we should now about the number representation *)
-module type Int =
- sig
- (* the coq type of the numbers *)
- val typ : Term.constr Lazy.t
- (* the operations on the numbers *)
- val plus : Term.constr Lazy.t
- val mult : Term.constr Lazy.t
- val opp : Term.constr Lazy.t
- val minus : Term.constr Lazy.t
- (* building a coq number *)
- val mk : Bigint.bigint -> Term.constr
- (* parsing a term (one level, except if a number is found) *)
- val parse_term : Term.constr -> parse_term
- (* parsing a relation expression, including = < <= >= > *)
- val parse_rel : Proof_type.goal Tacmach.sigma -> Term.constr -> parse_rel
- (* Is a particular term only made of numbers and + * - ? *)
- val is_scalar : Term.constr -> bool
- end
-
-(* Currently, we only use Z numbers *)
-module Z : Int
diff --git a/contrib/romega/g_romega.ml4 b/contrib/romega/g_romega.ml4
deleted file mode 100644
index 39b6c210..00000000
--- a/contrib/romega/g_romega.ml4
+++ /dev/null
@@ -1,42 +0,0 @@
-(*************************************************************************
-
- PROJET RNRT Calife - 2001
- Author: Pierre Crégut - France Télécom R&D
- Licence : LGPL version 2.1
-
- *************************************************************************)
-
-(*i camlp4deps: "parsing/grammar.cma" i*)
-
-open Refl_omega
-open Refiner
-
-let romega_tactic l =
- let tacs = List.map
- (function
- | "nat" -> Tacinterp.interp <:tactic<zify_nat>>
- | "positive" -> Tacinterp.interp <:tactic<zify_positive>>
- | "N" -> Tacinterp.interp <:tactic<zify_N>>
- | "Z" -> Tacinterp.interp <:tactic<zify_op>>
- | s -> Util.error ("No ROmega knowledge base for type "^s))
- (Util.list_uniquize (List.sort compare l))
- in
- tclTHEN
- (tclREPEAT (tclPROGRESS (tclTHENLIST tacs)))
- (tclTHEN
- (* because of the contradiction process in (r)omega,
- we'd better leave as little as possible in the conclusion,
- for an easier decidability argument. *)
- Tactics.intros
- total_reflexive_omega_tactic)
-
-
-TACTIC EXTEND romega
-| [ "romega" ] -> [ romega_tactic [] ]
-END
-
-TACTIC EXTEND romega'
-| [ "romega" "with" ne_ident_list(l) ] ->
- [ romega_tactic (List.map Names.string_of_id l) ]
-| [ "romega" "with" "*" ] -> [ romega_tactic ["nat";"positive";"N";"Z"] ]
-END
diff --git a/contrib/romega/refl_omega.ml b/contrib/romega/refl_omega.ml
deleted file mode 100644
index fc4f7a8f..00000000
--- a/contrib/romega/refl_omega.ml
+++ /dev/null
@@ -1,1299 +0,0 @@
-(*************************************************************************
-
- PROJET RNRT Calife - 2001
- Author: Pierre Crégut - France Télécom R&D
- Licence : LGPL version 2.1
-
- *************************************************************************)
-
-open Util
-open Const_omega
-module OmegaSolver = Omega.MakeOmegaSolver (Bigint)
-open OmegaSolver
-
-(* \section{Useful functions and flags} *)
-(* Especially useful debugging functions *)
-let debug = ref false
-
-let show_goal gl =
- if !debug then Pp.ppnl (Tacmach.pr_gls gl); Tacticals.tclIDTAC gl
-
-let pp i = print_int i; print_newline (); flush stdout
-
-(* More readable than the prefix notation *)
-let (>>) = Tacticals.tclTHEN
-
-let mkApp = Term.mkApp
-
-(* \section{Types}
- \subsection{How to walk in a term}
- To represent how to get to a proposition. Only choice points are
- kept (branch to choose in a disjunction and identifier of the disjunctive
- connector) *)
-type direction = Left of int | Right of int
-
-(* Step to find a proposition (operators are at most binary). A list is
- a path *)
-type occ_step = O_left | O_right | O_mono
-type occ_path = occ_step list
-
-(* chemin identifiant une proposition sous forme du nom de l'hypothèse et
- d'une liste de pas à partir de la racine de l'hypothèse *)
-type occurence = {o_hyp : Names.identifier; o_path : occ_path}
-
-(* \subsection{refiable formulas} *)
-type oformula =
- (* integer *)
- | Oint of Bigint.bigint
- (* recognized binary and unary operations *)
- | Oplus of oformula * oformula
- | Omult of oformula * oformula
- | Ominus of oformula * oformula
- | Oopp of oformula
- (* an atome in the environment *)
- | Oatom of int
- (* weird expression that cannot be translated *)
- | Oufo of oformula
-
-(* Operators for comparison recognized by Omega *)
-type comparaison = Eq | Leq | Geq | Gt | Lt | Neq
-
-(* Type des prédicats réifiés (fragment de calcul propositionnel. Les
- * quantifications sont externes au langage) *)
-type oproposition =
- Pequa of Term.constr * oequation
- | Ptrue
- | Pfalse
- | Pnot of oproposition
- | Por of int * oproposition * oproposition
- | Pand of int * oproposition * oproposition
- | Pimp of int * oproposition * oproposition
- | Pprop of Term.constr
-
-(* Les équations ou proposiitions atomiques utiles du calcul *)
-and oequation = {
- e_comp: comparaison; (* comparaison *)
- e_left: oformula; (* formule brute gauche *)
- e_right: oformula; (* formule brute droite *)
- e_trace: Term.constr; (* tactique de normalisation *)
- e_origin: occurence; (* l'hypothèse dont vient le terme *)
- e_negated: bool; (* vrai si apparait en position nié
- après normalisation *)
- e_depends: direction list; (* liste des points de disjonction dont
- dépend l'accès à l'équation avec la
- direction (branche) pour y accéder *)
- e_omega: afine (* la fonction normalisée *)
- }
-
-(* \subsection{Proof context}
- This environment codes
- \begin{itemize}
- \item the terms and propositions that are given as
- parameters of the reified proof (and are represented as variables in the
- reified goals)
- \item translation functions linking the decision procedure and the Coq proof
- \end{itemize} *)
-
-type environment = {
- (* La liste des termes non reifies constituant l'environnement global *)
- mutable terms : Term.constr list;
- (* La meme chose pour les propositions *)
- mutable props : Term.constr list;
- (* Les variables introduites par omega *)
- mutable om_vars : (oformula * int) list;
- (* Traduction des indices utilisés ici en les indices finaux utilisés par
- * la tactique Omega après dénombrement des variables utiles *)
- real_indices : (int,int) Hashtbl.t;
- mutable cnt_connectors : int;
- equations : (int,oequation) Hashtbl.t;
- constructors : (int, occurence) Hashtbl.t
-}
-
-(* \subsection{Solution tree}
- Définition d'une solution trouvée par Omega sous la forme d'un identifiant,
- d'un ensemble d'équation dont dépend la solution et d'une trace *)
-(* La liste des dépendances est triée et sans redondance *)
-type solution = {
- s_index : int;
- s_equa_deps : int list;
- s_trace : action list }
-
-(* Arbre de solution résolvant complètement un ensemble de systèmes *)
-type solution_tree =
- Leaf of solution
- (* un noeud interne représente un point de branchement correspondant à
- l'élimination d'un connecteur générant plusieurs buts
- (typ. disjonction). Le premier argument
- est l'identifiant du connecteur *)
- | Tree of int * solution_tree * solution_tree
-
-(* Représentation de l'environnement extrait du but initial sous forme de
- chemins pour extraire des equations ou d'hypothèses *)
-
-type context_content =
- CCHyp of occurence
- | CCEqua of int
-
-(* \section{Specific utility functions to handle base types} *)
-(* Nom arbitraire de l'hypothèse codant la négation du but final *)
-let id_concl = Names.id_of_string "__goal__"
-
-(* Initialisation de l'environnement de réification de la tactique *)
-let new_environment () = {
- terms = []; props = []; om_vars = []; cnt_connectors = 0;
- real_indices = Hashtbl.create 7;
- equations = Hashtbl.create 7;
- constructors = Hashtbl.create 7;
-}
-
-(* Génération d'un nom d'équation *)
-let new_connector_id env =
- env.cnt_connectors <- succ env.cnt_connectors; env.cnt_connectors
-
-(* Calcul de la branche complémentaire *)
-let barre = function Left x -> Right x | Right x -> Left x
-
-(* Identifiant associé à une branche *)
-let indice = function Left x | Right x -> x
-
-(* Affichage de l'environnement de réification (termes et propositions) *)
-let print_env_reification env =
- let rec loop c i = function
- [] -> Printf.printf " ===============================\n\n"
- | t :: l ->
- Printf.printf " (%c%02d) := " c i;
- Pp.ppnl (Printer.pr_lconstr t);
- Pp.flush_all ();
- loop c (succ i) l in
- print_newline ();
- Printf.printf " ENVIRONMENT OF PROPOSITIONS :\n\n"; loop 'P' 0 env.props;
- Printf.printf " ENVIRONMENT OF TERMS :\n\n"; loop 'V' 0 env.terms
-
-
-(* \subsection{Gestion des environnements de variable pour Omega} *)
-(* generation d'identifiant d'equation pour Omega *)
-
-let new_omega_eq, rst_omega_eq =
- let cpt = ref 0 in
- (function () -> incr cpt; !cpt),
- (function () -> cpt:=0)
-
-(* generation d'identifiant de variable pour Omega *)
-
-let new_omega_var, rst_omega_var =
- let cpt = ref 0 in
- (function () -> incr cpt; !cpt),
- (function () -> cpt:=0)
-
-(* Affichage des variables d'un système *)
-
-let display_omega_var i = Printf.sprintf "OV%d" i
-
-(* Recherche la variable codant un terme pour Omega et crée la variable dans
- l'environnement si il n'existe pas. Cas ou la variable dans Omega représente
- le terme d'un monome (le plus souvent un atome) *)
-
-let intern_omega env t =
- begin try List.assoc t env.om_vars
- with Not_found ->
- let v = new_omega_var () in
- env.om_vars <- (t,v) :: env.om_vars; v
- end
-
-(* Ajout forcé d'un lien entre un terme et une variable Cas où la
- variable est créée par Omega et où il faut la lier après coup à un atome
- réifié introduit de force *)
-let intern_omega_force env t v = env.om_vars <- (t,v) :: env.om_vars
-
-(* Récupère le terme associé à une variable *)
-let unintern_omega env id =
- let rec loop = function
- [] -> failwith "unintern"
- | ((t,j)::l) -> if id = j then t else loop l in
- loop env.om_vars
-
-(* \subsection{Gestion des environnements de variable pour la réflexion}
- Gestion des environnements de traduction entre termes des constructions
- non réifiés et variables des termes reifies. Attention il s'agit de
- l'environnement initial contenant tout. Il faudra le réduire après
- calcul des variables utiles. *)
-
-let add_reified_atom t env =
- try list_index0 t env.terms
- with Not_found ->
- let i = List.length env.terms in
- env.terms <- env.terms @ [t]; i
-
-let get_reified_atom env =
- try List.nth env.terms with _ -> failwith "get_reified_atom"
-
-(* \subsection{Gestion de l'environnement de proposition pour Omega} *)
-(* ajout d'une proposition *)
-let add_prop env t =
- try list_index0 t env.props
- with Not_found ->
- let i = List.length env.props in env.props <- env.props @ [t]; i
-
-(* accès a une proposition *)
-let get_prop v env = try List.nth v env with _ -> failwith "get_prop"
-
-(* \subsection{Gestion du nommage des équations} *)
-(* Ajout d'une equation dans l'environnement de reification *)
-let add_equation env e =
- let id = e.e_omega.id in
- try let _ = Hashtbl.find env.equations id in ()
- with Not_found -> Hashtbl.add env.equations id e
-
-(* accès a une equation *)
-let get_equation env id =
- try Hashtbl.find env.equations id
- with e -> Printf.printf "Omega Equation %d non trouvée\n" id; raise e
-
-(* Affichage des termes réifiés *)
-let rec oprint ch = function
- | Oint n -> Printf.fprintf ch "%s" (Bigint.to_string n)
- | Oplus (t1,t2) -> Printf.fprintf ch "(%a + %a)" oprint t1 oprint t2
- | Omult (t1,t2) -> Printf.fprintf ch "(%a * %a)" oprint t1 oprint t2
- | Ominus(t1,t2) -> Printf.fprintf ch "(%a - %a)" oprint t1 oprint t2
- | Oopp t1 ->Printf.fprintf ch "~ %a" oprint t1
- | Oatom n -> Printf.fprintf ch "V%02d" n
- | Oufo x -> Printf.fprintf ch "?"
-
-let rec pprint ch = function
- Pequa (_,{ e_comp=comp; e_left=t1; e_right=t2 }) ->
- let connector =
- match comp with
- Eq -> "=" | Leq -> "<=" | Geq -> ">="
- | Gt -> ">" | Lt -> "<" | Neq -> "!=" in
- Printf.fprintf ch "%a %s %a" oprint t1 connector oprint t2
- | Ptrue -> Printf.fprintf ch "TT"
- | Pfalse -> Printf.fprintf ch "FF"
- | Pnot t -> Printf.fprintf ch "not(%a)" pprint t
- | Por (_,t1,t2) -> Printf.fprintf ch "(%a or %a)" pprint t1 pprint t2
- | Pand(_,t1,t2) -> Printf.fprintf ch "(%a and %a)" pprint t1 pprint t2
- | Pimp(_,t1,t2) -> Printf.fprintf ch "(%a => %a)" pprint t1 pprint t2
- | Pprop c -> Printf.fprintf ch "Prop"
-
-let rec weight env = function
- | Oint _ -> -1
- | Oopp c -> weight env c
- | Omult(c,_) -> weight env c
- | Oplus _ -> failwith "weight"
- | Ominus _ -> failwith "weight minus"
- | Oufo _ -> -1
- | Oatom _ as c -> (intern_omega env c)
-
-(* \section{Passage entre oformules et représentation interne de Omega} *)
-
-(* \subsection{Oformula vers Omega} *)
-
-let omega_of_oformula env kind =
- let rec loop accu = function
- | Oplus(Omult(v,Oint n),r) ->
- loop ({v=intern_omega env v; c=n} :: accu) r
- | Oint n ->
- let id = new_omega_eq () in
- (*i tag_equation name id; i*)
- {kind = kind; body = List.rev accu;
- constant = n; id = id}
- | t -> print_string "CO"; oprint stdout t; failwith "compile_equation" in
- loop []
-
-(* \subsection{Omega vers Oformula} *)
-
-let rec oformula_of_omega env af =
- let rec loop = function
- | ({v=v; c=n}::r) ->
- Oplus(Omult(unintern_omega env v,Oint n),loop r)
- | [] -> Oint af.constant in
- loop af.body
-
-let app f v = mkApp(Lazy.force f,v)
-
-(* \subsection{Oformula vers COQ reel} *)
-
-let rec coq_of_formula env t =
- let rec loop = function
- | Oplus (t1,t2) -> app Z.plus [| loop t1; loop t2 |]
- | Oopp t -> app Z.opp [| loop t |]
- | Omult(t1,t2) -> app Z.mult [| loop t1; loop t2 |]
- | Oint v -> Z.mk v
- | Oufo t -> loop t
- | Oatom var ->
- (* attention ne traite pas les nouvelles variables si on ne les
- * met pas dans env.term *)
- get_reified_atom env var
- | Ominus(t1,t2) -> app Z.minus [| loop t1; loop t2 |] in
- loop t
-
-(* \subsection{Oformula vers COQ reifié} *)
-
-let reified_of_atom env i =
- try Hashtbl.find env.real_indices i
- with Not_found ->
- Printf.printf "Atome %d non trouvé\n" i;
- Hashtbl.iter (fun k v -> Printf.printf "%d -> %d\n" k v) env.real_indices;
- raise Not_found
-
-let rec reified_of_formula env = function
- | Oplus (t1,t2) ->
- app coq_t_plus [| reified_of_formula env t1; reified_of_formula env t2 |]
- | Oopp t ->
- app coq_t_opp [| reified_of_formula env t |]
- | Omult(t1,t2) ->
- app coq_t_mult [| reified_of_formula env t1; reified_of_formula env t2 |]
- | Oint v -> app coq_t_int [| Z.mk v |]
- | Oufo t -> reified_of_formula env t
- | Oatom i -> app coq_t_var [| mk_nat (reified_of_atom env i) |]
- | Ominus(t1,t2) ->
- app coq_t_minus [| reified_of_formula env t1; reified_of_formula env t2 |]
-
-let reified_of_formula env f =
- begin try reified_of_formula env f with e -> oprint stderr f; raise e end
-
-let rec reified_of_proposition env = function
- Pequa (_,{ e_comp=Eq; e_left=t1; e_right=t2 }) ->
- app coq_p_eq [| reified_of_formula env t1; reified_of_formula env t2 |]
- | Pequa (_,{ e_comp=Leq; e_left=t1; e_right=t2 }) ->
- app coq_p_leq [| reified_of_formula env t1; reified_of_formula env t2 |]
- | Pequa(_,{ e_comp=Geq; e_left=t1; e_right=t2 }) ->
- app coq_p_geq [| reified_of_formula env t1; reified_of_formula env t2 |]
- | Pequa(_,{ e_comp=Gt; e_left=t1; e_right=t2 }) ->
- app coq_p_gt [| reified_of_formula env t1; reified_of_formula env t2 |]
- | Pequa(_,{ e_comp=Lt; e_left=t1; e_right=t2 }) ->
- app coq_p_lt [| reified_of_formula env t1; reified_of_formula env t2 |]
- | Pequa(_,{ e_comp=Neq; e_left=t1; e_right=t2 }) ->
- app coq_p_neq [| reified_of_formula env t1; reified_of_formula env t2 |]
- | Ptrue -> Lazy.force coq_p_true
- | Pfalse -> Lazy.force coq_p_false
- | Pnot t ->
- app coq_p_not [| reified_of_proposition env t |]
- | Por (_,t1,t2) ->
- app coq_p_or
- [| reified_of_proposition env t1; reified_of_proposition env t2 |]
- | Pand(_,t1,t2) ->
- app coq_p_and
- [| reified_of_proposition env t1; reified_of_proposition env t2 |]
- | Pimp(_,t1,t2) ->
- app coq_p_imp
- [| reified_of_proposition env t1; reified_of_proposition env t2 |]
- | Pprop t -> app coq_p_prop [| mk_nat (add_prop env t) |]
-
-let reified_of_proposition env f =
- begin try reified_of_proposition env f
- with e -> pprint stderr f; raise e end
-
-(* \subsection{Omega vers COQ réifié} *)
-
-let reified_of_omega env body constant =
- let coeff_constant =
- app coq_t_int [| Z.mk constant |] in
- let mk_coeff {c=c; v=v} t =
- let coef =
- app coq_t_mult
- [| reified_of_formula env (unintern_omega env v);
- app coq_t_int [| Z.mk c |] |] in
- app coq_t_plus [|coef; t |] in
- List.fold_right mk_coeff body coeff_constant
-
-let reified_of_omega env body c =
- begin try
- reified_of_omega env body c
- with e ->
- display_eq display_omega_var (body,c); raise e
- end
-
-(* \section{Opérations sur les équations}
-Ces fonctions préparent les traces utilisées par la tactique réfléchie
-pour faire des opérations de normalisation sur les équations. *)
-
-(* \subsection{Extractions des variables d'une équation} *)
-(* Extraction des variables d'une équation. *)
-(* Chaque fonction retourne une liste triée sans redondance *)
-
-let (@@) = list_merge_uniq compare
-
-let rec vars_of_formula = function
- | Oint _ -> []
- | Oplus (e1,e2) -> (vars_of_formula e1) @@ (vars_of_formula e2)
- | Omult (e1,e2) -> (vars_of_formula e1) @@ (vars_of_formula e2)
- | Ominus (e1,e2) -> (vars_of_formula e1) @@ (vars_of_formula e2)
- | Oopp e -> vars_of_formula e
- | Oatom i -> [i]
- | Oufo _ -> []
-
-let rec vars_of_equations = function
- | [] -> []
- | e::l ->
- (vars_of_formula e.e_left) @@
- (vars_of_formula e.e_right) @@
- (vars_of_equations l)
-
-let rec vars_of_prop = function
- | Pequa(_,e) -> vars_of_equations [e]
- | Pnot p -> vars_of_prop p
- | Por(_,p1,p2) -> (vars_of_prop p1) @@ (vars_of_prop p2)
- | Pand(_,p1,p2) -> (vars_of_prop p1) @@ (vars_of_prop p2)
- | Pimp(_,p1,p2) -> (vars_of_prop p1) @@ (vars_of_prop p2)
- | Pprop _ | Ptrue | Pfalse -> []
-
-(* \subsection{Multiplication par un scalaire} *)
-
-let rec scalar n = function
- Oplus(t1,t2) ->
- let tac1,t1' = scalar n t1 and
- tac2,t2' = scalar n t2 in
- do_list [Lazy.force coq_c_mult_plus_distr; do_both tac1 tac2],
- Oplus(t1',t2')
- | Oopp t ->
- do_list [Lazy.force coq_c_mult_opp_left], Omult(t,Oint(Bigint.neg n))
- | Omult(t1,Oint x) ->
- do_list [Lazy.force coq_c_mult_assoc_reduced], Omult(t1,Oint (n*x))
- | Omult(t1,t2) ->
- Util.error "Omega: Can't solve a goal with non-linear products"
- | (Oatom _ as t) -> do_list [], Omult(t,Oint n)
- | Oint i -> do_list [Lazy.force coq_c_reduce],Oint(n*i)
- | (Oufo _ as t)-> do_list [], Oufo (Omult(t,Oint n))
- | Ominus _ -> failwith "scalar minus"
-
-(* \subsection{Propagation de l'inversion} *)
-
-let rec negate = function
- Oplus(t1,t2) ->
- let tac1,t1' = negate t1 and
- tac2,t2' = negate t2 in
- do_list [Lazy.force coq_c_opp_plus ; (do_both tac1 tac2)],
- Oplus(t1',t2')
- | Oopp t ->
- do_list [Lazy.force coq_c_opp_opp], t
- | Omult(t1,Oint x) ->
- do_list [Lazy.force coq_c_opp_mult_r], Omult(t1,Oint (Bigint.neg x))
- | Omult(t1,t2) ->
- Util.error "Omega: Can't solve a goal with non-linear products"
- | (Oatom _ as t) ->
- do_list [Lazy.force coq_c_opp_one], Omult(t,Oint(negone))
- | Oint i -> do_list [Lazy.force coq_c_reduce] ,Oint(Bigint.neg i)
- | Oufo c -> do_list [], Oufo (Oopp c)
- | Ominus _ -> failwith "negate minus"
-
-let rec norm l = (List.length l)
-
-(* \subsection{Mélange (fusion) de deux équations} *)
-(* \subsubsection{Version avec coefficients} *)
-let rec shuffle_path k1 e1 k2 e2 =
- let rec loop = function
- (({c=c1;v=v1}::l1) as l1'),
- (({c=c2;v=v2}::l2) as l2') ->
- if v1 = v2 then
- if k1*c1 + k2 * c2 = zero then (
- Lazy.force coq_f_cancel :: loop (l1,l2))
- else (
- Lazy.force coq_f_equal :: loop (l1,l2) )
- else if v1 > v2 then (
- Lazy.force coq_f_left :: loop(l1,l2'))
- else (
- Lazy.force coq_f_right :: loop(l1',l2))
- | ({c=c1;v=v1}::l1), [] ->
- Lazy.force coq_f_left :: loop(l1,[])
- | [],({c=c2;v=v2}::l2) ->
- Lazy.force coq_f_right :: loop([],l2)
- | [],[] -> flush stdout; [] in
- mk_shuffle_list (loop (e1,e2))
-
-(* \subsubsection{Version sans coefficients} *)
-let rec shuffle env (t1,t2) =
- match t1,t2 with
- Oplus(l1,r1), Oplus(l2,r2) ->
- if weight env l1 > weight env l2 then
- let l_action,t' = shuffle env (r1,t2) in
- do_list [Lazy.force coq_c_plus_assoc_r;do_right l_action], Oplus(l1,t')
- else
- let l_action,t' = shuffle env (t1,r2) in
- do_list [Lazy.force coq_c_plus_permute;do_right l_action], Oplus(l2,t')
- | Oplus(l1,r1), t2 ->
- if weight env l1 > weight env t2 then
- let (l_action,t') = shuffle env (r1,t2) in
- do_list [Lazy.force coq_c_plus_assoc_r;do_right l_action],Oplus(l1, t')
- else do_list [Lazy.force coq_c_plus_comm], Oplus(t2,t1)
- | t1,Oplus(l2,r2) ->
- if weight env l2 > weight env t1 then
- let (l_action,t') = shuffle env (t1,r2) in
- do_list [Lazy.force coq_c_plus_permute;do_right l_action], Oplus(l2,t')
- else do_list [],Oplus(t1,t2)
- | Oint t1,Oint t2 ->
- do_list [Lazy.force coq_c_reduce], Oint(t1+t2)
- | t1,t2 ->
- if weight env t1 < weight env t2 then
- do_list [Lazy.force coq_c_plus_comm], Oplus(t2,t1)
- else do_list [],Oplus(t1,t2)
-
-(* \subsection{Fusion avec réduction} *)
-
-let shrink_pair f1 f2 =
- begin match f1,f2 with
- Oatom v,Oatom _ ->
- Lazy.force coq_c_red1, Omult(Oatom v,Oint two)
- | Oatom v, Omult(_,c2) ->
- Lazy.force coq_c_red2, Omult(Oatom v,Oplus(c2,Oint one))
- | Omult (v1,c1),Oatom v ->
- Lazy.force coq_c_red3, Omult(Oatom v,Oplus(c1,Oint one))
- | Omult (Oatom v,c1),Omult (v2,c2) ->
- Lazy.force coq_c_red4, Omult(Oatom v,Oplus(c1,c2))
- | t1,t2 ->
- oprint stdout t1; print_newline (); oprint stdout t2; print_newline ();
- flush Pervasives.stdout; Util.error "shrink.1"
- end
-
-(* \subsection{Calcul d'une sous formule constante} *)
-
-let reduce_factor = function
- Oatom v ->
- let r = Omult(Oatom v,Oint one) in
- [Lazy.force coq_c_red0],r
- | Omult(Oatom v,Oint n) as f -> [],f
- | Omult(Oatom v,c) ->
- let rec compute = function
- Oint n -> n
- | Oplus(t1,t2) -> compute t1 + compute t2
- | _ -> Util.error "condense.1" in
- [Lazy.force coq_c_reduce], Omult(Oatom v,Oint(compute c))
- | t -> Util.error "reduce_factor.1"
-
-(* \subsection{Réordonnancement} *)
-
-let rec condense env = function
- Oplus(f1,(Oplus(f2,r) as t)) ->
- if weight env f1 = weight env f2 then begin
- let shrink_tac,t = shrink_pair f1 f2 in
- let assoc_tac = Lazy.force coq_c_plus_assoc_l in
- let tac_list,t' = condense env (Oplus(t,r)) in
- assoc_tac :: do_left (do_list [shrink_tac]) :: tac_list, t'
- end else begin
- let tac,f = reduce_factor f1 in
- let tac',t' = condense env t in
- [do_both (do_list tac) (do_list tac')], Oplus(f,t')
- end
- | Oplus(f1,Oint n) ->
- let tac,f1' = reduce_factor f1 in
- [do_left (do_list tac)],Oplus(f1',Oint n)
- | Oplus(f1,f2) ->
- if weight env f1 = weight env f2 then begin
- let tac_shrink,t = shrink_pair f1 f2 in
- let tac,t' = condense env t in
- tac_shrink :: tac,t'
- end else begin
- let tac,f = reduce_factor f1 in
- let tac',t' = condense env f2 in
- [do_both (do_list tac) (do_list tac')],Oplus(f,t')
- end
- | (Oint _ as t)-> [],t
- | t ->
- let tac,t' = reduce_factor t in
- let final = Oplus(t',Oint zero) in
- tac @ [Lazy.force coq_c_red6], final
-
-(* \subsection{Elimination des zéros} *)
-
-let rec clear_zero = function
- Oplus(Omult(Oatom v,Oint n),r) when n=zero ->
- let tac',t = clear_zero r in
- Lazy.force coq_c_red5 :: tac',t
- | Oplus(f,r) ->
- let tac,t = clear_zero r in
- (if tac = [] then [] else [do_right (do_list tac)]),Oplus(f,t)
- | t -> [],t;;
-
-(* \subsection{Transformation des hypothèses} *)
-
-let rec reduce env = function
- Oplus(t1,t2) ->
- let t1', trace1 = reduce env t1 in
- let t2', trace2 = reduce env t2 in
- let trace3,t' = shuffle env (t1',t2') in
- t', do_list [do_both trace1 trace2; trace3]
- | Ominus(t1,t2) ->
- let t,trace = reduce env (Oplus(t1, Oopp t2)) in
- t, do_list [Lazy.force coq_c_minus; trace]
- | Omult(t1,t2) as t ->
- let t1', trace1 = reduce env t1 in
- let t2', trace2 = reduce env t2 in
- begin match t1',t2' with
- | (_, Oint n) ->
- let tac,t' = scalar n t1' in
- t', do_list [do_both trace1 trace2; tac]
- | (Oint n,_) ->
- let tac,t' = scalar n t2' in
- t', do_list [do_both trace1 trace2; Lazy.force coq_c_mult_comm; tac]
- | _ -> Oufo t, Lazy.force coq_c_nop
- end
- | Oopp t ->
- let t',trace = reduce env t in
- let trace',t'' = negate t' in
- t'', do_list [do_left trace; trace']
- | (Oint _ | Oatom _ | Oufo _) as t -> t, Lazy.force coq_c_nop
-
-let normalize_linear_term env t =
- let t1,trace1 = reduce env t in
- let trace2,t2 = condense env t1 in
- let trace3,t3 = clear_zero t2 in
- do_list [trace1; do_list trace2; do_list trace3], t3
-
-(* Cette fonction reproduit très exactement le comportement de [p_invert] *)
-let negate_oper = function
- Eq -> Neq | Neq -> Eq | Leq -> Gt | Geq -> Lt | Lt -> Geq | Gt -> Leq
-
-let normalize_equation env (negated,depends,origin,path) (oper,t1,t2) =
- let mk_step t1 t2 f kind =
- let t = f t1 t2 in
- let trace, oterm = normalize_linear_term env t in
- let equa = omega_of_oformula env kind oterm in
- { e_comp = oper; e_left = t1; e_right = t2;
- e_negated = negated; e_depends = depends;
- e_origin = { o_hyp = origin; o_path = List.rev path };
- e_trace = trace; e_omega = equa } in
- try match (if negated then (negate_oper oper) else oper) with
- | Eq -> mk_step t1 t2 (fun o1 o2 -> Oplus (o1,Oopp o2)) EQUA
- | Neq -> mk_step t1 t2 (fun o1 o2 -> Oplus (o1,Oopp o2)) DISE
- | Leq -> mk_step t1 t2 (fun o1 o2 -> Oplus (o2,Oopp o1)) INEQ
- | Geq -> mk_step t1 t2 (fun o1 o2 -> Oplus (o1,Oopp o2)) INEQ
- | Lt ->
- mk_step t1 t2 (fun o1 o2 -> Oplus (Oplus(o2,Oint negone),Oopp o1))
- INEQ
- | Gt ->
- mk_step t1 t2 (fun o1 o2 -> Oplus (Oplus(o1,Oint negone),Oopp o2))
- INEQ
- with e when Logic.catchable_exception e -> raise e
-
-(* \section{Compilation des hypothèses} *)
-
-let rec oformula_of_constr env t =
- match Z.parse_term t with
- | Tplus (t1,t2) -> binop env (fun x y -> Oplus(x,y)) t1 t2
- | Tminus (t1,t2) -> binop env (fun x y -> Ominus(x,y)) t1 t2
- | Tmult (t1,t2) when Z.is_scalar t1 || Z.is_scalar t2 ->
- binop env (fun x y -> Omult(x,y)) t1 t2
- | Topp t -> Oopp(oformula_of_constr env t)
- | Tsucc t -> Oplus(oformula_of_constr env t, Oint one)
- | Tnum n -> Oint n
- | _ -> Oatom (add_reified_atom t env)
-
-and binop env c t1 t2 =
- let t1' = oformula_of_constr env t1 in
- let t2' = oformula_of_constr env t2 in
- c t1' t2'
-
-and binprop env (neg2,depends,origin,path)
- add_to_depends neg1 gl c t1 t2 =
- let i = new_connector_id env in
- let depends1 = if add_to_depends then Left i::depends else depends in
- let depends2 = if add_to_depends then Right i::depends else depends in
- if add_to_depends then
- Hashtbl.add env.constructors i {o_hyp = origin; o_path = List.rev path};
- let t1' =
- oproposition_of_constr env (neg1,depends1,origin,O_left::path) gl t1 in
- let t2' =
- oproposition_of_constr env (neg2,depends2,origin,O_right::path) gl t2 in
- (* On numérote le connecteur dans l'environnement. *)
- c i t1' t2'
-
-and mk_equation env ctxt c connector t1 t2 =
- let t1' = oformula_of_constr env t1 in
- let t2' = oformula_of_constr env t2 in
- (* On ajoute l'equation dans l'environnement. *)
- let omega = normalize_equation env ctxt (connector,t1',t2') in
- add_equation env omega;
- Pequa (c,omega)
-
-and oproposition_of_constr env ((negated,depends,origin,path) as ctxt) gl c =
- match Z.parse_rel gl c with
- | Req (t1,t2) -> mk_equation env ctxt c Eq t1 t2
- | Rne (t1,t2) -> mk_equation env ctxt c Neq t1 t2
- | Rle (t1,t2) -> mk_equation env ctxt c Leq t1 t2
- | Rlt (t1,t2) -> mk_equation env ctxt c Lt t1 t2
- | Rge (t1,t2) -> mk_equation env ctxt c Geq t1 t2
- | Rgt (t1,t2) -> mk_equation env ctxt c Gt t1 t2
- | Rtrue -> Ptrue
- | Rfalse -> Pfalse
- | Rnot t ->
- let t' =
- oproposition_of_constr
- env (not negated, depends, origin,(O_mono::path)) gl t in
- Pnot t'
- | Ror (t1,t2) ->
- binprop env ctxt (not negated) negated gl (fun i x y -> Por(i,x,y)) t1 t2
- | Rand (t1,t2) ->
- binprop env ctxt negated negated gl
- (fun i x y -> Pand(i,x,y)) t1 t2
- | Rimp (t1,t2) ->
- binprop env ctxt (not negated) (not negated) gl
- (fun i x y -> Pimp(i,x,y)) t1 t2
- | Riff (t1,t2) ->
- binprop env ctxt negated negated gl
- (fun i x y -> Pand(i,x,y)) (Term.mkArrow t1 t2) (Term.mkArrow t2 t1)
- | _ -> Pprop c
-
-(* Destructuration des hypothèses et de la conclusion *)
-
-let reify_gl env gl =
- let concl = Tacmach.pf_concl gl in
- let t_concl =
- Pnot (oproposition_of_constr env (true,[],id_concl,[O_mono]) gl concl) in
- if !debug then begin
- Printf.printf "REIFED PROBLEM\n\n";
- Printf.printf " CONCL: "; pprint stdout t_concl; Printf.printf "\n"
- end;
- let rec loop = function
- (i,t) :: lhyps ->
- let t' = oproposition_of_constr env (false,[],i,[]) gl t in
- if !debug then begin
- Printf.printf " %s: " (Names.string_of_id i);
- pprint stdout t';
- Printf.printf "\n"
- end;
- (i,t') :: loop lhyps
- | [] ->
- if !debug then print_env_reification env;
- [] in
- let t_lhyps = loop (Tacmach.pf_hyps_types gl) in
- (id_concl,t_concl) :: t_lhyps
-
-let rec destructurate_pos_hyp orig list_equations list_depends = function
- | Pequa (_,e) -> [e :: list_equations]
- | Ptrue | Pfalse | Pprop _ -> [list_equations]
- | Pnot t -> destructurate_neg_hyp orig list_equations list_depends t
- | Por (i,t1,t2) ->
- let s1 =
- destructurate_pos_hyp orig list_equations (i::list_depends) t1 in
- let s2 =
- destructurate_pos_hyp orig list_equations (i::list_depends) t2 in
- s1 @ s2
- | Pand(i,t1,t2) ->
- let list_s1 =
- destructurate_pos_hyp orig list_equations (list_depends) t1 in
- let rec loop = function
- le1 :: ll -> destructurate_pos_hyp orig le1 list_depends t2 @ loop ll
- | [] -> [] in
- loop list_s1
- | Pimp(i,t1,t2) ->
- let s1 =
- destructurate_neg_hyp orig list_equations (i::list_depends) t1 in
- let s2 =
- destructurate_pos_hyp orig list_equations (i::list_depends) t2 in
- s1 @ s2
-
-and destructurate_neg_hyp orig list_equations list_depends = function
- | Pequa (_,e) -> [e :: list_equations]
- | Ptrue | Pfalse | Pprop _ -> [list_equations]
- | Pnot t -> destructurate_pos_hyp orig list_equations list_depends t
- | Pand (i,t1,t2) ->
- let s1 =
- destructurate_neg_hyp orig list_equations (i::list_depends) t1 in
- let s2 =
- destructurate_neg_hyp orig list_equations (i::list_depends) t2 in
- s1 @ s2
- | Por(_,t1,t2) ->
- let list_s1 =
- destructurate_neg_hyp orig list_equations list_depends t1 in
- let rec loop = function
- le1 :: ll -> destructurate_neg_hyp orig le1 list_depends t2 @ loop ll
- | [] -> [] in
- loop list_s1
- | Pimp(_,t1,t2) ->
- let list_s1 =
- destructurate_pos_hyp orig list_equations list_depends t1 in
- let rec loop = function
- le1 :: ll -> destructurate_neg_hyp orig le1 list_depends t2 @ loop ll
- | [] -> [] in
- loop list_s1
-
-let destructurate_hyps syst =
- let rec loop = function
- (i,t) :: l ->
- let l_syst1 = destructurate_pos_hyp i [] [] t in
- let l_syst2 = loop l in
- list_cartesian (@) l_syst1 l_syst2
- | [] -> [[]] in
- loop syst
-
-(* \subsection{Affichage d'un système d'équation} *)
-
-(* Affichage des dépendances de système *)
-let display_depend = function
- Left i -> Printf.printf " L%d" i
- | Right i -> Printf.printf " R%d" i
-
-let display_systems syst_list =
- let display_omega om_e =
- Printf.printf " E%d : %a %s 0\n"
- om_e.id
- (fun _ -> display_eq display_omega_var)
- (om_e.body, om_e.constant)
- (operator_of_eq om_e.kind) in
-
- let display_equation oformula_eq =
- pprint stdout (Pequa (Lazy.force coq_c_nop,oformula_eq)); print_newline ();
- display_omega oformula_eq.e_omega;
- Printf.printf " Depends on:";
- List.iter display_depend oformula_eq.e_depends;
- Printf.printf "\n Path: %s"
- (String.concat ""
- (List.map (function O_left -> "L" | O_right -> "R" | O_mono -> "M")
- oformula_eq.e_origin.o_path));
- Printf.printf "\n Origin: %s (negated : %s)\n\n"
- (Names.string_of_id oformula_eq.e_origin.o_hyp)
- (if oformula_eq.e_negated then "yes" else "no") in
-
- let display_system syst =
- Printf.printf "=SYSTEM===================================\n";
- List.iter display_equation syst in
- List.iter display_system syst_list
-
-(* Extraction des prédicats utilisées dans une trace. Permet ensuite le
- calcul des hypothèses *)
-
-let rec hyps_used_in_trace = function
- | act :: l ->
- begin match act with
- | HYP e -> [e.id] @@ (hyps_used_in_trace l)
- | SPLIT_INEQ (_,(_,act1),(_,act2)) ->
- hyps_used_in_trace act1 @@ hyps_used_in_trace act2
- | _ -> hyps_used_in_trace l
- end
- | [] -> []
-
-(* Extraction des variables déclarées dans une équation. Permet ensuite
- de les déclarer dans l'environnement de la procédure réflexive et
- éviter les créations de variable au vol *)
-
-let rec variable_stated_in_trace = function
- | act :: l ->
- begin match act with
- | STATE action ->
- (*i nlle_equa: afine, def: afine, eq_orig: afine, i*)
- (*i coef: int, var:int i*)
- action :: variable_stated_in_trace l
- | SPLIT_INEQ (_,(_,act1),(_,act2)) ->
- variable_stated_in_trace act1 @ variable_stated_in_trace act2
- | _ -> variable_stated_in_trace l
- end
- | [] -> []
-;;
-
-let add_stated_equations env tree =
- (* Il faut trier les variables par ordre d'introduction pour ne pas risquer
- de définir dans le mauvais ordre *)
- let stated_equations =
- let cmpvar x y = Pervasives.(-) x.st_var y.st_var in
- let rec loop = function
- | Tree(_,t1,t2) -> List.merge cmpvar (loop t1) (loop t2)
- | Leaf s -> List.sort cmpvar (variable_stated_in_trace s.s_trace)
- in loop tree
- in
- let add_env st =
- (* On retransforme la définition de v en formule reifiée *)
- let v_def = oformula_of_omega env st.st_def in
- (* Notez que si l'ordre de création des variables n'est pas respecté,
- * ca va planter *)
- let coq_v = coq_of_formula env v_def in
- let v = add_reified_atom coq_v env in
- (* Le terme qu'il va falloir introduire *)
- let term_to_generalize = app coq_refl_equal [|Lazy.force Z.typ; coq_v|] in
- (* sa représentation sous forme d'équation mais non réifié car on n'a pas
- * l'environnement pour le faire correctement *)
- let term_to_reify = (v_def,Oatom v) in
- (* enregistre le lien entre la variable omega et la variable Coq *)
- intern_omega_force env (Oatom v) st.st_var;
- (v, term_to_generalize,term_to_reify,st.st_def.id) in
- List.map add_env stated_equations
-
-(* Calcule la liste des éclatements à réaliser sur les hypothèses
- nécessaires pour extraire une liste d'équations donnée *)
-
-(* PL: experimentally, the result order of the following function seems
- _very_ crucial for efficiency. No idea why. Do not remove the List.rev
- or modify the current semantics of Util.list_union (some elements of first
- arg, then second arg), unless you know what you're doing. *)
-
-let rec get_eclatement env = function
- i :: r ->
- let l = try (get_equation env i).e_depends with Not_found -> [] in
- list_union (List.rev l) (get_eclatement env r)
- | [] -> []
-
-let select_smaller l =
- let comp (_,x) (_,y) = Pervasives.(-) (List.length x) (List.length y) in
- try List.hd (List.sort comp l) with Failure _ -> failwith "select_smaller"
-
-let filter_compatible_systems required systems =
- let rec select = function
- (x::l) ->
- if List.mem x required then select l
- else if List.mem (barre x) required then failwith "Exit"
- else x :: select l
- | [] -> [] in
- map_succeed (function (sol,splits) -> (sol,select splits)) systems
-
-let rec equas_of_solution_tree = function
- Tree(_,t1,t2) -> (equas_of_solution_tree t1)@@(equas_of_solution_tree t2)
- | Leaf s -> s.s_equa_deps
-
-(* [really_useful_prop] pushes useless props in a new Pprop variable *)
-(* Things get shorter, but may also get wrong, since a Prop is considered
- to be undecidable in ReflOmegaCore.concl_to_hyp, whereas for instance
- Pfalse is decidable. So should not be used on conclusion (??) *)
-
-let really_useful_prop l_equa c =
- let rec real_of = function
- Pequa(t,_) -> t
- | Ptrue -> app coq_True [||]
- | Pfalse -> app coq_False [||]
- | Pnot t1 -> app coq_not [|real_of t1|]
- | Por(_,t1,t2) -> app coq_or [|real_of t1; real_of t2|]
- | Pand(_,t1,t2) -> app coq_and [|real_of t1; real_of t2|]
- (* Attention : implications sur le lifting des variables à comprendre ! *)
- | Pimp(_,t1,t2) -> Term.mkArrow (real_of t1) (real_of t2)
- | Pprop t -> t in
- let rec loop c =
- match c with
- Pequa(_,e) ->
- if List.mem e.e_omega.id l_equa then Some c else None
- | Ptrue -> None
- | Pfalse -> None
- | Pnot t1 ->
- begin match loop t1 with None -> None | Some t1' -> Some (Pnot t1') end
- | Por(i,t1,t2) -> binop (fun (t1,t2) -> Por(i,t1,t2)) t1 t2
- | Pand(i,t1,t2) -> binop (fun (t1,t2) -> Pand(i,t1,t2)) t1 t2
- | Pimp(i,t1,t2) -> binop (fun (t1,t2) -> Pimp(i,t1,t2)) t1 t2
- | Pprop t -> None
- and binop f t1 t2 =
- begin match loop t1, loop t2 with
- None, None -> None
- | Some t1',Some t2' -> Some (f(t1',t2'))
- | Some t1',None -> Some (f(t1',Pprop (real_of t2)))
- | None,Some t2' -> Some (f(Pprop (real_of t1),t2'))
- end in
- match loop c with
- None -> Pprop (real_of c)
- | Some t -> t
-
-let rec display_solution_tree ch = function
- Leaf t ->
- output_string ch
- (Printf.sprintf "%d[%s]"
- t.s_index
- (String.concat " " (List.map string_of_int t.s_equa_deps)))
- | Tree(i,t1,t2) ->
- Printf.fprintf ch "S%d(%a,%a)" i
- display_solution_tree t1 display_solution_tree t2
-
-let rec solve_with_constraints all_solutions path =
- let rec build_tree sol buf = function
- [] -> Leaf sol
- | (Left i :: remainder) ->
- Tree(i,
- build_tree sol (Left i :: buf) remainder,
- solve_with_constraints all_solutions (List.rev(Right i :: buf)))
- | (Right i :: remainder) ->
- Tree(i,
- solve_with_constraints all_solutions (List.rev (Left i :: buf)),
- build_tree sol (Right i :: buf) remainder) in
- let weighted = filter_compatible_systems path all_solutions in
- let (winner_sol,winner_deps) =
- try select_smaller weighted
- with e ->
- Printf.printf "%d - %d\n"
- (List.length weighted) (List.length all_solutions);
- List.iter display_depend path; raise e in
- build_tree winner_sol (List.rev path) winner_deps
-
-let find_path {o_hyp=id;o_path=p} env =
- let rec loop_path = function
- ([],l) -> Some l
- | (x1::l1,x2::l2) when x1 = x2 -> loop_path (l1,l2)
- | _ -> None in
- let rec loop_id i = function
- CCHyp{o_hyp=id';o_path=p'} :: l when id = id' ->
- begin match loop_path (p',p) with
- Some r -> i,r
- | None -> loop_id (succ i) l
- end
- | _ :: l -> loop_id (succ i) l
- | [] -> failwith "find_path" in
- loop_id 0 env
-
-let mk_direction_list l =
- let trans = function
- O_left -> coq_d_left | O_right -> coq_d_right | O_mono -> coq_d_mono in
- mk_list (Lazy.force coq_direction) (List.map (fun d-> Lazy.force(trans d)) l)
-
-
-(* \section{Rejouer l'historique} *)
-
-let get_hyp env_hyp i =
- try list_index0 (CCEqua i) env_hyp
- with Not_found -> failwith (Printf.sprintf "get_hyp %d" i)
-
-let replay_history env env_hyp =
- let rec loop env_hyp t =
- match t with
- | CONTRADICTION (e1,e2) :: l ->
- let trace = mk_nat (List.length e1.body) in
- mkApp (Lazy.force coq_s_contradiction,
- [| trace ; mk_nat (get_hyp env_hyp e1.id);
- mk_nat (get_hyp env_hyp e2.id) |])
- | DIVIDE_AND_APPROX (e1,e2,k,d) :: l ->
- mkApp (Lazy.force coq_s_div_approx,
- [| Z.mk k; Z.mk d;
- reified_of_omega env e2.body e2.constant;
- mk_nat (List.length e2.body);
- loop env_hyp l; mk_nat (get_hyp env_hyp e1.id) |])
- | NOT_EXACT_DIVIDE (e1,k) :: l ->
- let e2_constant = floor_div e1.constant k in
- let d = e1.constant - e2_constant * k in
- let e2_body = map_eq_linear (fun c -> c / k) e1.body in
- mkApp (Lazy.force coq_s_not_exact_divide,
- [|Z.mk k; Z.mk d;
- reified_of_omega env e2_body e2_constant;
- mk_nat (List.length e2_body);
- mk_nat (get_hyp env_hyp e1.id)|])
- | EXACT_DIVIDE (e1,k) :: l ->
- let e2_body =
- map_eq_linear (fun c -> c / k) e1.body in
- let e2_constant = floor_div e1.constant k in
- mkApp (Lazy.force coq_s_exact_divide,
- [|Z.mk k;
- reified_of_omega env e2_body e2_constant;
- mk_nat (List.length e2_body);
- loop env_hyp l; mk_nat (get_hyp env_hyp e1.id)|])
- | (MERGE_EQ(e3,e1,e2)) :: l ->
- let n1 = get_hyp env_hyp e1.id and n2 = get_hyp env_hyp e2 in
- mkApp (Lazy.force coq_s_merge_eq,
- [| mk_nat (List.length e1.body);
- mk_nat n1; mk_nat n2;
- loop (CCEqua e3:: env_hyp) l |])
- | SUM(e3,(k1,e1),(k2,e2)) :: l ->
- let n1 = get_hyp env_hyp e1.id
- and n2 = get_hyp env_hyp e2.id in
- let trace = shuffle_path k1 e1.body k2 e2.body in
- mkApp (Lazy.force coq_s_sum,
- [| Z.mk k1; mk_nat n1; Z.mk k2;
- mk_nat n2; trace; (loop (CCEqua e3 :: env_hyp) l) |])
- | CONSTANT_NOT_NUL(e,k) :: l ->
- mkApp (Lazy.force coq_s_constant_not_nul,
- [| mk_nat (get_hyp env_hyp e) |])
- | CONSTANT_NEG(e,k) :: l ->
- mkApp (Lazy.force coq_s_constant_neg,
- [| mk_nat (get_hyp env_hyp e) |])
- | STATE {st_new_eq=new_eq; st_def =def;
- st_orig=orig; st_coef=m;
- st_var=sigma } :: l ->
- let n1 = get_hyp env_hyp orig.id
- and n2 = get_hyp env_hyp def.id in
- let v = unintern_omega env sigma in
- let o_def = oformula_of_omega env def in
- let o_orig = oformula_of_omega env orig in
- let body =
- Oplus (o_orig,Omult (Oplus (Oopp v,o_def), Oint m)) in
- let trace,_ = normalize_linear_term env body in
- mkApp (Lazy.force coq_s_state,
- [| Z.mk m; trace; mk_nat n1; mk_nat n2;
- loop (CCEqua new_eq.id :: env_hyp) l |])
- | HYP _ :: l -> loop env_hyp l
- | CONSTANT_NUL e :: l ->
- mkApp (Lazy.force coq_s_constant_nul,
- [| mk_nat (get_hyp env_hyp e) |])
- | NEGATE_CONTRADICT(e1,e2,true) :: l ->
- mkApp (Lazy.force coq_s_negate_contradict,
- [| mk_nat (get_hyp env_hyp e1.id);
- mk_nat (get_hyp env_hyp e2.id) |])
- | NEGATE_CONTRADICT(e1,e2,false) :: l ->
- mkApp (Lazy.force coq_s_negate_contradict_inv,
- [| mk_nat (List.length e2.body);
- mk_nat (get_hyp env_hyp e1.id);
- mk_nat (get_hyp env_hyp e2.id) |])
- | SPLIT_INEQ(e,(e1,l1),(e2,l2)) :: l ->
- let i = get_hyp env_hyp e.id in
- let r1 = loop (CCEqua e1 :: env_hyp) l1 in
- let r2 = loop (CCEqua e2 :: env_hyp) l2 in
- mkApp (Lazy.force coq_s_split_ineq,
- [| mk_nat (List.length e.body); mk_nat i; r1 ; r2 |])
- | (FORGET_C _ | FORGET _ | FORGET_I _) :: l ->
- loop env_hyp l
- | (WEAKEN _ ) :: l -> failwith "not_treated"
- | [] -> failwith "no contradiction"
- in loop env_hyp
-
-let rec decompose_tree env ctxt = function
- Tree(i,left,right) ->
- let org =
- try Hashtbl.find env.constructors i
- with Not_found ->
- failwith (Printf.sprintf "Cannot find constructor %d" i) in
- let (index,path) = find_path org ctxt in
- let left_hyp = CCHyp{o_hyp=org.o_hyp;o_path=org.o_path @ [O_left]} in
- let right_hyp = CCHyp{o_hyp=org.o_hyp;o_path=org.o_path @ [O_right]} in
- app coq_e_split
- [| mk_nat index;
- mk_direction_list path;
- decompose_tree env (left_hyp::ctxt) left;
- decompose_tree env (right_hyp::ctxt) right |]
- | Leaf s ->
- decompose_tree_hyps s.s_trace env ctxt s.s_equa_deps
-and decompose_tree_hyps trace env ctxt = function
- [] -> app coq_e_solve [| replay_history env ctxt trace |]
- | (i::l) ->
- let equation =
- try Hashtbl.find env.equations i
- with Not_found ->
- failwith (Printf.sprintf "Cannot find equation %d" i) in
- let (index,path) = find_path equation.e_origin ctxt in
- let full_path = if equation.e_negated then path @ [O_mono] else path in
- let cont =
- decompose_tree_hyps trace env
- (CCEqua equation.e_omega.id :: ctxt) l in
- app coq_e_extract [|mk_nat index;
- mk_direction_list full_path;
- cont |]
-
-(* \section{La fonction principale} *)
- (* Cette fonction construit la
-trace pour la procédure de décision réflexive. A partir des résultats
-de l'extraction des systèmes, elle lance la résolution par Omega, puis
-l'extraction d'un ensemble minimal de solutions permettant la
-résolution globale du système et enfin construit la trace qui permet
-de faire rejouer cette solution par la tactique réflexive. *)
-
-let resolution env full_reified_goal systems_list =
- let num = ref 0 in
- let solve_system list_eq =
- let index = !num in
- let system = List.map (fun eq -> eq.e_omega) list_eq in
- let trace =
- simplify_strong
- (new_omega_eq,new_omega_var,display_omega_var)
- system in
- (* calcule les hypotheses utilisées pour la solution *)
- let vars = hyps_used_in_trace trace in
- let splits = get_eclatement env vars in
- if !debug then begin
- Printf.printf "SYSTEME %d\n" index;
- display_action display_omega_var trace;
- print_string "\n Depend :";
- List.iter (fun i -> Printf.printf " %d" i) vars;
- print_string "\n Split points :";
- List.iter display_depend splits;
- Printf.printf "\n------------------------------------\n"
- end;
- incr num;
- {s_index = index; s_trace = trace; s_equa_deps = vars}, splits in
- if !debug then Printf.printf "\n====================================\n";
- let all_solutions = List.map solve_system systems_list in
- let solution_tree = solve_with_constraints all_solutions [] in
- if !debug then begin
- display_solution_tree stdout solution_tree;
- print_newline()
- end;
- (* calcule la liste de toutes les hypothèses utilisées dans l'arbre de solution *)
- let useful_equa_id = equas_of_solution_tree solution_tree in
- (* recupere explicitement ces equations *)
- let equations = List.map (get_equation env) useful_equa_id in
- let l_hyps' = list_uniquize (List.map (fun e -> e.e_origin.o_hyp) equations) in
- let l_hyps = id_concl :: list_remove id_concl l_hyps' in
- let useful_hyps =
- List.map (fun id -> List.assoc id full_reified_goal) l_hyps in
- let useful_vars =
- let really_useful_vars = vars_of_equations equations in
- let concl_vars = vars_of_prop (List.assoc id_concl full_reified_goal) in
- really_useful_vars @@ concl_vars
- in
- (* variables a introduire *)
- let to_introduce = add_stated_equations env solution_tree in
- let stated_vars = List.map (fun (v,_,_,_) -> v) to_introduce in
- let l_generalize_arg = List.map (fun (_,t,_,_) -> t) to_introduce in
- let hyp_stated_vars = List.map (fun (_,_,_,id) -> CCEqua id) to_introduce in
- (* L'environnement de base se construit en deux morceaux :
- - les variables des équations utiles (et de la conclusion)
- - les nouvelles variables declarées durant les preuves *)
- let all_vars_env = useful_vars @ stated_vars in
- let basic_env =
- let rec loop i = function
- var :: l ->
- let t = get_reified_atom env var in
- Hashtbl.add env.real_indices var i; t :: loop (succ i) l
- | [] -> [] in
- loop 0 all_vars_env in
- let env_terms_reified = mk_list (Lazy.force Z.typ) basic_env in
- (* On peut maintenant généraliser le but : env est a jour *)
- let l_reified_stated =
- List.map (fun (_,_,(l,r),_) ->
- app coq_p_eq [| reified_of_formula env l;
- reified_of_formula env r |])
- to_introduce in
- let reified_concl =
- match useful_hyps with
- (Pnot p) :: _ -> reified_of_proposition env p
- | _ -> reified_of_proposition env Pfalse in
- let l_reified_terms =
- (List.map
- (fun p ->
- reified_of_proposition env (really_useful_prop useful_equa_id p))
- (List.tl useful_hyps)) in
- let env_props_reified = mk_plist env.props in
- let reified_goal =
- mk_list (Lazy.force coq_proposition)
- (l_reified_stated @ l_reified_terms) in
- let reified =
- app coq_interp_sequent
- [| reified_concl;env_props_reified;env_terms_reified;reified_goal|] in
- let normalize_equation e =
- let rec loop = function
- [] -> app (if e.e_negated then coq_p_invert else coq_p_step)
- [| e.e_trace |]
- | ((O_left | O_mono) :: l) -> app coq_p_left [| loop l |]
- | (O_right :: l) -> app coq_p_right [| loop l |] in
- let correct_index =
- let i = list_index0 e.e_origin.o_hyp l_hyps in
- (* PL: it seems that additionnally introduced hyps are in the way during
- normalization, hence this index shifting... *)
- if i=0 then 0 else Pervasives.(+) i (List.length to_introduce)
- in
- app coq_pair_step [| mk_nat correct_index; loop e.e_origin.o_path |] in
- let normalization_trace =
- mk_list (Lazy.force coq_h_step) (List.map normalize_equation equations) in
-
- let initial_context =
- List.map (fun id -> CCHyp{o_hyp=id;o_path=[]}) (List.tl l_hyps) in
- let context =
- CCHyp{o_hyp=id_concl;o_path=[]} :: hyp_stated_vars @ initial_context in
- let decompose_tactic = decompose_tree env context solution_tree in
-
- Tactics.generalize
- (l_generalize_arg @ List.map Term.mkVar (List.tl l_hyps)) >>
- Tactics.change_in_concl None reified >>
- Tactics.apply (app coq_do_omega [|decompose_tactic; normalization_trace|]) >>
- show_goal >>
- Tactics.normalise_vm_in_concl >>
- (*i Alternatives to the previous line:
- - Normalisation without VM:
- Tactics.normalise_in_concl
- - Skip the conversion check and rely directly on the QED:
- Tacmach.convert_concl_no_check (Lazy.force coq_True) Term.VMcast >>
- i*)
- Tactics.apply (Lazy.force coq_I)
-
-let total_reflexive_omega_tactic gl =
- Coqlib.check_required_library ["Coq";"romega";"ROmega"];
- rst_omega_eq ();
- rst_omega_var ();
- try
- let env = new_environment () in
- let full_reified_goal = reify_gl env gl in
- let systems_list = destructurate_hyps full_reified_goal in
- if !debug then display_systems systems_list;
- resolution env full_reified_goal systems_list gl
- with NO_CONTRADICTION -> Util.error "ROmega can't solve this system"
-
-
-(*i let tester = Tacmach.hide_atomic_tactic "TestOmega" test_tactic i*)
-
-