summaryrefslogtreecommitdiff
path: root/contrib/romega
diff options
context:
space:
mode:
authorGravatar Samuel Mimram <samuel.mimram@ens-lyon.org>2004-07-28 21:54:47 +0000
committerGravatar Samuel Mimram <samuel.mimram@ens-lyon.org>2004-07-28 21:54:47 +0000
commit6b649aba925b6f7462da07599fe67ebb12a3460e (patch)
tree43656bcaa51164548f3fa14e5b10de5ef1088574 /contrib/romega
Imported Upstream version 8.0pl1upstream/8.0pl1
Diffstat (limited to 'contrib/romega')
-rw-r--r--contrib/romega/README6
-rw-r--r--contrib/romega/ROmega.v11
-rw-r--r--contrib/romega/ReflOmegaCore.v2787
-rw-r--r--contrib/romega/const_omega.ml488
-rw-r--r--contrib/romega/g_romega.ml415
-rw-r--r--contrib/romega/omega2.ml675
-rw-r--r--contrib/romega/refl_omega.ml1307
7 files changed, 5289 insertions, 0 deletions
diff --git a/contrib/romega/README b/contrib/romega/README
new file mode 100644
index 00000000..86c9e58a
--- /dev/null
+++ b/contrib/romega/README
@@ -0,0 +1,6 @@
+This work was done for the RNRT Project Calife.
+As such it is distributed under the LGPL licence.
+
+Report bugs to :
+ pierre.cregut@francetelecom.com
+
diff --git a/contrib/romega/ROmega.v b/contrib/romega/ROmega.v
new file mode 100644
index 00000000..b3895b2a
--- /dev/null
+++ b/contrib/romega/ROmega.v
@@ -0,0 +1,11 @@
+(*************************************************************************
+
+ PROJET RNRT Calife - 2001
+ Author: Pierre Crégut - France Télécom R&D
+ Licence : LGPL version 2.1
+
+ *************************************************************************)
+
+Require Import Omega.
+Require Import ReflOmegaCore.
+
diff --git a/contrib/romega/ReflOmegaCore.v b/contrib/romega/ReflOmegaCore.v
new file mode 100644
index 00000000..3dfb5593
--- /dev/null
+++ b/contrib/romega/ReflOmegaCore.v
@@ -0,0 +1,2787 @@
+(*************************************************************************
+
+ PROJET RNRT Calife - 2001
+ Author: Pierre Crégut - France Télécom R&D
+ Licence du projet : LGPL version 2.1
+
+ *************************************************************************)
+
+Require Import Arith.
+Require Import List.
+Require Import Bool.
+Require Import ZArith.
+Require Import OmegaLemmas.
+
+(* \subsection{Definition of basic types} *)
+
+(* \subsubsection{Environment of propositions (lists) *)
+Inductive PropList : Type :=
+ | Pnil : PropList
+ | Pcons : Prop -> PropList -> PropList.
+
+(* Access function for the environment with a default *)
+Fixpoint nthProp (n : nat) (l : PropList) (default : Prop) {struct l} :
+ Prop :=
+ match n, l with
+ | O, Pcons x l' => x
+ | O, other => default
+ | S m, Pnil => default
+ | S m, Pcons x t => nthProp m t default
+ end.
+
+(* \subsubsection{Définition of reified integer expressions}
+ Terms are either:
+ \begin{itemize}
+ \item integers [Tint]
+ \item variables [Tvar]
+ \item operation over integers (addition, product, opposite, subtraction)
+ The last two are translated in additions and products. *)
+
+Inductive term : Set :=
+ | Tint : Z -> term
+ | Tplus : term -> term -> term
+ | Tmult : term -> term -> term
+ | Tminus : term -> term -> term
+ | Topp : term -> term
+ | Tvar : nat -> term.
+
+(* \subsubsection{Definition of reified goals} *)
+(* Very restricted definition of handled predicates that should be extended
+ to cover a wider set of operations.
+ Taking care of negations and disequations require solving more than a
+ goal in parallel. This is a major improvement over previous versions. *)
+
+Inductive proposition : Set :=
+ | EqTerm : term -> term -> proposition (* egalité entre termes *)
+ | LeqTerm : term -> term -> proposition (* plus petit ou egal *)
+ | TrueTerm : proposition (* vrai *)
+ | FalseTerm : proposition (* faux *)
+ | Tnot : proposition -> proposition (* négation *)
+ | GeqTerm : term -> term -> proposition
+ | GtTerm : term -> term -> proposition
+ | LtTerm : term -> term -> proposition
+ | NeqTerm : term -> term -> proposition
+ | Tor : proposition -> proposition -> proposition
+ | Tand : proposition -> proposition -> proposition
+ | Timp : proposition -> proposition -> proposition
+ | Tprop : nat -> proposition.
+
+(* Definition of goals as a list of hypothesis *)
+Notation hyps := (list proposition) (only parsing).
+
+(* Definition of lists of subgoals (set of open goals) *)
+Notation lhyps := (list (list proposition)) (only parsing).
+
+(* a syngle goal packed in a subgoal list *)
+Notation singleton := (fun a : list proposition => a :: nil) (only parsing).
+
+(* an absurd goal *)
+Definition absurd := FalseTerm :: nil.
+
+(* \subsubsection{Traces for merging equations}
+ This inductive type describes how the monomial of two equations should be
+ merged when the equations are added.
+
+ For [F_equal], both equations have the same head variable and coefficient
+ must be added, furthermore if coefficients are opposite, [F_cancel] should
+ be used to collapse the term. [F_left] and [F_right] indicate which monomial
+ should be put first in the result *)
+
+Inductive t_fusion : Set :=
+ | F_equal : t_fusion
+ | F_cancel : t_fusion
+ | F_left : t_fusion
+ | F_right : t_fusion.
+
+(* \subsubsection{Rewriting steps to normalize terms} *)
+Inductive step : Set :=
+ (* apply the rewriting steps to both subterms of an operation *)
+ | C_DO_BOTH :
+ step -> step -> step
+ (* apply the rewriting step to the first branch *)
+ | C_LEFT : step -> step
+ (* apply the rewriting step to the second branch *)
+ | C_RIGHT : step -> step
+ (* apply two steps consecutively to a term *)
+ | C_SEQ : step -> step -> step
+ (* empty step *)
+ | C_NOP : step
+ (* the following operations correspond to actual rewriting *)
+ | C_OPP_PLUS : step
+ | C_OPP_OPP : step
+ | C_OPP_MULT_R : step
+ | C_OPP_ONE :
+ step
+ (* This is a special step that reduces the term (computation) *)
+ | C_REDUCE : step
+ | C_MULT_PLUS_DISTR : step
+ | C_MULT_OPP_LEFT : step
+ | C_MULT_ASSOC_R : step
+ | C_PLUS_ASSOC_R : step
+ | C_PLUS_ASSOC_L : step
+ | C_PLUS_PERMUTE : step
+ | C_PLUS_SYM : step
+ | C_RED0 : step
+ | C_RED1 : step
+ | C_RED2 : step
+ | C_RED3 : step
+ | C_RED4 : step
+ | C_RED5 : step
+ | C_RED6 : step
+ | C_MULT_ASSOC_REDUCED : step
+ | C_MINUS : step
+ | C_MULT_SYM : step.
+
+(* \subsubsection{Omega steps} *)
+(* The following inductive type describes steps as they can be found in
+ the trace coming from the decision procedure Omega. *)
+
+Inductive t_omega : Set :=
+ (* n = 0 n!= 0 *)
+ | O_CONSTANT_NOT_NUL : nat -> t_omega
+ | O_CONSTANT_NEG :
+ nat -> t_omega
+ (* division et approximation of an equation *)
+ | O_DIV_APPROX :
+ Z ->
+ Z ->
+ term ->
+ nat ->
+ t_omega -> nat -> t_omega
+ (* no solution because no exact division *)
+ | O_NOT_EXACT_DIVIDE :
+ Z -> Z -> term -> nat -> nat -> t_omega
+ (* exact division *)
+ | O_EXACT_DIVIDE : Z -> term -> nat -> t_omega -> nat -> t_omega
+ | O_SUM : Z -> nat -> Z -> nat -> list t_fusion -> t_omega -> t_omega
+ | O_CONTRADICTION : nat -> nat -> nat -> t_omega
+ | O_MERGE_EQ : nat -> nat -> nat -> t_omega -> t_omega
+ | O_SPLIT_INEQ : nat -> nat -> t_omega -> t_omega -> t_omega
+ | O_CONSTANT_NUL : nat -> t_omega
+ | O_NEGATE_CONTRADICT : nat -> nat -> t_omega
+ | O_NEGATE_CONTRADICT_INV : nat -> nat -> nat -> t_omega
+ | O_STATE : Z -> step -> nat -> nat -> t_omega -> t_omega.
+
+(* \subsubsection{Règles pour normaliser les hypothèses} *)
+(* Ces règles indiquent comment normaliser les propositions utiles
+ de chaque hypothèse utile avant la décomposition des hypothèses et
+ incluent l'étape d'inversion pour la suppression des négations *)
+Inductive p_step : Set :=
+ | P_LEFT : p_step -> p_step
+ | P_RIGHT : p_step -> p_step
+ | P_INVERT : step -> p_step
+ | P_STEP : step -> p_step
+ | P_NOP : p_step.
+(* Liste des normalisations a effectuer : avec un constructeur dans le
+ type [p_step] permettant
+ de parcourir à la fois les branches gauches et droit, on pourrait n'avoir
+ qu'une normalisation par hypothèse. Et comme toutes les hypothèses sont
+ utiles (sinon on ne les incluerait pas), on pourrait remplacer [h_step]
+ par une simple liste *)
+
+Inductive h_step : Set :=
+ pair_step : nat -> p_step -> h_step.
+
+(* \subsubsection{Règles pour décomposer les hypothèses} *)
+(* Ce type permet de se diriger dans les constructeurs logiques formant les
+ prédicats des hypothèses pour aller les décomposer. Ils permettent
+ en particulier d'extraire une hypothèse d'une conjonction avec
+ éventuellement le bon niveau de négations. *)
+
+Inductive direction : Set :=
+ | D_left : direction
+ | D_right : direction
+ | D_mono : direction.
+
+(* Ce type permet d'extraire les composants utiles des hypothèses : que ce
+ soit des hypothèses générées par éclatement d'une disjonction, ou
+ des équations. Le constructeur terminal indique comment résoudre le système
+ obtenu en recourrant au type de trace d'Omega [t_omega] *)
+
+Inductive e_step : Set :=
+ | E_SPLIT : nat -> list direction -> e_step -> e_step -> e_step
+ | E_EXTRACT : nat -> list direction -> e_step -> e_step
+ | E_SOLVE : t_omega -> e_step.
+
+(* \subsection{Egalité décidable efficace} *)
+(* Pour chaque type de donnée réifié, on calcule un test d'égalité efficace.
+ Ce n'est pas le cas de celui rendu par [Decide Equality].
+
+ Puis on prouve deux théorèmes permettant d'éliminer de telles égalités :
+ \begin{verbatim}
+ (t1,t2: typ) (eq_typ t1 t2) = true -> t1 = t2.
+ (t1,t2: typ) (eq_typ t1 t2) = false -> ~ t1 = t2.
+ \end{verbatim} *)
+
+(* Ces deux tactiques permettent de résoudre pas mal de cas. L'une pour
+ les théorèmes positifs, l'autre pour les théorèmes négatifs *)
+
+Ltac absurd_case := simpl in |- *; intros; discriminate.
+Ltac trivial_case := unfold not in |- *; intros; discriminate.
+
+(* \subsubsection{Entiers naturels} *)
+
+Fixpoint eq_nat (t1 t2 : nat) {struct t2} : bool :=
+ match t1 with
+ | O => match t2 with
+ | O => true
+ | _ => false
+ end
+ | S n1 => match t2 with
+ | O => false
+ | S n2 => eq_nat n1 n2
+ end
+ end.
+
+Theorem eq_nat_true : forall t1 t2 : nat, eq_nat t1 t2 = true -> t1 = t2.
+
+simple induction t1;
+ [ intro t2; case t2; [ trivial | absurd_case ]
+ | intros n H t2; case t2;
+ [ absurd_case
+ | simpl in |- *; intros; rewrite (H n0); [ trivial | assumption ] ] ].
+
+Qed.
+
+Theorem eq_nat_false : forall t1 t2 : nat, eq_nat t1 t2 = false -> t1 <> t2.
+
+simple induction t1;
+ [ intro t2; case t2; [ simpl in |- *; intros; discriminate | trivial_case ]
+ | intros n H t2; case t2; simpl in |- *; unfold not in |- *; intros;
+ [ discriminate | elim (H n0 H0); simplify_eq H1; trivial ] ].
+
+Qed.
+
+
+(* \subsubsection{Entiers positifs} *)
+
+Fixpoint eq_pos (p1 p2 : positive) {struct p2} : bool :=
+ match p1 with
+ | xI n1 => match p2 with
+ | xI n2 => eq_pos n1 n2
+ | _ => false
+ end
+ | xO n1 => match p2 with
+ | xO n2 => eq_pos n1 n2
+ | _ => false
+ end
+ | xH => match p2 with
+ | xH => true
+ | _ => false
+ end
+ end.
+
+Theorem eq_pos_true : forall t1 t2 : positive, eq_pos t1 t2 = true -> t1 = t2.
+
+simple induction t1;
+ [ intros p H t2; case t2;
+ [ simpl in |- *; intros; rewrite (H p0 H0); trivial
+ | absurd_case
+ | absurd_case ]
+ | intros p H t2; case t2;
+ [ absurd_case
+ | simpl in |- *; intros; rewrite (H p0 H0); trivial
+ | absurd_case ]
+ | intro t2; case t2; [ absurd_case | absurd_case | auto ] ].
+
+Qed.
+
+Theorem eq_pos_false :
+ forall t1 t2 : positive, eq_pos t1 t2 = false -> t1 <> t2.
+
+simple induction t1;
+ [ intros p H t2; case t2;
+ [ simpl in |- *; unfold not in |- *; intros; elim (H p0 H0);
+ simplify_eq H1; auto
+ | trivial_case
+ | trivial_case ]
+ | intros p H t2; case t2;
+ [ trivial_case
+ | simpl in |- *; unfold not in |- *; intros; elim (H p0 H0);
+ simplify_eq H1; auto
+ | trivial_case ]
+ | intros t2; case t2; [ trivial_case | trivial_case | absurd_case ] ].
+Qed.
+
+(* \subsubsection{Entiers relatifs} *)
+
+Definition eq_Z (z1 z2 : Z) : bool :=
+ match z1 with
+ | Z0 => match z2 with
+ | Z0 => true
+ | _ => false
+ end
+ | Zpos p1 => match z2 with
+ | Zpos p2 => eq_pos p1 p2
+ | _ => false
+ end
+ | Zneg p1 => match z2 with
+ | Zneg p2 => eq_pos p1 p2
+ | _ => false
+ end
+ end.
+
+Theorem eq_Z_true : forall t1 t2 : Z, eq_Z t1 t2 = true -> t1 = t2.
+
+simple induction t1;
+ [ intros t2; case t2; [ auto | absurd_case | absurd_case ]
+ | intros p t2; case t2;
+ [ absurd_case
+ | simpl in |- *; intros; rewrite (eq_pos_true p p0 H); trivial
+ | absurd_case ]
+ | intros p t2; case t2;
+ [ absurd_case
+ | absurd_case
+ | simpl in |- *; intros; rewrite (eq_pos_true p p0 H); trivial ] ].
+
+Qed.
+
+Theorem eq_Z_false : forall t1 t2 : Z, eq_Z t1 t2 = false -> t1 <> t2.
+
+simple induction t1;
+ [ intros t2; case t2; [ absurd_case | trivial_case | trivial_case ]
+ | intros p t2; case t2;
+ [ absurd_case
+ | simpl in |- *; unfold not in |- *; intros; elim (eq_pos_false p p0 H);
+ simplify_eq H0; auto
+ | trivial_case ]
+ | intros p t2; case t2;
+ [ absurd_case
+ | trivial_case
+ | simpl in |- *; unfold not in |- *; intros; elim (eq_pos_false p p0 H);
+ simplify_eq H0; auto ] ].
+Qed.
+
+(* \subsubsection{Termes réifiés} *)
+
+Fixpoint eq_term (t1 t2 : term) {struct t2} : bool :=
+ match t1 with
+ | Tint st1 => match t2 with
+ | Tint st2 => eq_Z st1 st2
+ | _ => false
+ end
+ | Tplus st11 st12 =>
+ match t2 with
+ | Tplus st21 st22 => eq_term st11 st21 && eq_term st12 st22
+ | _ => false
+ end
+ | Tmult st11 st12 =>
+ match t2 with
+ | Tmult st21 st22 => eq_term st11 st21 && eq_term st12 st22
+ | _ => false
+ end
+ | Tminus st11 st12 =>
+ match t2 with
+ | Tminus st21 st22 => eq_term st11 st21 && eq_term st12 st22
+ | _ => false
+ end
+ | Topp st1 => match t2 with
+ | Topp st2 => eq_term st1 st2
+ | _ => false
+ end
+ | Tvar st1 => match t2 with
+ | Tvar st2 => eq_nat st1 st2
+ | _ => false
+ end
+ end.
+
+Theorem eq_term_true : forall t1 t2 : term, eq_term t1 t2 = true -> t1 = t2.
+
+
+simple induction t1; intros until t2; case t2; try absurd_case; simpl in |- *;
+ [ intros; elim eq_Z_true with (1 := H); trivial
+ | intros t21 t22 H3; elim andb_prop with (1 := H3); intros H4 H5;
+ elim H with (1 := H4); elim H0 with (1 := H5);
+ trivial
+ | intros t21 t22 H3; elim andb_prop with (1 := H3); intros H4 H5;
+ elim H with (1 := H4); elim H0 with (1 := H5);
+ trivial
+ | intros t21 t22 H3; elim andb_prop with (1 := H3); intros H4 H5;
+ elim H with (1 := H4); elim H0 with (1 := H5);
+ trivial
+ | intros t21 H3; elim H with (1 := H3); trivial
+ | intros; elim eq_nat_true with (1 := H); trivial ].
+
+Qed.
+
+Theorem eq_term_false :
+ forall t1 t2 : term, eq_term t1 t2 = false -> t1 <> t2.
+
+simple induction t1;
+ [ intros z t2; case t2; try trivial_case; simpl in |- *; unfold not in |- *;
+ intros; elim eq_Z_false with (1 := H); simplify_eq H0;
+ auto
+ | intros t11 H1 t12 H2 t2; case t2; try trivial_case; simpl in |- *;
+ intros t21 t22 H3; unfold not in |- *; intro H4;
+ elim andb_false_elim with (1 := H3); intros H5;
+ [ elim H1 with (1 := H5); simplify_eq H4; auto
+ | elim H2 with (1 := H5); simplify_eq H4; auto ]
+ | intros t11 H1 t12 H2 t2; case t2; try trivial_case; simpl in |- *;
+ intros t21 t22 H3; unfold not in |- *; intro H4;
+ elim andb_false_elim with (1 := H3); intros H5;
+ [ elim H1 with (1 := H5); simplify_eq H4; auto
+ | elim H2 with (1 := H5); simplify_eq H4; auto ]
+ | intros t11 H1 t12 H2 t2; case t2; try trivial_case; simpl in |- *;
+ intros t21 t22 H3; unfold not in |- *; intro H4;
+ elim andb_false_elim with (1 := H3); intros H5;
+ [ elim H1 with (1 := H5); simplify_eq H4; auto
+ | elim H2 with (1 := H5); simplify_eq H4; auto ]
+ | intros t11 H1 t2; case t2; try trivial_case; simpl in |- *; intros t21 H3;
+ unfold not in |- *; intro H4; elim H1 with (1 := H3);
+ simplify_eq H4; auto
+ | intros n t2; case t2; try trivial_case; simpl in |- *; unfold not in |- *;
+ intros; elim eq_nat_false with (1 := H); simplify_eq H0;
+ auto ].
+
+Qed.
+
+(* \subsubsection{Tactiques pour éliminer ces tests}
+
+ Si on se contente de faire un [Case (eq_typ t1 t2)] on perd
+ totalement dans chaque branche le fait que [t1=t2] ou [~t1=t2].
+
+ Initialement, les développements avaient été réalisés avec les
+ tests rendus par [Decide Equality], c'est à dire un test rendant
+ des termes du type [{t1=t2}+{~t1=t2}]. Faire une élimination sur un
+ tel test préserve bien l'information voulue mais calculatoirement de
+ telles fonctions sont trop lentes. *)
+
+(* Le théorème suivant permet de garder dans les hypothèses la valeur
+ du booléen lors de l'élimination. *)
+
+Theorem bool_ind2 :
+ forall (P : bool -> Prop) (b : bool),
+ (b = true -> P true) -> (b = false -> P false) -> P b.
+
+simple induction b; auto.
+Qed.
+
+(* Les tactiques définies si après se comportent exactement comme si on
+ avait utilisé le test précédent et fait une elimination dessus. *)
+
+Ltac elim_eq_term t1 t2 :=
+ pattern (eq_term t1 t2) in |- *; apply bool_ind2; intro Aux;
+ [ generalize (eq_term_true t1 t2 Aux); clear Aux
+ | generalize (eq_term_false t1 t2 Aux); clear Aux ].
+
+Ltac elim_eq_Z t1 t2 :=
+ pattern (eq_Z t1 t2) in |- *; apply bool_ind2; intro Aux;
+ [ generalize (eq_Z_true t1 t2 Aux); clear Aux
+ | generalize (eq_Z_false t1 t2 Aux); clear Aux ].
+
+Ltac elim_eq_pos t1 t2 :=
+ pattern (eq_pos t1 t2) in |- *; apply bool_ind2; intro Aux;
+ [ generalize (eq_pos_true t1 t2 Aux); clear Aux
+ | generalize (eq_pos_false t1 t2 Aux); clear Aux ].
+
+(* \subsubsection{Comparaison sur Z} *)
+
+(* Sujet très lié au précédent : on introduit la tactique d'élimination
+ avec son théorème *)
+
+Theorem relation_ind2 :
+ forall (P : Datatypes.comparison -> Prop) (b : Datatypes.comparison),
+ (b = Datatypes.Eq -> P Datatypes.Eq) ->
+ (b = Datatypes.Lt -> P Datatypes.Lt) ->
+ (b = Datatypes.Gt -> P Datatypes.Gt) -> P b.
+
+simple induction b; auto.
+Qed.
+
+Ltac elim_Zcompare t1 t2 := pattern (t1 ?= t2)%Z in |- *; apply relation_ind2.
+
+(* \subsection{Interprétations}
+ \subsubsection{Interprétation des termes dans Z} *)
+
+Fixpoint interp_term (env : list Z) (t : term) {struct t} : Z :=
+ match t with
+ | Tint x => x
+ | Tplus t1 t2 => (interp_term env t1 + interp_term env t2)%Z
+ | Tmult t1 t2 => (interp_term env t1 * interp_term env t2)%Z
+ | Tminus t1 t2 => (interp_term env t1 - interp_term env t2)%Z
+ | Topp t => (- interp_term env t)%Z
+ | Tvar n => nth n env 0%Z
+ end.
+
+(* \subsubsection{Interprétation des prédicats} *)
+Fixpoint interp_proposition (envp : PropList) (env : list Z)
+ (p : proposition) {struct p} : Prop :=
+ match p with
+ | EqTerm t1 t2 => interp_term env t1 = interp_term env t2
+ | LeqTerm t1 t2 => (interp_term env t1 <= interp_term env t2)%Z
+ | TrueTerm => True
+ | FalseTerm => False
+ | Tnot p' => ~ interp_proposition envp env p'
+ | GeqTerm t1 t2 => (interp_term env t1 >= interp_term env t2)%Z
+ | GtTerm t1 t2 => (interp_term env t1 > interp_term env t2)%Z
+ | LtTerm t1 t2 => (interp_term env t1 < interp_term env t2)%Z
+ | NeqTerm t1 t2 => Zne (interp_term env t1) (interp_term env t2)
+ | Tor p1 p2 =>
+ interp_proposition envp env p1 \/ interp_proposition envp env p2
+ | Tand p1 p2 =>
+ interp_proposition envp env p1 /\ interp_proposition envp env p2
+ | Timp p1 p2 =>
+ interp_proposition envp env p1 -> interp_proposition envp env p2
+ | Tprop n => nthProp n envp True
+ end.
+
+(* \subsubsection{Inteprétation des listes d'hypothèses}
+ \paragraph{Sous forme de conjonction}
+ Interprétation sous forme d'une conjonction d'hypothèses plus faciles
+ à manipuler individuellement *)
+
+Fixpoint interp_hyps (envp : PropList) (env : list Z)
+ (l : list proposition) {struct l} : Prop :=
+ match l with
+ | nil => True
+ | p' :: l' => interp_proposition envp env p' /\ interp_hyps envp env l'
+ end.
+
+(* \paragraph{sous forme de but}
+ C'est cette interpétation que l'on utilise sur le but (car on utilise
+ [Generalize] et qu'une conjonction est forcément lourde (répétition des
+ types dans les conjonctions intermédiaires) *)
+
+Fixpoint interp_goal_concl (envp : PropList) (env : list Z)
+ (c : proposition) (l : list proposition) {struct l} : Prop :=
+ match l with
+ | nil => interp_proposition envp env c
+ | p' :: l' =>
+ interp_proposition envp env p' -> interp_goal_concl envp env c l'
+ end.
+
+Notation interp_goal :=
+ (fun (envp : PropList) (env : list Z) (l : list proposition) =>
+ interp_goal_concl envp env FalseTerm l) (only parsing).
+
+(* Les théorèmes qui suivent assurent la correspondance entre les deux
+ interprétations. *)
+
+Theorem goal_to_hyps :
+ forall (envp : PropList) (env : list Z) (l : list proposition),
+ (interp_hyps envp env l -> False) ->
+ (fun (envp : PropList) (env : list Z) (l : list proposition) =>
+ interp_goal_concl envp env FalseTerm l) envp env l.
+
+simple induction l;
+ [ simpl in |- *; auto
+ | simpl in |- *; intros a l1 H1 H2 H3; apply H1; intro H4; apply H2; auto ].
+Qed.
+
+Theorem hyps_to_goal :
+ forall (envp : PropList) (env : list Z) (l : list proposition),
+ (fun (envp : PropList) (env : list Z) (l : list proposition) =>
+ interp_goal_concl envp env FalseTerm l) envp env l ->
+ interp_hyps envp env l -> False.
+
+simple induction l; simpl in |- *; [ auto | intros; apply H; elim H1; auto ].
+Qed.
+
+(* \subsection{Manipulations sur les hypothèses} *)
+
+(* \subsubsection{Définitions de base de stabilité pour la réflexion} *)
+(* Une opération laisse un terme stable si l'égalité est préservée *)
+Definition term_stable (f : term -> term) :=
+ forall (e : list Z) (t : term), interp_term e t = interp_term e (f t).
+
+(* Une opération est valide sur une hypothèse, si l'hypothèse implique le
+ résultat de l'opération. \emph{Attention : cela ne concerne que des
+ opérations sur les hypothèses et non sur les buts (contravariance)}.
+ On définit la validité pour une opération prenant une ou deux propositions
+ en argument (cela suffit pour omega). *)
+
+Definition valid1 (f : proposition -> proposition) :=
+ forall (ep : PropList) (e : list Z) (p1 : proposition),
+ interp_proposition ep e p1 -> interp_proposition ep e (f p1).
+
+Definition valid2 (f : proposition -> proposition -> proposition) :=
+ forall (ep : PropList) (e : list Z) (p1 p2 : proposition),
+ interp_proposition ep e p1 ->
+ interp_proposition ep e p2 -> interp_proposition ep e (f p1 p2).
+
+(* Dans cette notion de validité, la fonction prend directement une
+ liste de propositions et rend une nouvelle liste de proposition.
+ On reste contravariant *)
+
+Definition valid_hyps (f : list proposition -> list proposition) :=
+ forall (ep : PropList) (e : list Z) (lp : list proposition),
+ interp_hyps ep e lp -> interp_hyps ep e (f lp).
+
+(* Enfin ce théorème élimine la contravariance et nous ramène à une
+ opération sur les buts *)
+
+ Theorem valid_goal :
+ forall (ep : PropList) (env : list Z) (l : list proposition)
+ (a : list proposition -> list proposition),
+ valid_hyps a ->
+ (fun (envp : PropList) (env : list Z) (l : list proposition) =>
+ interp_goal_concl envp env FalseTerm l) ep env (
+ a l) ->
+ (fun (envp : PropList) (env : list Z) (l : list proposition) =>
+ interp_goal_concl envp env FalseTerm l) ep env l.
+
+intros; simpl in |- *; apply goal_to_hyps; intro H1;
+ apply (hyps_to_goal ep env (a l) H0); apply H; assumption.
+Qed.
+
+(* \subsubsection{Généralisation a des listes de buts (disjonctions)} *)
+
+
+Fixpoint interp_list_hyps (envp : PropList) (env : list Z)
+ (l : list (list proposition)) {struct l} : Prop :=
+ match l with
+ | nil => False
+ | h :: l' => interp_hyps envp env h \/ interp_list_hyps envp env l'
+ end.
+
+Fixpoint interp_list_goal (envp : PropList) (env : list Z)
+ (l : list (list proposition)) {struct l} : Prop :=
+ match l with
+ | nil => True
+ | h :: l' =>
+ (fun (envp : PropList) (env : list Z) (l : list proposition) =>
+ interp_goal_concl envp env FalseTerm l) envp env h /\
+ interp_list_goal envp env l'
+ end.
+
+Theorem list_goal_to_hyps :
+ forall (envp : PropList) (env : list Z) (l : list (list proposition)),
+ (interp_list_hyps envp env l -> False) -> interp_list_goal envp env l.
+
+simple induction l; simpl in |- *;
+ [ auto
+ | intros h1 l1 H H1; split;
+ [ apply goal_to_hyps; intro H2; apply H1; auto
+ | apply H; intro H2; apply H1; auto ] ].
+Qed.
+
+Theorem list_hyps_to_goal :
+ forall (envp : PropList) (env : list Z) (l : list (list proposition)),
+ interp_list_goal envp env l -> interp_list_hyps envp env l -> False.
+
+simple induction l; simpl in |- *;
+ [ auto
+ | intros h1 l1 H (H1, H2) H3; elim H3; intro H4;
+ [ apply hyps_to_goal with (1 := H1); assumption | auto ] ].
+Qed.
+
+Definition valid_list_hyps
+ (f : list proposition -> list (list proposition)) :=
+ forall (ep : PropList) (e : list Z) (lp : list proposition),
+ interp_hyps ep e lp -> interp_list_hyps ep e (f lp).
+
+Definition valid_list_goal
+ (f : list proposition -> list (list proposition)) :=
+ forall (ep : PropList) (e : list Z) (lp : list proposition),
+ interp_list_goal ep e (f lp) ->
+ (fun (envp : PropList) (env : list Z) (l : list proposition) =>
+ interp_goal_concl envp env FalseTerm l) ep e lp.
+
+Theorem goal_valid :
+ forall f : list proposition -> list (list proposition),
+ valid_list_hyps f -> valid_list_goal f.
+
+unfold valid_list_goal in |- *; intros f H ep e lp H1; apply goal_to_hyps;
+ intro H2; apply list_hyps_to_goal with (1 := H1);
+ apply (H ep e lp); assumption.
+Qed.
+
+Theorem append_valid :
+ forall (ep : PropList) (e : list Z) (l1 l2 : list (list proposition)),
+ interp_list_hyps ep e l1 \/ interp_list_hyps ep e l2 ->
+ interp_list_hyps ep e (l1 ++ l2).
+
+intros ep e; simple induction l1;
+ [ simpl in |- *; intros l2 [H| H]; [ contradiction | trivial ]
+ | simpl in |- *; intros h1 t1 HR l2 [[H| H]| H];
+ [ auto
+ | right; apply (HR l2); left; trivial
+ | right; apply (HR l2); right; trivial ] ].
+
+Qed.
+
+(* \subsubsection{Opérateurs valides sur les hypothèses} *)
+
+(* Extraire une hypothèse de la liste *)
+Definition nth_hyps (n : nat) (l : list proposition) := nth n l TrueTerm.
+
+Theorem nth_valid :
+ forall (ep : PropList) (e : list Z) (i : nat) (l : list proposition),
+ interp_hyps ep e l -> interp_proposition ep e (nth_hyps i l).
+
+unfold nth_hyps in |- *; simple induction i;
+ [ simple induction l; simpl in |- *; [ auto | intros; elim H0; auto ]
+ | intros n H; simple induction l;
+ [ simpl in |- *; trivial
+ | intros; simpl in |- *; apply H; elim H1; auto ] ].
+Qed.
+
+(* Appliquer une opération (valide) sur deux hypothèses extraites de
+ la liste et ajouter le résultat à la liste. *)
+Definition apply_oper_2 (i j : nat)
+ (f : proposition -> proposition -> proposition) (l : list proposition) :=
+ f (nth_hyps i l) (nth_hyps j l) :: l.
+
+Theorem apply_oper_2_valid :
+ forall (i j : nat) (f : proposition -> proposition -> proposition),
+ valid2 f -> valid_hyps (apply_oper_2 i j f).
+
+intros i j f Hf; unfold apply_oper_2, valid_hyps in |- *; simpl in |- *;
+ intros lp Hlp; split; [ apply Hf; apply nth_valid; assumption | assumption ].
+Qed.
+
+(* Modifier une hypothèse par application d'une opération valide *)
+
+Fixpoint apply_oper_1 (i : nat) (f : proposition -> proposition)
+ (l : list proposition) {struct i} : list proposition :=
+ match l with
+ | nil => nil (A:=proposition)
+ | p :: l' =>
+ match i with
+ | O => f p :: l'
+ | S j => p :: apply_oper_1 j f l'
+ end
+ end.
+
+Theorem apply_oper_1_valid :
+ forall (i : nat) (f : proposition -> proposition),
+ valid1 f -> valid_hyps (apply_oper_1 i f).
+
+unfold valid_hyps in |- *; intros i f Hf ep e; elim i;
+ [ intro lp; case lp;
+ [ simpl in |- *; trivial
+ | simpl in |- *; intros p l' (H1, H2); split;
+ [ apply Hf with (1 := H1) | assumption ] ]
+ | intros n Hrec lp; case lp;
+ [ simpl in |- *; auto
+ | simpl in |- *; intros p l' (H1, H2); split;
+ [ assumption | apply Hrec; assumption ] ] ].
+
+Qed.
+
+(* \subsubsection{Manipulations de termes} *)
+(* Les fonctions suivantes permettent d'appliquer une fonction de
+ réécriture sur un sous terme du terme principal. Avec la composition,
+ cela permet de construire des réécritures complexes proches des
+ tactiques de conversion *)
+
+Definition apply_left (f : term -> term) (t : term) :=
+ match t with
+ | Tplus x y => Tplus (f x) y
+ | Tmult x y => Tmult (f x) y
+ | Topp x => Topp (f x)
+ | x => x
+ end.
+
+Definition apply_right (f : term -> term) (t : term) :=
+ match t with
+ | Tplus x y => Tplus x (f y)
+ | Tmult x y => Tmult x (f y)
+ | x => x
+ end.
+
+Definition apply_both (f g : term -> term) (t : term) :=
+ match t with
+ | Tplus x y => Tplus (f x) (g y)
+ | Tmult x y => Tmult (f x) (g y)
+ | x => x
+ end.
+
+(* Les théorèmes suivants montrent la stabilité (conditionnée) des
+ fonctions. *)
+
+Theorem apply_left_stable :
+ forall f : term -> term, term_stable f -> term_stable (apply_left f).
+
+unfold term_stable in |- *; intros f H e t; case t; auto; simpl in |- *;
+ intros; elim H; trivial.
+Qed.
+
+Theorem apply_right_stable :
+ forall f : term -> term, term_stable f -> term_stable (apply_right f).
+
+unfold term_stable in |- *; intros f H e t; case t; auto; simpl in |- *;
+ intros t0 t1; elim H; trivial.
+Qed.
+
+Theorem apply_both_stable :
+ forall f g : term -> term,
+ term_stable f -> term_stable g -> term_stable (apply_both f g).
+
+unfold term_stable in |- *; intros f g H1 H2 e t; case t; auto; simpl in |- *;
+ intros t0 t1; elim H1; elim H2; trivial.
+Qed.
+
+Theorem compose_term_stable :
+ forall f g : term -> term,
+ term_stable f -> term_stable g -> term_stable (fun t : term => f (g t)).
+
+unfold term_stable in |- *; intros f g Hf Hg e t; elim Hf; apply Hg.
+Qed.
+
+(* \subsection{Les règles de réécriture} *)
+(* Chacune des règles de réécriture est accompagnée par sa preuve de
+ stabilité. Toutes ces preuves ont la même forme : il faut analyser
+ suivant la forme du terme (élimination de chaque Case). On a besoin d'une
+ élimination uniquement dans les cas d'utilisation d'égalité décidable.
+
+ Cette tactique itère la décomposition des Case. Elle est
+ constituée de deux fonctions s'appelant mutuellement :
+ \begin{itemize}
+ \item une fonction d'enrobage qui lance la recherche sur le but,
+ \item une fonction récursive qui décompose ce but. Quand elle a trouvé un
+ Case, elle l'élimine.
+ \end{itemize}
+ Les motifs sur les cas sont très imparfaits et dans certains cas, il
+ semble que cela ne marche pas. On aimerait plutot un motif de la
+ forme [ Case (?1 :: T) of _ end ] permettant de s'assurer que l'on
+ utilise le bon type.
+
+ Chaque élimination introduit correctement exactement le nombre d'hypothèses
+ nécessaires et conserve dans le cas d'une égalité la connaissance du
+ résultat du test en faisant la réécriture. Pour un test de comparaison,
+ on conserve simplement le résultat.
+
+ Cette fonction déborde très largement la résolution des réécritures
+ simples et fait une bonne partie des preuves des pas de Omega.
+*)
+
+(* \subsubsection{La tactique pour prouver la stabilité} *)
+
+Ltac loop t :=
+ match constr:t with
+ | (?X1 = ?X2) =>
+ (* Global *)
+ loop X1 || loop X2
+ | (_ -> ?X1) => loop X1
+ | (interp_hyps _ _ ?X1) =>
+
+ (* Interpretations *)
+ loop X1
+ | (interp_list_hyps _ _ ?X1) => loop X1
+ | (interp_proposition _ _ ?X1) => loop X1
+ | (interp_term _ ?X1) => loop X1
+ | (EqTerm ?X1 ?X2) =>
+
+ (* Propositions *)
+ loop X1 || loop X2
+ | (LeqTerm ?X1 ?X2) => loop X1 || loop X2
+ | (Tplus ?X1 ?X2) =>
+ (* Termes *)
+ loop X1 || loop X2
+ | (Tminus ?X1 ?X2) => loop X1 || loop X2
+ | (Tmult ?X1 ?X2) => loop X1 || loop X2
+ | (Topp ?X1) => loop X1
+ | (Tint ?X1) =>
+ loop X1
+ | match ?X1 with
+ | EqTerm x x0 => _
+ | LeqTerm x x0 => _
+ | TrueTerm => _
+ | FalseTerm => _
+ | Tnot x => _
+ | GeqTerm x x0 => _
+ | GtTerm x x0 => _
+ | LtTerm x x0 => _
+ | NeqTerm x x0 => _
+ | Tor x x0 => _
+ | Tand x x0 => _
+ | Timp x x0 => _
+ | Tprop x => _
+ end =>
+
+ (* Eliminations *)
+ case X1;
+ [ intro; intro
+ | intro; intro
+ | idtac
+ | idtac
+ | intro
+ | intro; intro
+ | intro; intro
+ | intro; intro
+ | intro; intro
+ | intro; intro
+ | intro; intro
+ | intro; intro
+ | intro ]; auto; Simplify
+ | match ?X1 with
+ | Tint x => _
+ | Tplus x x0 => _
+ | Tmult x x0 => _
+ | Tminus x x0 => _
+ | Topp x => _
+ | Tvar x => _
+ end =>
+ case X1;
+ [ intro | intro; intro | intro; intro | intro; intro | intro | intro ];
+ auto; Simplify
+ | match (?X1 ?= ?X2)%Z with
+ | Datatypes.Eq => _
+ | Datatypes.Lt => _
+ | Datatypes.Gt => _
+ end =>
+ elim_Zcompare X1 X2; intro; auto; Simplify
+ | match ?X1 with
+ | Z0 => _
+ | Zpos x => _
+ | Zneg x => _
+ end =>
+ case X1; [ idtac | intro | intro ]; auto; Simplify
+ | (if eq_Z ?X1 ?X2 then _ else _) =>
+ elim_eq_Z X1 X2; intro H; [ rewrite H; clear H | clear H ];
+ simpl in |- *; auto; Simplify
+ | (if eq_term ?X1 ?X2 then _ else _) =>
+ elim_eq_term X1 X2; intro H; [ rewrite H; clear H | clear H ];
+ simpl in |- *; auto; Simplify
+ | (if eq_pos ?X1 ?X2 then _ else _) =>
+ elim_eq_pos X1 X2; intro H; [ rewrite H; clear H | clear H ];
+ simpl in |- *; auto; Simplify
+ | _ => fail
+ end
+ with Simplify := match goal with
+ | |- ?X1 => try loop X1
+ | _ => idtac
+ end.
+
+
+Ltac prove_stable x th :=
+ match constr:x with
+ | ?X1 =>
+ unfold term_stable, X1 in |- *; intros; Simplify; simpl in |- *;
+ apply th
+ end.
+
+(* \subsubsection{Les règles elle mêmes} *)
+Definition Tplus_assoc_l (t : term) :=
+ match t with
+ | Tplus n (Tplus m p) => Tplus (Tplus n m) p
+ | _ => t
+ end.
+
+Theorem Tplus_assoc_l_stable : term_stable Tplus_assoc_l.
+
+prove_stable Tplus_assoc_l Zplus_assoc.
+Qed.
+
+Definition Tplus_assoc_r (t : term) :=
+ match t with
+ | Tplus (Tplus n m) p => Tplus n (Tplus m p)
+ | _ => t
+ end.
+
+Theorem Tplus_assoc_r_stable : term_stable Tplus_assoc_r.
+
+prove_stable Tplus_assoc_r Zplus_assoc_reverse.
+Qed.
+
+Definition Tmult_assoc_r (t : term) :=
+ match t with
+ | Tmult (Tmult n m) p => Tmult n (Tmult m p)
+ | _ => t
+ end.
+
+Theorem Tmult_assoc_r_stable : term_stable Tmult_assoc_r.
+
+prove_stable Tmult_assoc_r Zmult_assoc_reverse.
+Qed.
+
+Definition Tplus_permute (t : term) :=
+ match t with
+ | Tplus n (Tplus m p) => Tplus m (Tplus n p)
+ | _ => t
+ end.
+
+Theorem Tplus_permute_stable : term_stable Tplus_permute.
+
+prove_stable Tplus_permute Zplus_permute.
+Qed.
+
+Definition Tplus_sym (t : term) :=
+ match t with
+ | Tplus x y => Tplus y x
+ | _ => t
+ end.
+
+Theorem Tplus_sym_stable : term_stable Tplus_sym.
+
+prove_stable Tplus_sym Zplus_comm.
+Qed.
+
+Definition Tmult_sym (t : term) :=
+ match t with
+ | Tmult x y => Tmult y x
+ | _ => t
+ end.
+
+Theorem Tmult_sym_stable : term_stable Tmult_sym.
+
+prove_stable Tmult_sym Zmult_comm.
+Qed.
+
+Definition T_OMEGA10 (t : term) :=
+ match t with
+ | Tplus (Tmult (Tplus (Tmult v (Tint c1)) l1) (Tint k1)) (Tmult (Tplus
+ (Tmult v' (Tint c2)) l2) (Tint k2)) =>
+ match eq_term v v' with
+ | true =>
+ Tplus (Tmult v (Tint (c1 * k1 + c2 * k2)))
+ (Tplus (Tmult l1 (Tint k1)) (Tmult l2 (Tint k2)))
+ | false => t
+ end
+ | _ => t
+ end.
+
+Theorem T_OMEGA10_stable : term_stable T_OMEGA10.
+
+prove_stable T_OMEGA10 OMEGA10.
+Qed.
+
+Definition T_OMEGA11 (t : term) :=
+ match t with
+ | Tplus (Tmult (Tplus (Tmult v1 (Tint c1)) l1) (Tint k1)) l2 =>
+ Tplus (Tmult v1 (Tint (c1 * k1))) (Tplus (Tmult l1 (Tint k1)) l2)
+ | _ => t
+ end.
+
+Theorem T_OMEGA11_stable : term_stable T_OMEGA11.
+
+prove_stable T_OMEGA11 OMEGA11.
+Qed.
+
+Definition T_OMEGA12 (t : term) :=
+ match t with
+ | Tplus l1 (Tmult (Tplus (Tmult v2 (Tint c2)) l2) (Tint k2)) =>
+ Tplus (Tmult v2 (Tint (c2 * k2))) (Tplus l1 (Tmult l2 (Tint k2)))
+ | _ => t
+ end.
+
+Theorem T_OMEGA12_stable : term_stable T_OMEGA12.
+
+prove_stable T_OMEGA12 OMEGA12.
+Qed.
+
+Definition T_OMEGA13 (t : term) :=
+ match t with
+ | Tplus (Tplus (Tmult v (Tint (Zpos x))) l1) (Tplus (Tmult v' (Tint (Zneg
+ x'))) l2) =>
+ match eq_term v v' with
+ | true => match eq_pos x x' with
+ | true => Tplus l1 l2
+ | false => t
+ end
+ | false => t
+ end
+ | Tplus (Tplus (Tmult v (Tint (Zneg x))) l1) (Tplus (Tmult v' (Tint (Zpos
+ x'))) l2) =>
+ match eq_term v v' with
+ | true => match eq_pos x x' with
+ | true => Tplus l1 l2
+ | false => t
+ end
+ | false => t
+ end
+ | _ => t
+ end.
+
+Theorem T_OMEGA13_stable : term_stable T_OMEGA13.
+
+unfold term_stable, T_OMEGA13 in |- *; intros; Simplify; simpl in |- *;
+ [ apply OMEGA13 | apply OMEGA14 ].
+Qed.
+
+Definition T_OMEGA15 (t : term) :=
+ match t with
+ | Tplus (Tplus (Tmult v (Tint c1)) l1) (Tmult (Tplus (Tmult v' (Tint c2))
+ l2) (Tint k2)) =>
+ match eq_term v v' with
+ | true =>
+ Tplus (Tmult v (Tint (c1 + c2 * k2)))
+ (Tplus l1 (Tmult l2 (Tint k2)))
+ | false => t
+ end
+ | _ => t
+ end.
+
+Theorem T_OMEGA15_stable : term_stable T_OMEGA15.
+
+prove_stable T_OMEGA15 OMEGA15.
+Qed.
+
+Definition T_OMEGA16 (t : term) :=
+ match t with
+ | Tmult (Tplus (Tmult v (Tint c)) l) (Tint k) =>
+ Tplus (Tmult v (Tint (c * k))) (Tmult l (Tint k))
+ | _ => t
+ end.
+
+
+Theorem T_OMEGA16_stable : term_stable T_OMEGA16.
+
+prove_stable T_OMEGA16 OMEGA16.
+Qed.
+
+Definition Tred_factor5 (t : term) :=
+ match t with
+ | Tplus (Tmult x (Tint Z0)) y => y
+ | _ => t
+ end.
+
+Theorem Tred_factor5_stable : term_stable Tred_factor5.
+
+
+prove_stable Tred_factor5 Zred_factor5.
+Qed.
+
+Definition Topp_plus (t : term) :=
+ match t with
+ | Topp (Tplus x y) => Tplus (Topp x) (Topp y)
+ | _ => t
+ end.
+
+Theorem Topp_plus_stable : term_stable Topp_plus.
+
+prove_stable Topp_plus Zopp_plus_distr.
+Qed.
+
+
+Definition Topp_opp (t : term) :=
+ match t with
+ | Topp (Topp x) => x
+ | _ => t
+ end.
+
+Theorem Topp_opp_stable : term_stable Topp_opp.
+
+prove_stable Topp_opp Zopp_involutive.
+Qed.
+
+Definition Topp_mult_r (t : term) :=
+ match t with
+ | Topp (Tmult x (Tint k)) => Tmult x (Tint (- k))
+ | _ => t
+ end.
+
+Theorem Topp_mult_r_stable : term_stable Topp_mult_r.
+
+prove_stable Topp_mult_r Zopp_mult_distr_r.
+Qed.
+
+Definition Topp_one (t : term) :=
+ match t with
+ | Topp x => Tmult x (Tint (-1))
+ | _ => t
+ end.
+
+Theorem Topp_one_stable : term_stable Topp_one.
+
+prove_stable Topp_one Zopp_eq_mult_neg_1.
+Qed.
+
+Definition Tmult_plus_distr (t : term) :=
+ match t with
+ | Tmult (Tplus n m) p => Tplus (Tmult n p) (Tmult m p)
+ | _ => t
+ end.
+
+Theorem Tmult_plus_distr_stable : term_stable Tmult_plus_distr.
+
+prove_stable Tmult_plus_distr Zmult_plus_distr_l.
+Qed.
+
+Definition Tmult_opp_left (t : term) :=
+ match t with
+ | Tmult (Topp x) (Tint y) => Tmult x (Tint (- y))
+ | _ => t
+ end.
+
+Theorem Tmult_opp_left_stable : term_stable Tmult_opp_left.
+
+prove_stable Tmult_opp_left Zmult_opp_comm.
+Qed.
+
+Definition Tmult_assoc_reduced (t : term) :=
+ match t with
+ | Tmult (Tmult n (Tint m)) (Tint p) => Tmult n (Tint (m * p))
+ | _ => t
+ end.
+
+Theorem Tmult_assoc_reduced_stable : term_stable Tmult_assoc_reduced.
+
+prove_stable Tmult_assoc_reduced Zmult_assoc_reverse.
+Qed.
+
+Definition Tred_factor0 (t : term) := Tmult t (Tint 1).
+
+Theorem Tred_factor0_stable : term_stable Tred_factor0.
+
+prove_stable Tred_factor0 Zred_factor0.
+Qed.
+
+Definition Tred_factor1 (t : term) :=
+ match t with
+ | Tplus x y =>
+ match eq_term x y with
+ | true => Tmult x (Tint 2)
+ | false => t
+ end
+ | _ => t
+ end.
+
+Theorem Tred_factor1_stable : term_stable Tred_factor1.
+
+prove_stable Tred_factor1 Zred_factor1.
+Qed.
+
+Definition Tred_factor2 (t : term) :=
+ match t with
+ | Tplus x (Tmult y (Tint k)) =>
+ match eq_term x y with
+ | true => Tmult x (Tint (1 + k))
+ | false => t
+ end
+ | _ => t
+ end.
+
+(* Attention : il faut rendre opaque [Zplus] pour éviter que la tactique
+ de simplification n'aille trop loin et défasse [Zplus 1 k] *)
+
+Opaque Zplus.
+
+Theorem Tred_factor2_stable : term_stable Tred_factor2.
+prove_stable Tred_factor2 Zred_factor2.
+Qed.
+
+Definition Tred_factor3 (t : term) :=
+ match t with
+ | Tplus (Tmult x (Tint k)) y =>
+ match eq_term x y with
+ | true => Tmult x (Tint (1 + k))
+ | false => t
+ end
+ | _ => t
+ end.
+
+Theorem Tred_factor3_stable : term_stable Tred_factor3.
+
+prove_stable Tred_factor3 Zred_factor3.
+Qed.
+
+
+Definition Tred_factor4 (t : term) :=
+ match t with
+ | Tplus (Tmult x (Tint k1)) (Tmult y (Tint k2)) =>
+ match eq_term x y with
+ | true => Tmult x (Tint (k1 + k2))
+ | false => t
+ end
+ | _ => t
+ end.
+
+Theorem Tred_factor4_stable : term_stable Tred_factor4.
+
+prove_stable Tred_factor4 Zred_factor4.
+Qed.
+
+Definition Tred_factor6 (t : term) := Tplus t (Tint 0).
+
+Theorem Tred_factor6_stable : term_stable Tred_factor6.
+
+prove_stable Tred_factor6 Zred_factor6.
+Qed.
+
+Transparent Zplus.
+
+Definition Tminus_def (t : term) :=
+ match t with
+ | Tminus x y => Tplus x (Topp y)
+ | _ => t
+ end.
+
+Theorem Tminus_def_stable : term_stable Tminus_def.
+
+(* Le théorème ne sert à rien. Le but est prouvé avant. *)
+prove_stable Tminus_def False.
+Qed.
+
+(* \subsection{Fonctions de réécriture complexes} *)
+
+(* \subsubsection{Fonction de réduction} *)
+(* Cette fonction réduit un terme dont la forme normale est un entier. Il
+ suffit pour cela d'échanger le constructeur [Tint] avec les opérateurs
+ réifiés. La réduction est ``gratuite''. *)
+
+Fixpoint reduce (t : term) : term :=
+ match t with
+ | Tplus x y =>
+ match reduce x with
+ | Tint x' =>
+ match reduce y with
+ | Tint y' => Tint (x' + y')
+ | y' => Tplus (Tint x') y'
+ end
+ | x' => Tplus x' (reduce y)
+ end
+ | Tmult x y =>
+ match reduce x with
+ | Tint x' =>
+ match reduce y with
+ | Tint y' => Tint (x' * y')
+ | y' => Tmult (Tint x') y'
+ end
+ | x' => Tmult x' (reduce y)
+ end
+ | Tminus x y =>
+ match reduce x with
+ | Tint x' =>
+ match reduce y with
+ | Tint y' => Tint (x' - y')
+ | y' => Tminus (Tint x') y'
+ end
+ | x' => Tminus x' (reduce y)
+ end
+ | Topp x =>
+ match reduce x with
+ | Tint x' => Tint (- x')
+ | x' => Topp x'
+ end
+ | _ => t
+ end.
+
+Theorem reduce_stable : term_stable reduce.
+
+unfold term_stable in |- *; intros e t; elim t; auto;
+ try
+ (intros t0 H0 t1 H1; simpl in |- *; rewrite H0; rewrite H1;
+ (case (reduce t0);
+ [ intro z0; case (reduce t1); intros; auto
+ | intros; auto
+ | intros; auto
+ | intros; auto
+ | intros; auto
+ | intros; auto ])); intros t0 H0; simpl in |- *;
+ rewrite H0; case (reduce t0); intros; auto.
+Qed.
+
+(* \subsubsection{Fusions}
+ \paragraph{Fusion de deux équations} *)
+(* On donne une somme de deux équations qui sont supposées normalisées.
+ Cette fonction prend une trace de fusion en argument et transforme
+ le terme en une équation normalisée. C'est une version très simplifiée
+ du moteur de réécriture [rewrite]. *)
+
+Fixpoint fusion (trace : list t_fusion) (t : term) {struct trace} : term :=
+ match trace with
+ | nil => reduce t
+ | step :: trace' =>
+ match step with
+ | F_equal => apply_right (fusion trace') (T_OMEGA10 t)
+ | F_cancel => fusion trace' (Tred_factor5 (T_OMEGA10 t))
+ | F_left => apply_right (fusion trace') (T_OMEGA11 t)
+ | F_right => apply_right (fusion trace') (T_OMEGA12 t)
+ end
+ end.
+
+Theorem fusion_stable : forall t : list t_fusion, term_stable (fusion t).
+
+simple induction t; simpl in |- *;
+ [ exact reduce_stable
+ | intros stp l H; case stp;
+ [ apply compose_term_stable;
+ [ apply apply_right_stable; assumption | exact T_OMEGA10_stable ]
+ | unfold term_stable in |- *; intros e t1; rewrite T_OMEGA10_stable;
+ rewrite Tred_factor5_stable; apply H
+ | apply compose_term_stable;
+ [ apply apply_right_stable; assumption | exact T_OMEGA11_stable ]
+ | apply compose_term_stable;
+ [ apply apply_right_stable; assumption | exact T_OMEGA12_stable ] ] ].
+
+Qed.
+
+(* \paragraph{Fusion de deux équations dont une sans coefficient} *)
+
+Definition fusion_right (trace : list t_fusion) (t : term) : term :=
+ match trace with
+ | nil => reduce t (* Il faut mettre un compute *)
+ | step :: trace' =>
+ match step with
+ | F_equal => apply_right (fusion trace') (T_OMEGA15 t)
+ | F_cancel => fusion trace' (Tred_factor5 (T_OMEGA15 t))
+ | F_left => apply_right (fusion trace') (Tplus_assoc_r t)
+ | F_right => apply_right (fusion trace') (T_OMEGA12 t)
+ end
+ end.
+
+(* \paragraph{Fusion avec anihilation} *)
+(* Normalement le résultat est une constante *)
+
+Fixpoint fusion_cancel (trace : nat) (t : term) {struct trace} : term :=
+ match trace with
+ | O => reduce t
+ | S trace' => fusion_cancel trace' (T_OMEGA13 t)
+ end.
+
+Theorem fusion_cancel_stable : forall t : nat, term_stable (fusion_cancel t).
+
+unfold term_stable, fusion_cancel in |- *; intros trace e; elim trace;
+ [ exact (reduce_stable e)
+ | intros n H t; elim H; exact (T_OMEGA13_stable e t) ].
+Qed.
+
+(* \subsubsection{Opérations afines sur une équation} *)
+(* \paragraph{Multiplication scalaire et somme d'une constante} *)
+
+Fixpoint scalar_norm_add (trace : nat) (t : term) {struct trace} : term :=
+ match trace with
+ | O => reduce t
+ | S trace' => apply_right (scalar_norm_add trace') (T_OMEGA11 t)
+ end.
+
+Theorem scalar_norm_add_stable :
+ forall t : nat, term_stable (scalar_norm_add t).
+
+unfold term_stable, scalar_norm_add in |- *; intros trace; elim trace;
+ [ exact reduce_stable
+ | intros n H e t; elim apply_right_stable;
+ [ exact (T_OMEGA11_stable e t) | exact H ] ].
+Qed.
+
+(* \paragraph{Multiplication scalaire} *)
+Fixpoint scalar_norm (trace : nat) (t : term) {struct trace} : term :=
+ match trace with
+ | O => reduce t
+ | S trace' => apply_right (scalar_norm trace') (T_OMEGA16 t)
+ end.
+
+Theorem scalar_norm_stable : forall t : nat, term_stable (scalar_norm t).
+
+unfold term_stable, scalar_norm in |- *; intros trace; elim trace;
+ [ exact reduce_stable
+ | intros n H e t; elim apply_right_stable;
+ [ exact (T_OMEGA16_stable e t) | exact H ] ].
+Qed.
+
+(* \paragraph{Somme d'une constante} *)
+Fixpoint add_norm (trace : nat) (t : term) {struct trace} : term :=
+ match trace with
+ | O => reduce t
+ | S trace' => apply_right (add_norm trace') (Tplus_assoc_r t)
+ end.
+
+Theorem add_norm_stable : forall t : nat, term_stable (add_norm t).
+
+unfold term_stable, add_norm in |- *; intros trace; elim trace;
+ [ exact reduce_stable
+ | intros n H e t; elim apply_right_stable;
+ [ exact (Tplus_assoc_r_stable e t) | exact H ] ].
+Qed.
+
+(* \subsection{La fonction de normalisation des termes (moteur de réécriture)} *)
+
+
+Fixpoint rewrite (s : step) : term -> term :=
+ match s with
+ | C_DO_BOTH s1 s2 => apply_both (rewrite s1) (rewrite s2)
+ | C_LEFT s => apply_left (rewrite s)
+ | C_RIGHT s => apply_right (rewrite s)
+ | C_SEQ s1 s2 => fun t : term => rewrite s2 (rewrite s1 t)
+ | C_NOP => fun t : term => t
+ | C_OPP_PLUS => Topp_plus
+ | C_OPP_OPP => Topp_opp
+ | C_OPP_MULT_R => Topp_mult_r
+ | C_OPP_ONE => Topp_one
+ | C_REDUCE => reduce
+ | C_MULT_PLUS_DISTR => Tmult_plus_distr
+ | C_MULT_OPP_LEFT => Tmult_opp_left
+ | C_MULT_ASSOC_R => Tmult_assoc_r
+ | C_PLUS_ASSOC_R => Tplus_assoc_r
+ | C_PLUS_ASSOC_L => Tplus_assoc_l
+ | C_PLUS_PERMUTE => Tplus_permute
+ | C_PLUS_SYM => Tplus_sym
+ | C_RED0 => Tred_factor0
+ | C_RED1 => Tred_factor1
+ | C_RED2 => Tred_factor2
+ | C_RED3 => Tred_factor3
+ | C_RED4 => Tred_factor4
+ | C_RED5 => Tred_factor5
+ | C_RED6 => Tred_factor6
+ | C_MULT_ASSOC_REDUCED => Tmult_assoc_reduced
+ | C_MINUS => Tminus_def
+ | C_MULT_SYM => Tmult_sym
+ end.
+
+Theorem rewrite_stable : forall s : step, term_stable (rewrite s).
+
+simple induction s; simpl in |- *;
+ [ intros; apply apply_both_stable; auto
+ | intros; apply apply_left_stable; auto
+ | intros; apply apply_right_stable; auto
+ | unfold term_stable in |- *; intros; elim H0; apply H
+ | unfold term_stable in |- *; auto
+ | exact Topp_plus_stable
+ | exact Topp_opp_stable
+ | exact Topp_mult_r_stable
+ | exact Topp_one_stable
+ | exact reduce_stable
+ | exact Tmult_plus_distr_stable
+ | exact Tmult_opp_left_stable
+ | exact Tmult_assoc_r_stable
+ | exact Tplus_assoc_r_stable
+ | exact Tplus_assoc_l_stable
+ | exact Tplus_permute_stable
+ | exact Tplus_sym_stable
+ | exact Tred_factor0_stable
+ | exact Tred_factor1_stable
+ | exact Tred_factor2_stable
+ | exact Tred_factor3_stable
+ | exact Tred_factor4_stable
+ | exact Tred_factor5_stable
+ | exact Tred_factor6_stable
+ | exact Tmult_assoc_reduced_stable
+ | exact Tminus_def_stable
+ | exact Tmult_sym_stable ].
+Qed.
+
+(* \subsection{tactiques de résolution d'un but omega normalisé}
+ Trace de la procédure
+\subsubsection{Tactiques générant une contradiction}
+\paragraph{[O_CONSTANT_NOT_NUL]} *)
+
+Definition constant_not_nul (i : nat) (h : list proposition) :=
+ match nth_hyps i h with
+ | EqTerm (Tint Z0) (Tint n) =>
+ match eq_Z n 0 with
+ | true => h
+ | false => absurd
+ end
+ | _ => h
+ end.
+
+Theorem constant_not_nul_valid :
+ forall i : nat, valid_hyps (constant_not_nul i).
+
+unfold valid_hyps, constant_not_nul in |- *; intros;
+ generalize (nth_valid ep e i lp); Simplify; simpl in |- *;
+ elim_eq_Z ipattern:z0 0%Z; auto; simpl in |- *; intros H1 H2;
+ elim H1; symmetry in |- *; auto.
+Qed.
+
+(* \paragraph{[O_CONSTANT_NEG]} *)
+
+Definition constant_neg (i : nat) (h : list proposition) :=
+ match nth_hyps i h with
+ | LeqTerm (Tint Z0) (Tint (Zneg n)) => absurd
+ | _ => h
+ end.
+
+Theorem constant_neg_valid : forall i : nat, valid_hyps (constant_neg i).
+
+unfold valid_hyps, constant_neg in |- *; intros;
+ generalize (nth_valid ep e i lp); Simplify; simpl in |- *;
+ unfold Zle in |- *; simpl in |- *; intros H1; elim H1;
+ [ assumption | trivial ].
+Qed.
+
+(* \paragraph{[NOT_EXACT_DIVIDE]} *)
+Definition not_exact_divide (k1 k2 : Z) (body : term)
+ (t i : nat) (l : list proposition) :=
+ match nth_hyps i l with
+ | EqTerm (Tint Z0) b =>
+ match
+ eq_term (scalar_norm_add t (Tplus (Tmult body (Tint k1)) (Tint k2)))
+ b
+ with
+ | true =>
+ match (k2 ?= 0)%Z with
+ | Datatypes.Gt =>
+ match (k1 ?= k2)%Z with
+ | Datatypes.Gt => absurd
+ | _ => l
+ end
+ | _ => l
+ end
+ | false => l
+ end
+ | _ => l
+ end.
+
+Theorem not_exact_divide_valid :
+ forall (k1 k2 : Z) (body : term) (t i : nat),
+ valid_hyps (not_exact_divide k1 k2 body t i).
+
+unfold valid_hyps, not_exact_divide in |- *; intros;
+ generalize (nth_valid ep e i lp); Simplify;
+ elim_eq_term (scalar_norm_add t (Tplus (Tmult body (Tint k1)) (Tint k2))) t1;
+ auto; Simplify; intro H2; elim H2; simpl in |- *;
+ elim (scalar_norm_add_stable t e); simpl in |- *;
+ intro H4; absurd ((interp_term e body * k1 + k2)%Z = 0%Z);
+ [ apply OMEGA4; assumption | symmetry in |- *; auto ].
+
+Qed.
+
+(* \paragraph{[O_CONTRADICTION]} *)
+
+Definition contradiction (t i j : nat) (l : list proposition) :=
+ match nth_hyps i l with
+ | LeqTerm (Tint Z0) b1 =>
+ match nth_hyps j l with
+ | LeqTerm (Tint Z0) b2 =>
+ match fusion_cancel t (Tplus b1 b2) with
+ | Tint k =>
+ match (0 ?= k)%Z with
+ | Datatypes.Gt => absurd
+ | _ => l
+ end
+ | _ => l
+ end
+ | _ => l
+ end
+ | _ => l
+ end.
+
+Theorem contradiction_valid :
+ forall t i j : nat, valid_hyps (contradiction t i j).
+
+unfold valid_hyps, contradiction in |- *; intros t i j ep e l H;
+ generalize (nth_valid _ _ i _ H); generalize (nth_valid _ _ j _ H);
+ case (nth_hyps i l); auto; intros t1 t2; case t1;
+ auto; intros z; case z; auto; case (nth_hyps j l);
+ auto; intros t3 t4; case t3; auto; intros z'; case z';
+ auto; simpl in |- *; intros H1 H2;
+ generalize (refl_equal (interp_term e (fusion_cancel t (Tplus t2 t4))));
+ pattern (fusion_cancel t (Tplus t2 t4)) at 2 3 in |- *;
+ case (fusion_cancel t (Tplus t2 t4)); simpl in |- *;
+ auto; intro k; elim (fusion_cancel_stable t); simpl in |- *;
+ intro E; generalize (OMEGA2 _ _ H2 H1); rewrite E;
+ case k; auto; unfold Zle in |- *; simpl in |- *; intros p H3;
+ elim H3; auto.
+
+Qed.
+
+(* \paragraph{[O_NEGATE_CONTRADICT]} *)
+
+Definition negate_contradict (i1 i2 : nat) (h : list proposition) :=
+ match nth_hyps i1 h with
+ | EqTerm (Tint Z0) b1 =>
+ match nth_hyps i2 h with
+ | NeqTerm (Tint Z0) b2 =>
+ match eq_term b1 b2 with
+ | true => absurd
+ | false => h
+ end
+ | _ => h
+ end
+ | NeqTerm (Tint Z0) b1 =>
+ match nth_hyps i2 h with
+ | EqTerm (Tint Z0) b2 =>
+ match eq_term b1 b2 with
+ | true => absurd
+ | false => h
+ end
+ | _ => h
+ end
+ | _ => h
+ end.
+
+Definition negate_contradict_inv (t i1 i2 : nat) (h : list proposition) :=
+ match nth_hyps i1 h with
+ | EqTerm (Tint Z0) b1 =>
+ match nth_hyps i2 h with
+ | NeqTerm (Tint Z0) b2 =>
+ match eq_term b1 (scalar_norm t (Tmult b2 (Tint (-1)))) with
+ | true => absurd
+ | false => h
+ end
+ | _ => h
+ end
+ | NeqTerm (Tint Z0) b1 =>
+ match nth_hyps i2 h with
+ | EqTerm (Tint Z0) b2 =>
+ match eq_term b1 (scalar_norm t (Tmult b2 (Tint (-1)))) with
+ | true => absurd
+ | false => h
+ end
+ | _ => h
+ end
+ | _ => h
+ end.
+
+Theorem negate_contradict_valid :
+ forall i j : nat, valid_hyps (negate_contradict i j).
+
+unfold valid_hyps, negate_contradict in |- *; intros i j ep e l H;
+ generalize (nth_valid _ _ i _ H); generalize (nth_valid _ _ j _ H);
+ case (nth_hyps i l); auto; intros t1 t2; case t1;
+ auto; intros z; case z; auto; case (nth_hyps j l);
+ auto; intros t3 t4; case t3; auto; intros z'; case z';
+ auto; simpl in |- *; intros H1 H2;
+ [ elim_eq_term t2 t4; intro H3;
+ [ elim H1; elim H3; assumption | assumption ]
+ | elim_eq_term t2 t4; intro H3;
+ [ elim H2; rewrite H3; assumption | assumption ] ].
+
+Qed.
+
+Theorem negate_contradict_inv_valid :
+ forall t i j : nat, valid_hyps (negate_contradict_inv t i j).
+
+
+unfold valid_hyps, negate_contradict_inv in |- *; intros t i j ep e l H;
+ generalize (nth_valid _ _ i _ H); generalize (nth_valid _ _ j _ H);
+ case (nth_hyps i l); auto; intros t1 t2; case t1;
+ auto; intros z; case z; auto; case (nth_hyps j l);
+ auto; intros t3 t4; case t3; auto; intros z'; case z';
+ auto; simpl in |- *; intros H1 H2;
+ (pattern (eq_term t2 (scalar_norm t (Tmult t4 (Tint (-1))))) in |- *;
+ apply bool_ind2; intro Aux;
+ [ generalize (eq_term_true t2 (scalar_norm t (Tmult t4 (Tint (-1)))) Aux);
+ clear Aux
+ | generalize (eq_term_false t2 (scalar_norm t (Tmult t4 (Tint (-1)))) Aux);
+ clear Aux ]);
+ [ intro H3; elim H1; generalize H2; rewrite H3;
+ rewrite <- (scalar_norm_stable t e); simpl in |- *;
+ elim (interp_term e t4); simpl in |- *; auto; intros p H4;
+ discriminate H4
+ | auto
+ | intro H3; elim H2; rewrite H3; elim (scalar_norm_stable t e);
+ simpl in |- *; elim H1; simpl in |- *; trivial
+ | auto ].
+
+Qed.
+
+(* \subsubsection{Tactiques générant une nouvelle équation} *)
+(* \paragraph{[O_SUM]}
+ C'est une oper2 valide mais elle traite plusieurs cas à la fois (suivant
+ les opérateurs de comparaison des deux arguments) d'où une
+ preuve un peu compliquée. On utilise quelques lemmes qui sont des
+ généralisations des théorèmes utilisés par OMEGA. *)
+
+Definition sum (k1 k2 : Z) (trace : list t_fusion)
+ (prop1 prop2 : proposition) :=
+ match prop1 with
+ | EqTerm (Tint Z0) b1 =>
+ match prop2 with
+ | EqTerm (Tint Z0) b2 =>
+ EqTerm (Tint 0)
+ (fusion trace (Tplus (Tmult b1 (Tint k1)) (Tmult b2 (Tint k2))))
+ | LeqTerm (Tint Z0) b2 =>
+ match (k2 ?= 0)%Z with
+ | Datatypes.Gt =>
+ LeqTerm (Tint 0)
+ (fusion trace
+ (Tplus (Tmult b1 (Tint k1)) (Tmult b2 (Tint k2))))
+ | _ => TrueTerm
+ end
+ | _ => TrueTerm
+ end
+ | LeqTerm (Tint Z0) b1 =>
+ match (k1 ?= 0)%Z with
+ | Datatypes.Gt =>
+ match prop2 with
+ | EqTerm (Tint Z0) b2 =>
+ LeqTerm (Tint 0)
+ (fusion trace
+ (Tplus (Tmult b1 (Tint k1)) (Tmult b2 (Tint k2))))
+ | LeqTerm (Tint Z0) b2 =>
+ match (k2 ?= 0)%Z with
+ | Datatypes.Gt =>
+ LeqTerm (Tint 0)
+ (fusion trace
+ (Tplus (Tmult b1 (Tint k1)) (Tmult b2 (Tint k2))))
+ | _ => TrueTerm
+ end
+ | _ => TrueTerm
+ end
+ | _ => TrueTerm
+ end
+ | NeqTerm (Tint Z0) b1 =>
+ match prop2 with
+ | EqTerm (Tint Z0) b2 =>
+ match eq_Z k1 0 with
+ | true => TrueTerm
+ | false =>
+ NeqTerm (Tint 0)
+ (fusion trace
+ (Tplus (Tmult b1 (Tint k1)) (Tmult b2 (Tint k2))))
+ end
+ | _ => TrueTerm
+ end
+ | _ => TrueTerm
+ end.
+
+Theorem sum1 :
+ forall a b c d : Z, 0%Z = a -> 0%Z = b -> 0%Z = (a * c + b * d)%Z.
+
+intros; elim H; elim H0; simpl in |- *; auto.
+Qed.
+
+Theorem sum2 :
+ forall a b c d : Z,
+ (0 <= d)%Z -> 0%Z = a -> (0 <= b)%Z -> (0 <= a * c + b * d)%Z.
+
+intros; elim H0; simpl in |- *; generalize H H1; case b; case d;
+ unfold Zle in |- *; simpl in |- *; auto.
+Qed.
+
+Theorem sum3 :
+ forall a b c d : Z,
+ (0 <= c)%Z ->
+ (0 <= d)%Z -> (0 <= a)%Z -> (0 <= b)%Z -> (0 <= a * c + b * d)%Z.
+
+intros a b c d; case a; case b; case c; case d; unfold Zle in |- *;
+ simpl in |- *; auto.
+Qed.
+
+Theorem sum4 : forall k : Z, (k ?= 0)%Z = Datatypes.Gt -> (0 <= k)%Z.
+
+intro; case k; unfold Zle in |- *; simpl in |- *; auto; intros; discriminate.
+Qed.
+
+Theorem sum5 :
+ forall a b c d : Z,
+ c <> 0%Z -> 0%Z <> a -> 0%Z = b -> 0%Z <> (a * c + b * d)%Z.
+
+intros a b c d H1 H2 H3; elim H3; simpl in |- *; rewrite Zplus_comm;
+ simpl in |- *; generalize H1 H2; case a; case c; simpl in |- *;
+ intros; try discriminate; assumption.
+Qed.
+
+
+Theorem sum_valid :
+ forall (k1 k2 : Z) (t : list t_fusion), valid2 (sum k1 k2 t).
+
+unfold valid2 in |- *; intros k1 k2 t ep e p1 p2; unfold sum in |- *;
+ Simplify; simpl in |- *; auto; try elim (fusion_stable t);
+ simpl in |- *; intros;
+ [ apply sum1; assumption
+ | apply sum2; try assumption; apply sum4; assumption
+ | rewrite Zplus_comm; apply sum2; try assumption; apply sum4; assumption
+ | apply sum3; try assumption; apply sum4; assumption
+ | elim_eq_Z k1 0%Z; simpl in |- *; auto; elim (fusion_stable t);
+ simpl in |- *; intros; unfold Zne in |- *; apply sum5;
+ assumption ].
+Qed.
+
+(* \paragraph{[O_EXACT_DIVIDE]}
+ c'est une oper1 valide mais on préfère une substitution a ce point la *)
+
+Definition exact_divide (k : Z) (body : term) (t : nat)
+ (prop : proposition) :=
+ match prop with
+ | EqTerm (Tint Z0) b =>
+ match eq_term (scalar_norm t (Tmult body (Tint k))) b with
+ | true =>
+ match eq_Z k 0 with
+ | true => TrueTerm
+ | false => EqTerm (Tint 0) body
+ end
+ | false => TrueTerm
+ end
+ | _ => TrueTerm
+ end.
+
+Theorem exact_divide_valid :
+ forall (k : Z) (t : term) (n : nat), valid1 (exact_divide k t n).
+
+
+unfold valid1, exact_divide in |- *; intros k1 k2 t ep e p1; Simplify;
+ simpl in |- *; auto; elim_eq_term (scalar_norm t (Tmult k2 (Tint k1))) t1;
+ simpl in |- *; auto; elim_eq_Z k1 0%Z; simpl in |- *;
+ auto; intros H1 H2; elim H2; elim scalar_norm_stable;
+ simpl in |- *; generalize H1; case (interp_term e k2);
+ try trivial;
+ (case k1; simpl in |- *;
+ [ intros; absurd (0%Z = 0%Z); assumption
+ | intros p2 p3 H3 H4; discriminate H4
+ | intros p2 p3 H3 H4; discriminate H4 ]).
+
+Qed.
+
+
+
+(* \paragraph{[O_DIV_APPROX]}
+ La preuve reprend le schéma de la précédente mais on
+ est sur une opération de type valid1 et non sur une opération terminale. *)
+
+Definition divide_and_approx (k1 k2 : Z) (body : term)
+ (t : nat) (prop : proposition) :=
+ match prop with
+ | LeqTerm (Tint Z0) b =>
+ match
+ eq_term (scalar_norm_add t (Tplus (Tmult body (Tint k1)) (Tint k2)))
+ b
+ with
+ | true =>
+ match (k1 ?= 0)%Z with
+ | Datatypes.Gt =>
+ match (k1 ?= k2)%Z with
+ | Datatypes.Gt => LeqTerm (Tint 0) body
+ | _ => prop
+ end
+ | _ => prop
+ end
+ | false => prop
+ end
+ | _ => prop
+ end.
+
+Theorem divide_and_approx_valid :
+ forall (k1 k2 : Z) (body : term) (t : nat),
+ valid1 (divide_and_approx k1 k2 body t).
+
+unfold valid1, divide_and_approx in |- *; intros k1 k2 body t ep e p1;
+ Simplify;
+ elim_eq_term (scalar_norm_add t (Tplus (Tmult body (Tint k1)) (Tint k2))) t1;
+ Simplify; auto; intro E; elim E; simpl in |- *;
+ elim (scalar_norm_add_stable t e); simpl in |- *;
+ intro H1; apply Zmult_le_approx with (3 := H1); assumption.
+Qed.
+
+(* \paragraph{[MERGE_EQ]} *)
+
+Definition merge_eq (t : nat) (prop1 prop2 : proposition) :=
+ match prop1 with
+ | LeqTerm (Tint Z0) b1 =>
+ match prop2 with
+ | LeqTerm (Tint Z0) b2 =>
+ match eq_term b1 (scalar_norm t (Tmult b2 (Tint (-1)))) with
+ | true => EqTerm (Tint 0) b1
+ | false => TrueTerm
+ end
+ | _ => TrueTerm
+ end
+ | _ => TrueTerm
+ end.
+
+Theorem merge_eq_valid : forall n : nat, valid2 (merge_eq n).
+
+unfold valid2, merge_eq in |- *; intros n ep e p1 p2; Simplify; simpl in |- *;
+ auto; elim (scalar_norm_stable n e); simpl in |- *;
+ intros; symmetry in |- *; apply OMEGA8 with (2 := H0);
+ [ assumption | elim Zopp_eq_mult_neg_1; trivial ].
+Qed.
+
+
+
+(* \paragraph{[O_CONSTANT_NUL]} *)
+
+Definition constant_nul (i : nat) (h : list proposition) :=
+ match nth_hyps i h with
+ | NeqTerm (Tint Z0) (Tint Z0) => absurd
+ | _ => h
+ end.
+
+Theorem constant_nul_valid : forall i : nat, valid_hyps (constant_nul i).
+
+unfold valid_hyps, constant_nul in |- *; intros;
+ generalize (nth_valid ep e i lp); Simplify; simpl in |- *;
+ unfold Zne in |- *; intro H1; absurd (0%Z = 0%Z);
+ auto.
+Qed.
+
+(* \paragraph{[O_STATE]} *)
+
+Definition state (m : Z) (s : step) (prop1 prop2 : proposition) :=
+ match prop1 with
+ | EqTerm (Tint Z0) b1 =>
+ match prop2 with
+ | EqTerm (Tint Z0) (Tplus b2 (Topp b3)) =>
+ EqTerm (Tint 0)
+ (rewrite s (Tplus b1 (Tmult (Tplus (Topp b3) b2) (Tint m))))
+ | _ => TrueTerm
+ end
+ | _ => TrueTerm
+ end.
+
+Theorem state_valid : forall (m : Z) (s : step), valid2 (state m s).
+
+unfold valid2 in |- *; intros m s ep e p1 p2; unfold state in |- *; Simplify;
+ simpl in |- *; auto; elim (rewrite_stable s e); simpl in |- *;
+ intros H1 H2; elim H1;
+ rewrite (Zplus_comm (- interp_term e t5) (interp_term e t3));
+ elim H2; simpl in |- *; reflexivity.
+
+Qed.
+
+(* \subsubsection{Tactiques générant plusieurs but}
+ \paragraph{[O_SPLIT_INEQ]}
+ La seule pour le moment (tant que la normalisation n'est pas réfléchie). *)
+
+Definition split_ineq (i t : nat)
+ (f1 f2 : list proposition -> list (list proposition))
+ (l : list proposition) :=
+ match nth_hyps i l with
+ | NeqTerm (Tint Z0) b1 =>
+ f1 (LeqTerm (Tint 0) (add_norm t (Tplus b1 (Tint (-1)))) :: l) ++
+ f2
+ (LeqTerm (Tint 0)
+ (scalar_norm_add t (Tplus (Tmult b1 (Tint (-1))) (Tint (-1))))
+ :: l)
+ | _ => l :: nil
+ end.
+
+Theorem split_ineq_valid :
+ forall (i t : nat) (f1 f2 : list proposition -> list (list proposition)),
+ valid_list_hyps f1 ->
+ valid_list_hyps f2 -> valid_list_hyps (split_ineq i t f1 f2).
+
+unfold valid_list_hyps, split_ineq in |- *; intros i t f1 f2 H1 H2 ep e lp H;
+ generalize (nth_valid _ _ i _ H); case (nth_hyps i lp);
+ simpl in |- *; auto; intros t1 t2; case t1; simpl in |- *;
+ auto; intros z; case z; simpl in |- *; auto; intro H3;
+ apply append_valid; elim (OMEGA19 (interp_term e t2));
+ [ intro H4; left; apply H1; simpl in |- *; elim (add_norm_stable t);
+ simpl in |- *; auto
+ | intro H4; right; apply H2; simpl in |- *; elim (scalar_norm_add_stable t);
+ simpl in |- *; auto
+ | generalize H3; unfold Zne, not in |- *; intros E1 E2; apply E1;
+ symmetry in |- *; trivial ].
+Qed.
+
+
+(* \subsection{La fonction de rejeu de la trace} *)
+
+Fixpoint execute_omega (t : t_omega) (l : list proposition) {struct t} :
+ list (list proposition) :=
+ match t with
+ | O_CONSTANT_NOT_NUL n =>
+ (fun a : list proposition => a :: nil) (constant_not_nul n l)
+ | O_CONSTANT_NEG n =>
+ (fun a : list proposition => a :: nil) (constant_neg n l)
+ | O_DIV_APPROX k1 k2 body t cont n =>
+ execute_omega cont (apply_oper_1 n (divide_and_approx k1 k2 body t) l)
+ | O_NOT_EXACT_DIVIDE k1 k2 body t i =>
+ (fun a : list proposition => a :: nil)
+ (not_exact_divide k1 k2 body t i l)
+ | O_EXACT_DIVIDE k body t cont n =>
+ execute_omega cont (apply_oper_1 n (exact_divide k body t) l)
+ | O_SUM k1 i1 k2 i2 t cont =>
+ execute_omega cont (apply_oper_2 i1 i2 (sum k1 k2 t) l)
+ | O_CONTRADICTION t i j =>
+ (fun a : list proposition => a :: nil) (contradiction t i j l)
+ | O_MERGE_EQ t i1 i2 cont =>
+ execute_omega cont (apply_oper_2 i1 i2 (merge_eq t) l)
+ | O_SPLIT_INEQ t i cont1 cont2 =>
+ split_ineq i t (execute_omega cont1) (execute_omega cont2) l
+ | O_CONSTANT_NUL i =>
+ (fun a : list proposition => a :: nil) (constant_nul i l)
+ | O_NEGATE_CONTRADICT i j =>
+ (fun a : list proposition => a :: nil) (negate_contradict i j l)
+ | O_NEGATE_CONTRADICT_INV t i j =>
+ (fun a : list proposition => a :: nil) (negate_contradict_inv t i j l)
+ | O_STATE m s i1 i2 cont =>
+ execute_omega cont (apply_oper_2 i1 i2 (state m s) l)
+ end.
+
+Theorem omega_valid : forall t : t_omega, valid_list_hyps (execute_omega t).
+
+simple induction t; simpl in |- *;
+ [ unfold valid_list_hyps in |- *; simpl in |- *; intros; left;
+ apply (constant_not_nul_valid n ep e lp H)
+ | unfold valid_list_hyps in |- *; simpl in |- *; intros; left;
+ apply (constant_neg_valid n ep e lp H)
+ | unfold valid_list_hyps, valid_hyps in |- *;
+ intros k1 k2 body n t' Ht' m ep e lp H; apply Ht';
+ apply
+ (apply_oper_1_valid m (divide_and_approx k1 k2 body n)
+ (divide_and_approx_valid k1 k2 body n) ep e lp H)
+ | unfold valid_list_hyps in |- *; simpl in |- *; intros; left;
+ apply (not_exact_divide_valid z z0 t0 n n0 ep e lp H)
+ | unfold valid_list_hyps, valid_hyps in |- *;
+ intros k body n t' Ht' m ep e lp H; apply Ht';
+ apply
+ (apply_oper_1_valid m (exact_divide k body n)
+ (exact_divide_valid k body n) ep e lp H)
+ | unfold valid_list_hyps, valid_hyps in |- *;
+ intros k1 i1 k2 i2 trace t' Ht' ep e lp H; apply Ht';
+ apply
+ (apply_oper_2_valid i1 i2 (sum k1 k2 trace) (sum_valid k1 k2 trace) ep e
+ lp H)
+ | unfold valid_list_hyps in |- *; simpl in |- *; intros; left;
+ apply (contradiction_valid n n0 n1 ep e lp H)
+ | unfold valid_list_hyps, valid_hyps in |- *;
+ intros trace i1 i2 t' Ht' ep e lp H; apply Ht';
+ apply
+ (apply_oper_2_valid i1 i2 (merge_eq trace) (merge_eq_valid trace) ep e
+ lp H)
+ | intros t' i k1 H1 k2 H2; unfold valid_list_hyps in |- *; simpl in |- *;
+ intros ep e lp H;
+ apply
+ (split_ineq_valid i t' (execute_omega k1) (execute_omega k2) H1 H2 ep e
+ lp H)
+ | unfold valid_list_hyps in |- *; simpl in |- *; intros i ep e lp H; left;
+ apply (constant_nul_valid i ep e lp H)
+ | unfold valid_list_hyps in |- *; simpl in |- *; intros i j ep e lp H; left;
+ apply (negate_contradict_valid i j ep e lp H)
+ | unfold valid_list_hyps in |- *; simpl in |- *; intros n i j ep e lp H;
+ left; apply (negate_contradict_inv_valid n i j ep e lp H)
+ | unfold valid_list_hyps, valid_hyps in |- *;
+ intros m s i1 i2 t' Ht' ep e lp H; apply Ht';
+ apply (apply_oper_2_valid i1 i2 (state m s) (state_valid m s) ep e lp H) ].
+Qed.
+
+
+(* \subsection{Les opérations globales sur le but}
+ \subsubsection{Normalisation} *)
+
+Definition move_right (s : step) (p : proposition) :=
+ match p with
+ | EqTerm t1 t2 => EqTerm (Tint 0) (rewrite s (Tplus t1 (Topp t2)))
+ | LeqTerm t1 t2 => LeqTerm (Tint 0) (rewrite s (Tplus t2 (Topp t1)))
+ | GeqTerm t1 t2 => LeqTerm (Tint 0) (rewrite s (Tplus t1 (Topp t2)))
+ | LtTerm t1 t2 =>
+ LeqTerm (Tint 0) (rewrite s (Tplus (Tplus t2 (Tint (-1))) (Topp t1)))
+ | GtTerm t1 t2 =>
+ LeqTerm (Tint 0) (rewrite s (Tplus (Tplus t1 (Tint (-1))) (Topp t2)))
+ | NeqTerm t1 t2 => NeqTerm (Tint 0) (rewrite s (Tplus t1 (Topp t2)))
+ | p => p
+ end.
+
+Theorem Zne_left_2 : forall x y : Z, Zne x y -> Zne 0 (x + - y).
+unfold Zne, not in |- *; intros x y H1 H2; apply H1;
+ apply (Zplus_reg_l (- y)); rewrite Zplus_comm; elim H2;
+ rewrite Zplus_opp_l; trivial.
+Qed.
+
+Theorem move_right_valid : forall s : step, valid1 (move_right s).
+
+unfold valid1, move_right in |- *; intros s ep e p; Simplify; simpl in |- *;
+ elim (rewrite_stable s e); simpl in |- *;
+ [ symmetry in |- *; apply Zegal_left; assumption
+ | intro; apply Zle_left; assumption
+ | intro; apply Zge_left; assumption
+ | intro; apply Zgt_left; assumption
+ | intro; apply Zlt_left; assumption
+ | intro; apply Zne_left_2; assumption ].
+Qed.
+
+Definition do_normalize (i : nat) (s : step) := apply_oper_1 i (move_right s).
+
+Theorem do_normalize_valid :
+ forall (i : nat) (s : step), valid_hyps (do_normalize i s).
+
+intros; unfold do_normalize in |- *; apply apply_oper_1_valid;
+ apply move_right_valid.
+Qed.
+
+Fixpoint do_normalize_list (l : list step) (i : nat)
+ (h : list proposition) {struct l} : list proposition :=
+ match l with
+ | s :: l' => do_normalize_list l' (S i) (do_normalize i s h)
+ | nil => h
+ end.
+
+Theorem do_normalize_list_valid :
+ forall (l : list step) (i : nat), valid_hyps (do_normalize_list l i).
+
+simple induction l; simpl in |- *; unfold valid_hyps in |- *;
+ [ auto
+ | intros a l' Hl' i ep e lp H; unfold valid_hyps in Hl'; apply Hl';
+ apply (do_normalize_valid i a ep e lp); assumption ].
+Qed.
+
+Theorem normalize_goal :
+ forall (s : list step) (ep : PropList) (env : list Z) (l : list proposition),
+ (fun (envp : PropList) (env : list Z) (l : list proposition) =>
+ interp_goal_concl envp env FalseTerm l) ep env (do_normalize_list s 0 l) ->
+ (fun (envp : PropList) (env : list Z) (l : list proposition) =>
+ interp_goal_concl envp env FalseTerm l) ep env l.
+
+intros; apply valid_goal with (2 := H); apply do_normalize_list_valid.
+Qed.
+
+(* \subsubsection{Exécution de la trace} *)
+
+Theorem execute_goal :
+ forall (t : t_omega) (ep : PropList) (env : list Z) (l : list proposition),
+ interp_list_goal ep env (execute_omega t l) ->
+ (fun (envp : PropList) (env : list Z) (l : list proposition) =>
+ interp_goal_concl envp env FalseTerm l) ep env l.
+
+intros; apply (goal_valid (execute_omega t) (omega_valid t) ep env l H).
+Qed.
+
+
+Theorem append_goal :
+ forall (ep : PropList) (e : list Z) (l1 l2 : list (list proposition)),
+ interp_list_goal ep e l1 /\ interp_list_goal ep e l2 ->
+ interp_list_goal ep e (l1 ++ l2).
+
+intros ep e; simple induction l1;
+ [ simpl in |- *; intros l2 (H1, H2); assumption
+ | simpl in |- *; intros h1 t1 HR l2 ((H1, H2), H3); split; auto ].
+
+Qed.
+
+Require Import Decidable.
+
+(* A simple decidability checker : if the proposition belongs to the
+ simple grammar describe below then it is decidable. Proof is by
+ induction and uses well known theorem about arithmetic and propositional
+ calculus *)
+
+Fixpoint decidability (p : proposition) : bool :=
+ match p with
+ | EqTerm _ _ => true
+ | LeqTerm _ _ => true
+ | GeqTerm _ _ => true
+ | GtTerm _ _ => true
+ | LtTerm _ _ => true
+ | NeqTerm _ _ => true
+ | FalseTerm => true
+ | TrueTerm => true
+ | Tnot t => decidability t
+ | Tand t1 t2 => decidability t1 && decidability t2
+ | Timp t1 t2 => decidability t1 && decidability t2
+ | Tor t1 t2 => decidability t1 && decidability t2
+ | Tprop _ => false
+ end.
+
+Theorem decidable_correct :
+ forall (ep : PropList) (e : list Z) (p : proposition),
+ decidability p = true -> decidable (interp_proposition ep e p).
+
+simple induction p; simpl in |- *; intros;
+ [ apply dec_eq
+ | apply dec_Zle
+ | left; auto
+ | right; unfold not in |- *; auto
+ | apply dec_not; auto
+ | apply dec_Zge
+ | apply dec_Zgt
+ | apply dec_Zlt
+ | apply dec_Zne
+ | apply dec_or; elim andb_prop with (1 := H1); auto
+ | apply dec_and; elim andb_prop with (1 := H1); auto
+ | apply dec_imp; elim andb_prop with (1 := H1); auto
+ | discriminate H ].
+
+Qed.
+
+(* An interpretation function for a complete goal with an explicit
+ conclusion. We use an intermediate fixpoint. *)
+
+Fixpoint interp_full_goal (envp : PropList) (env : list Z)
+ (c : proposition) (l : list proposition) {struct l} : Prop :=
+ match l with
+ | nil => interp_proposition envp env c
+ | p' :: l' =>
+ interp_proposition envp env p' -> interp_full_goal envp env c l'
+ end.
+
+Definition interp_full (ep : PropList) (e : list Z)
+ (lc : list proposition * proposition) : Prop :=
+ match lc with
+ | (l, c) => interp_full_goal ep e c l
+ end.
+
+(* Relates the interpretation of a complete goal with the interpretation
+ of its hypothesis and conclusion *)
+
+Theorem interp_full_false :
+ forall (ep : PropList) (e : list Z) (l : list proposition) (c : proposition),
+ (interp_hyps ep e l -> interp_proposition ep e c) -> interp_full ep e (l, c).
+
+simple induction l; unfold interp_full in |- *; simpl in |- *;
+ [ auto | intros a l1 H1 c H2 H3; apply H1; auto ].
+
+Qed.
+
+(* Push the conclusion in the list of hypothesis using a double negation
+ If the decidability cannot be "proven", then just forget about the
+ conclusion (equivalent of replacing it with false) *)
+
+Definition to_contradict (lc : list proposition * proposition) :=
+ match lc with
+ | (l, c) => if decidability c then Tnot c :: l else l
+ end.
+
+(* The previous operation is valid in the sense that the new list of
+ hypothesis implies the original goal *)
+
+Theorem to_contradict_valid :
+ forall (ep : PropList) (e : list Z) (lc : list proposition * proposition),
+ (fun (envp : PropList) (env : list Z) (l : list proposition) =>
+ interp_goal_concl envp env FalseTerm l) ep e (to_contradict lc) ->
+ interp_full ep e lc.
+
+intros ep e lc; case lc; intros l c; simpl in |- *;
+ pattern (decidability c) in |- *; apply bool_ind2;
+ [ simpl in |- *; intros H H1; apply interp_full_false; intros H2;
+ apply not_not;
+ [ apply decidable_correct; assumption
+ | unfold not at 1 in |- *; intro H3; apply hyps_to_goal with (2 := H2);
+ auto ]
+ | intros H1 H2; apply interp_full_false; intro H3;
+ elim hyps_to_goal with (1 := H2); assumption ].
+Qed.
+
+(* [map_cons x l] adds [x] at the head of each list in [l] (which is a list
+ of lists *)
+
+Fixpoint map_cons (A : Set) (x : A) (l : list (list A)) {struct l} :
+ list (list A) :=
+ match l with
+ | nil => nil
+ | l :: ll => (x :: l) :: map_cons A x ll
+ end.
+
+(* This function breaks up a list of hypothesis in a list of simpler
+ list of hypothesis that together implie the original one. The goal
+ of all this is to transform the goal in a list of solvable problems.
+ Note that :
+ - we need a way to drive the analysis as some hypotheis may not
+ require a split.
+ - this procedure must be perfectly mimicked by the ML part otherwise
+ hypothesis will get desynchronised and this will be a mess.
+ *)
+
+Fixpoint destructure_hyps (nn : nat) (ll : list proposition) {struct nn} :
+ list (list proposition) :=
+ match nn with
+ | O => ll :: nil
+ | S n =>
+ match ll with
+ | nil => nil :: nil
+ | Tor p1 p2 :: l =>
+ destructure_hyps n (p1 :: l) ++ destructure_hyps n (p2 :: l)
+ | Tand p1 p2 :: l => destructure_hyps n (p1 :: p2 :: l)
+ | Timp p1 p2 :: l =>
+ if decidability p1
+ then
+ destructure_hyps n (Tnot p1 :: l) ++ destructure_hyps n (p2 :: l)
+ else map_cons _ (Timp p1 p2) (destructure_hyps n l)
+ | Tnot p :: l =>
+ match p with
+ | Tnot p1 =>
+ if decidability p1
+ then destructure_hyps n (p1 :: l)
+ else map_cons _ (Tnot (Tnot p1)) (destructure_hyps n l)
+ | Tor p1 p2 => destructure_hyps n (Tnot p1 :: Tnot p2 :: l)
+ | Tand p1 p2 =>
+ if decidability p1
+ then
+ destructure_hyps n (Tnot p1 :: l) ++
+ destructure_hyps n (Tnot p2 :: l)
+ else map_cons _ (Tnot p) (destructure_hyps n l)
+ | _ => map_cons _ (Tnot p) (destructure_hyps n l)
+ end
+ | x :: l => map_cons _ x (destructure_hyps n l)
+ end
+ end.
+
+Theorem map_cons_val :
+ forall (ep : PropList) (e : list Z) (p : proposition)
+ (l : list (list proposition)),
+ interp_proposition ep e p ->
+ interp_list_hyps ep e l -> interp_list_hyps ep e (map_cons _ p l).
+
+simple induction l; simpl in |- *; [ auto | intros; elim H1; intro H2; auto ].
+Qed.
+
+Hint Resolve map_cons_val append_valid decidable_correct.
+
+Theorem destructure_hyps_valid :
+ forall n : nat, valid_list_hyps (destructure_hyps n).
+
+simple induction n;
+ [ unfold valid_list_hyps in |- *; simpl in |- *; auto
+ | unfold valid_list_hyps at 2 in |- *; intros n1 H ep e lp; case lp;
+ [ simpl in |- *; auto
+ | intros p l; case p;
+ try
+ (simpl in |- *; intros; apply map_cons_val; simpl in |- *; elim H0;
+ auto);
+ [ intro p'; case p';
+ try
+ (simpl in |- *; intros; apply map_cons_val; simpl in |- *; elim H0;
+ auto);
+ [ simpl in |- *; intros p1 (H1, H2);
+ pattern (decidability p1) in |- *; apply bool_ind2;
+ intro H3;
+ [ apply H; simpl in |- *; split;
+ [ apply not_not; auto | assumption ]
+ | auto ]
+ | simpl in |- *; intros p1 p2 (H1, H2); apply H; simpl in |- *;
+ elim not_or with (1 := H1); auto
+ | simpl in |- *; intros p1 p2 (H1, H2);
+ pattern (decidability p1) in |- *; apply bool_ind2;
+ intro H3;
+ [ apply append_valid; elim not_and with (2 := H1);
+ [ intro; left; apply H; simpl in |- *; auto
+ | intro; right; apply H; simpl in |- *; auto
+ | auto ]
+ | auto ] ]
+ | simpl in |- *; intros p1 p2 (H1, H2); apply append_valid;
+ (elim H1; intro H3; simpl in |- *; [ left | right ]);
+ apply H; simpl in |- *; auto
+ | simpl in |- *; intros; apply H; simpl in |- *; tauto
+ | simpl in |- *; intros p1 p2 (H1, H2);
+ pattern (decidability p1) in |- *; apply bool_ind2;
+ intro H3;
+ [ apply append_valid; elim imp_simp with (2 := H1);
+ [ intro H4; left; simpl in |- *; apply H; simpl in |- *; auto
+ | intro H4; right; simpl in |- *; apply H; simpl in |- *; auto
+ | auto ]
+ | auto ] ] ] ].
+
+Qed.
+
+Definition prop_stable (f : proposition -> proposition) :=
+ forall (ep : PropList) (e : list Z) (p : proposition),
+ interp_proposition ep e p <-> interp_proposition ep e (f p).
+
+Definition p_apply_left (f : proposition -> proposition)
+ (p : proposition) :=
+ match p with
+ | Timp x y => Timp (f x) y
+ | Tor x y => Tor (f x) y
+ | Tand x y => Tand (f x) y
+ | Tnot x => Tnot (f x)
+ | x => x
+ end.
+
+Theorem p_apply_left_stable :
+ forall f : proposition -> proposition,
+ prop_stable f -> prop_stable (p_apply_left f).
+
+unfold prop_stable in |- *; intros f H ep e p; split;
+ (case p; simpl in |- *; auto; intros p1; elim (H ep e p1); tauto).
+Qed.
+
+Definition p_apply_right (f : proposition -> proposition)
+ (p : proposition) :=
+ match p with
+ | Timp x y => Timp x (f y)
+ | Tor x y => Tor x (f y)
+ | Tand x y => Tand x (f y)
+ | Tnot x => Tnot (f x)
+ | x => x
+ end.
+
+Theorem p_apply_right_stable :
+ forall f : proposition -> proposition,
+ prop_stable f -> prop_stable (p_apply_right f).
+
+unfold prop_stable in |- *; intros f H ep e p; split;
+ (case p; simpl in |- *; auto;
+ [ intros p1; elim (H ep e p1); tauto
+ | intros p1 p2; elim (H ep e p2); tauto
+ | intros p1 p2; elim (H ep e p2); tauto
+ | intros p1 p2; elim (H ep e p2); tauto ]).
+Qed.
+
+Definition p_invert (f : proposition -> proposition)
+ (p : proposition) :=
+ match p with
+ | EqTerm x y => Tnot (f (NeqTerm x y))
+ | LeqTerm x y => Tnot (f (GtTerm x y))
+ | GeqTerm x y => Tnot (f (LtTerm x y))
+ | GtTerm x y => Tnot (f (LeqTerm x y))
+ | LtTerm x y => Tnot (f (GeqTerm x y))
+ | NeqTerm x y => Tnot (f (EqTerm x y))
+ | x => x
+ end.
+
+Theorem p_invert_stable :
+ forall f : proposition -> proposition,
+ prop_stable f -> prop_stable (p_invert f).
+
+unfold prop_stable in |- *; intros f H ep e p; split;
+ (case p; simpl in |- *; auto;
+ [ intros t1 t2; elim (H ep e (NeqTerm t1 t2)); simpl in |- *;
+ unfold Zne in |- *;
+ generalize (dec_eq (interp_term e t1) (interp_term e t2));
+ unfold decidable in |- *; tauto
+ | intros t1 t2; elim (H ep e (GtTerm t1 t2)); simpl in |- *;
+ unfold Zgt in |- *;
+ generalize (dec_Zgt (interp_term e t1) (interp_term e t2));
+ unfold decidable, Zgt, Zle in |- *; tauto
+ | intros t1 t2; elim (H ep e (LtTerm t1 t2)); simpl in |- *;
+ unfold Zlt in |- *;
+ generalize (dec_Zlt (interp_term e t1) (interp_term e t2));
+ unfold decidable, Zge in |- *; tauto
+ | intros t1 t2; elim (H ep e (LeqTerm t1 t2)); simpl in |- *;
+ generalize (dec_Zgt (interp_term e t1) (interp_term e t2));
+ unfold Zle, Zgt in |- *; unfold decidable in |- *;
+ tauto
+ | intros t1 t2; elim (H ep e (GeqTerm t1 t2)); simpl in |- *;
+ generalize (dec_Zlt (interp_term e t1) (interp_term e t2));
+ unfold Zge, Zlt in |- *; unfold decidable in |- *;
+ tauto
+ | intros t1 t2; elim (H ep e (EqTerm t1 t2)); simpl in |- *;
+ generalize (dec_eq (interp_term e t1) (interp_term e t2));
+ unfold decidable, Zne in |- *; tauto ]).
+Qed.
+
+Theorem Zlt_left_inv : forall x y : Z, (0 <= y + -1 + - x)%Z -> (x < y)%Z.
+
+intros; apply Zsucc_lt_reg; apply Zle_lt_succ;
+ apply (fun a b : Z => Zplus_le_reg_r a b (-1 + - x));
+ rewrite Zplus_assoc; unfold Zsucc in |- *; rewrite (Zplus_assoc_reverse x);
+ rewrite (Zplus_assoc y); simpl in |- *; rewrite Zplus_0_r;
+ rewrite Zplus_opp_r; assumption.
+Qed.
+
+Theorem move_right_stable : forall s : step, prop_stable (move_right s).
+
+unfold move_right, prop_stable in |- *; intros s ep e p; split;
+ [ Simplify; simpl in |- *; elim (rewrite_stable s e); simpl in |- *;
+ [ symmetry in |- *; apply Zegal_left; assumption
+ | intro; apply Zle_left; assumption
+ | intro; apply Zge_left; assumption
+ | intro; apply Zgt_left; assumption
+ | intro; apply Zlt_left; assumption
+ | intro; apply Zne_left_2; assumption ]
+ | case p; simpl in |- *; intros; auto; generalize H; elim (rewrite_stable s);
+ simpl in |- *; intro H1;
+ [ rewrite (Zplus_0_r_reverse (interp_term e t0)); rewrite H1;
+ rewrite Zplus_permute; rewrite Zplus_opp_r;
+ rewrite Zplus_0_r; trivial
+ | apply (fun a b : Z => Zplus_le_reg_r a b (- interp_term e t));
+ rewrite Zplus_opp_r; assumption
+ | apply Zle_ge;
+ apply (fun a b : Z => Zplus_le_reg_r a b (- interp_term e t0));
+ rewrite Zplus_opp_r; assumption
+ | apply Zlt_gt; apply Zlt_left_inv; assumption
+ | apply Zlt_left_inv; assumption
+ | unfold Zne, not in |- *; unfold Zne in H1; intro H2; apply H1;
+ rewrite H2; rewrite Zplus_opp_r; trivial ] ].
+Qed.
+
+
+Fixpoint p_rewrite (s : p_step) : proposition -> proposition :=
+ match s with
+ | P_LEFT s => p_apply_left (p_rewrite s)
+ | P_RIGHT s => p_apply_right (p_rewrite s)
+ | P_STEP s => move_right s
+ | P_INVERT s => p_invert (move_right s)
+ | P_NOP => fun p : proposition => p
+ end.
+
+Theorem p_rewrite_stable : forall s : p_step, prop_stable (p_rewrite s).
+
+
+simple induction s; simpl in |- *;
+ [ intros; apply p_apply_left_stable; trivial
+ | intros; apply p_apply_right_stable; trivial
+ | intros; apply p_invert_stable; apply move_right_stable
+ | apply move_right_stable
+ | unfold prop_stable in |- *; simpl in |- *; intros; split; auto ].
+Qed.
+
+Fixpoint normalize_hyps (l : list h_step) (lh : list proposition) {struct l}
+ : list proposition :=
+ match l with
+ | nil => lh
+ | pair_step i s :: r => normalize_hyps r (apply_oper_1 i (p_rewrite s) lh)
+ end.
+
+Theorem normalize_hyps_valid :
+ forall l : list h_step, valid_hyps (normalize_hyps l).
+
+simple induction l; unfold valid_hyps in |- *; simpl in |- *;
+ [ auto
+ | intros n_s r; case n_s; intros n s H ep e lp H1; apply H;
+ apply apply_oper_1_valid;
+ [ unfold valid1 in |- *; intros ep1 e1 p1 H2;
+ elim (p_rewrite_stable s ep1 e1 p1); auto
+ | assumption ] ].
+Qed.
+
+Theorem normalize_hyps_goal :
+ forall (s : list h_step) (ep : PropList) (env : list Z)
+ (l : list proposition),
+ (fun (envp : PropList) (env : list Z) (l : list proposition) =>
+ interp_goal_concl envp env FalseTerm l) ep env (normalize_hyps s l) ->
+ (fun (envp : PropList) (env : list Z) (l : list proposition) =>
+ interp_goal_concl envp env FalseTerm l) ep env l.
+
+intros; apply valid_goal with (2 := H); apply normalize_hyps_valid.
+Qed.
+
+Fixpoint extract_hyp_pos (s : list direction) (p : proposition) {struct s} :
+ proposition :=
+ match s with
+ | D_left :: l =>
+ match p with
+ | Tand x y => extract_hyp_pos l x
+ | _ => p
+ end
+ | D_right :: l =>
+ match p with
+ | Tand x y => extract_hyp_pos l y
+ | _ => p
+ end
+ | D_mono :: l => match p with
+ | Tnot x => extract_hyp_neg l x
+ | _ => p
+ end
+ | _ => p
+ end
+
+ with extract_hyp_neg (s : list direction) (p : proposition) {struct s} :
+ proposition :=
+ match s with
+ | D_left :: l =>
+ match p with
+ | Tor x y => extract_hyp_neg l x
+ | Timp x y => if decidability x then extract_hyp_pos l x else Tnot p
+ | _ => Tnot p
+ end
+ | D_right :: l =>
+ match p with
+ | Tor x y => extract_hyp_neg l y
+ | Timp x y => extract_hyp_neg l y
+ | _ => Tnot p
+ end
+ | D_mono :: l =>
+ match p with
+ | Tnot x => if decidability x then extract_hyp_pos l x else Tnot p
+ | _ => Tnot p
+ end
+ | _ =>
+ match p with
+ | Tnot x => if decidability x then x else Tnot p
+ | _ => Tnot p
+ end
+ end.
+
+Definition co_valid1 (f : proposition -> proposition) :=
+ forall (ep : PropList) (e : list Z) (p1 : proposition),
+ interp_proposition ep e (Tnot p1) -> interp_proposition ep e (f p1).
+
+Theorem extract_valid :
+ forall s : list direction,
+ valid1 (extract_hyp_pos s) /\ co_valid1 (extract_hyp_neg s).
+
+unfold valid1, co_valid1 in |- *; simple induction s;
+ [ split;
+ [ simpl in |- *; auto
+ | intros ep e p1; case p1; simpl in |- *; auto; intro p;
+ pattern (decidability p) in |- *; apply bool_ind2;
+ [ intro H; generalize (decidable_correct ep e p H);
+ unfold decidable in |- *; tauto
+ | simpl in |- *; auto ] ]
+ | intros a s' (H1, H2); simpl in H2; split; intros ep e p; case a; auto;
+ case p; auto; simpl in |- *; intros;
+ (apply H1; tauto) ||
+ (apply H2; tauto) ||
+ (pattern (decidability p0) in |- *; apply bool_ind2;
+ [ intro H3; generalize (decidable_correct ep e p0 H3);
+ unfold decidable in |- *; intro H4; apply H1;
+ tauto
+ | intro; tauto ]) ].
+
+Qed.
+
+Fixpoint decompose_solve (s : e_step) (h : list proposition) {struct s} :
+ list (list proposition) :=
+ match s with
+ | E_SPLIT i dl s1 s2 =>
+ match extract_hyp_pos dl (nth_hyps i h) with
+ | Tor x y => decompose_solve s1 (x :: h) ++ decompose_solve s2 (y :: h)
+ | Tnot (Tand x y) =>
+ if decidability x
+ then
+ decompose_solve s1 (Tnot x :: h) ++
+ decompose_solve s2 (Tnot y :: h)
+ else h :: nil
+ | _ => h :: nil
+ end
+ | E_EXTRACT i dl s1 =>
+ decompose_solve s1 (extract_hyp_pos dl (nth_hyps i h) :: h)
+ | E_SOLVE t => execute_omega t h
+ end.
+
+Theorem decompose_solve_valid :
+ forall s : e_step, valid_list_goal (decompose_solve s).
+
+intro s; apply goal_valid; unfold valid_list_hyps in |- *; elim s;
+ simpl in |- *; intros;
+ [ cut (interp_proposition ep e1 (extract_hyp_pos l (nth_hyps n lp)));
+ [ case (extract_hyp_pos l (nth_hyps n lp)); simpl in |- *; auto;
+ [ intro p; case p; simpl in |- *; auto; intros p1 p2 H2;
+ pattern (decidability p1) in |- *; apply bool_ind2;
+ [ intro H3; generalize (decidable_correct ep e1 p1 H3); intro H4;
+ apply append_valid; elim H4; intro H5;
+ [ right; apply H0; simpl in |- *; tauto
+ | left; apply H; simpl in |- *; tauto ]
+ | simpl in |- *; auto ]
+ | intros p1 p2 H2; apply append_valid; simpl in |- *; elim H2;
+ [ intros H3; left; apply H; simpl in |- *; auto
+ | intros H3; right; apply H0; simpl in |- *; auto ] ]
+ | elim (extract_valid l); intros H2 H3; apply H2; apply nth_valid; auto ]
+ | intros; apply H; simpl in |- *; split;
+ [ elim (extract_valid l); intros H2 H3; apply H2; apply nth_valid; auto
+ | auto ]
+ | apply omega_valid with (1 := H) ].
+
+Qed.
+
+(* \subsection{La dernière étape qui élimine tous les séquents inutiles} *)
+
+Definition valid_lhyps
+ (f : list (list proposition) -> list (list proposition)) :=
+ forall (ep : PropList) (e : list Z) (lp : list (list proposition)),
+ interp_list_hyps ep e lp -> interp_list_hyps ep e (f lp).
+
+Fixpoint reduce_lhyps (lp : list (list proposition)) :
+ list (list proposition) :=
+ match lp with
+ | (FalseTerm :: nil) :: lp' => reduce_lhyps lp'
+ | x :: lp' => x :: reduce_lhyps lp'
+ | nil => nil (A:=list proposition)
+ end.
+
+Theorem reduce_lhyps_valid : valid_lhyps reduce_lhyps.
+
+unfold valid_lhyps in |- *; intros ep e lp; elim lp;
+ [ simpl in |- *; auto
+ | intros a l HR; elim a;
+ [ simpl in |- *; tauto
+ | intros a1 l1; case l1; case a1; simpl in |- *; try tauto ] ].
+Qed.
+
+Theorem do_reduce_lhyps :
+ forall (envp : PropList) (env : list Z) (l : list (list proposition)),
+ interp_list_goal envp env (reduce_lhyps l) -> interp_list_goal envp env l.
+
+intros envp env l H; apply list_goal_to_hyps; intro H1;
+ apply list_hyps_to_goal with (1 := H); apply reduce_lhyps_valid;
+ assumption.
+Qed.
+
+Definition concl_to_hyp (p : proposition) :=
+ if decidability p then Tnot p else TrueTerm.
+
+Definition do_concl_to_hyp :
+ forall (envp : PropList) (env : list Z) (c : proposition)
+ (l : list proposition),
+ (fun (envp : PropList) (env : list Z) (l : list proposition) =>
+ interp_goal_concl envp env FalseTerm l) envp env (
+ concl_to_hyp c :: l) -> interp_goal_concl envp env c l.
+
+simpl in |- *; intros envp env c l; induction l as [| a l Hrecl];
+ [ simpl in |- *; unfold concl_to_hyp in |- *;
+ pattern (decidability c) in |- *; apply bool_ind2;
+ [ intro H; generalize (decidable_correct envp env c H);
+ unfold decidable in |- *; simpl in |- *; tauto
+ | simpl in |- *; intros H1 H2; elim H2; trivial ]
+ | simpl in |- *; tauto ].
+Qed.
+
+Definition omega_tactic (t1 : e_step) (t2 : list h_step)
+ (c : proposition) (l : list proposition) :=
+ reduce_lhyps (decompose_solve t1 (normalize_hyps t2 (concl_to_hyp c :: l))).
+
+Theorem do_omega :
+ forall (t1 : e_step) (t2 : list h_step) (envp : PropList)
+ (env : list Z) (c : proposition) (l : list proposition),
+ interp_list_goal envp env (omega_tactic t1 t2 c l) ->
+ interp_goal_concl envp env c l.
+
+unfold omega_tactic in |- *; intros; apply do_concl_to_hyp;
+ apply (normalize_hyps_goal t2); apply (decompose_solve_valid t1);
+ apply do_reduce_lhyps; assumption.
+Qed. \ No newline at end of file
diff --git a/contrib/romega/const_omega.ml b/contrib/romega/const_omega.ml
new file mode 100644
index 00000000..3b2a7d31
--- /dev/null
+++ b/contrib/romega/const_omega.ml
@@ -0,0 +1,488 @@
+(*************************************************************************
+
+ PROJET RNRT Calife - 2001
+ Author: Pierre Crégut - France Télécom R&D
+ Licence : LGPL version 2.1
+
+ *************************************************************************)
+
+let module_refl_name = "ReflOmegaCore"
+let module_refl_path = ["Coq"; "romega"; module_refl_name]
+
+type result =
+ Kvar of string
+ | Kapp of string * Term.constr list
+ | Kimp of Term.constr * Term.constr
+ | Kufo;;
+
+let destructurate t =
+ let c, args = Term.decompose_app t in
+ let env = Global.env() in
+ match Term.kind_of_term c, args with
+ | Term.Const sp, args ->
+ Kapp (Names.string_of_id
+ (Nametab.id_of_global (Libnames.ConstRef sp)),
+ args)
+ | Term.Construct csp , args ->
+ Kapp (Names.string_of_id
+ (Nametab.id_of_global (Libnames.ConstructRef csp)),
+ args)
+ | Term.Ind isp, args ->
+ Kapp (Names.string_of_id
+ (Nametab.id_of_global (Libnames.IndRef isp)),
+ args)
+ | Term.Var id,[] -> Kvar(Names.string_of_id id)
+ | Term.Prod (Names.Anonymous,typ,body), [] -> Kimp(typ,body)
+ | Term.Prod (Names.Name _,_,_),[] ->
+ Util.error "Omega: Not a quantifier-free goal"
+ | _ -> Kufo
+
+exception Destruct
+
+let dest_const_apply t =
+ let f,args = Term.decompose_app t in
+ let ref =
+ match Term.kind_of_term f with
+ | Term.Const sp -> Libnames.ConstRef sp
+ | Term.Construct csp -> Libnames.ConstructRef csp
+ | Term.Ind isp -> Libnames.IndRef isp
+ | _ -> raise Destruct
+ in Nametab.id_of_global ref, args
+
+let recognize_number t =
+ let rec loop t =
+ let f,l = dest_const_apply t in
+ match Names.string_of_id f,l with
+ "xI",[t] -> 1 + 2 * loop t
+ | "xO",[t] -> 2 * loop t
+ | "xH",[] -> 1
+ | _ -> failwith "not a number" in
+ let f,l = dest_const_apply t in
+ match Names.string_of_id f,l with
+ "Zpos",[t] -> loop t | "Zneg",[t] -> - (loop t) | "Z0",[] -> 0
+ | _ -> failwith "not a number";;
+
+
+let logic_dir = ["Coq";"Logic";"Decidable"]
+
+let coq_modules =
+ Coqlib.init_modules @ [logic_dir] @ Coqlib.arith_modules @ Coqlib.zarith_base_modules
+ @ [["Coq"; "omega"; "OmegaLemmas"]]
+ @ [["Coq"; "Lists"; (if !Options.v7 then "PolyList" else "List")]]
+ @ [module_refl_path]
+
+
+let constant = Coqlib.gen_constant_in_modules "Omega" coq_modules
+
+let coq_xH = lazy (constant "xH")
+let coq_xO = lazy (constant "xO")
+let coq_xI = lazy (constant "xI")
+let coq_ZERO = lazy (constant "Z0")
+let coq_POS = lazy (constant "Zpos")
+let coq_NEG = lazy (constant "Zneg")
+let coq_Z = lazy (constant "Z")
+let coq_relation = lazy (constant "comparison")
+let coq_SUPERIEUR = lazy (constant "SUPERIEUR")
+let coq_INFEEIEUR = lazy (constant "INFERIEUR")
+let coq_EGAL = lazy (constant "EGAL")
+let coq_Zplus = lazy (constant "Zplus")
+let coq_Zmult = lazy (constant "Zmult")
+let coq_Zopp = lazy (constant "Zopp")
+
+let coq_Zminus = lazy (constant "Zminus")
+let coq_Zs = lazy (constant "Zs")
+let coq_Zgt = lazy (constant "Zgt")
+let coq_Zle = lazy (constant "Zle")
+let coq_inject_nat = lazy (constant "inject_nat")
+
+(* Peano *)
+let coq_le = lazy(constant "le")
+let coq_gt = lazy(constant "gt")
+
+(* Integers *)
+let coq_nat = lazy(constant "nat")
+let coq_S = lazy(constant "S")
+let coq_O = lazy(constant "O")
+let coq_minus = lazy(constant "minus")
+
+(* Logic *)
+let coq_eq = lazy(constant "eq")
+let coq_refl_equal = lazy(constant "refl_equal")
+let coq_and = lazy(constant "and")
+let coq_not = lazy(constant "not")
+let coq_or = lazy(constant "or")
+let coq_true = lazy(constant "true")
+let coq_false = lazy(constant "false")
+let coq_ex = lazy(constant "ex")
+let coq_I = lazy(constant "I")
+
+(* Lists *)
+let coq_cons = lazy (constant "cons")
+let coq_nil = lazy (constant "nil")
+
+let coq_pcons = lazy (constant "Pcons")
+let coq_pnil = lazy (constant "Pnil")
+
+let coq_h_step = lazy (constant "h_step")
+let coq_pair_step = lazy (constant "pair_step")
+let coq_p_left = lazy (constant "P_LEFT")
+let coq_p_right = lazy (constant "P_RIGHT")
+let coq_p_invert = lazy (constant "P_INVERT")
+let coq_p_step = lazy (constant "P_STEP")
+let coq_p_nop = lazy (constant "P_NOP")
+
+
+let coq_t_int = lazy (constant "Tint")
+let coq_t_plus = lazy (constant "Tplus")
+let coq_t_mult = lazy (constant "Tmult")
+let coq_t_opp = lazy (constant "Topp")
+let coq_t_minus = lazy (constant "Tminus")
+let coq_t_var = lazy (constant "Tvar")
+
+let coq_p_eq = lazy (constant "EqTerm")
+let coq_p_leq = lazy (constant "LeqTerm")
+let coq_p_geq = lazy (constant "GeqTerm")
+let coq_p_lt = lazy (constant "LtTerm")
+let coq_p_gt = lazy (constant "GtTerm")
+let coq_p_neq = lazy (constant "NeqTerm")
+let coq_p_true = lazy (constant "TrueTerm")
+let coq_p_false = lazy (constant "FalseTerm")
+let coq_p_not = lazy (constant "Tnot")
+let coq_p_or = lazy (constant "Tor")
+let coq_p_and = lazy (constant "Tand")
+let coq_p_imp = lazy (constant "Timp")
+let coq_p_prop = lazy (constant "Tprop")
+
+let coq_proposition = lazy (constant "proposition")
+let coq_interp_sequent = lazy (constant "interp_goal_concl")
+let coq_normalize_sequent = lazy (constant "normalize_goal")
+let coq_execute_sequent = lazy (constant "execute_goal")
+let coq_do_concl_to_hyp = lazy (constant "do_concl_to_hyp")
+let coq_sequent_to_hyps = lazy (constant "goal_to_hyps")
+let coq_normalize_hyps_goal =
+ lazy (constant "normalize_hyps_goal")
+
+(* Constructors for shuffle tactic *)
+let coq_t_fusion = lazy (constant "t_fusion")
+let coq_f_equal = lazy (constant "F_equal")
+let coq_f_cancel = lazy (constant "F_cancel")
+let coq_f_left = lazy (constant "F_left")
+let coq_f_right = lazy (constant "F_right")
+
+(* Constructors for reordering tactics *)
+let coq_step = lazy (constant "step")
+let coq_c_do_both = lazy (constant "C_DO_BOTH")
+let coq_c_do_left = lazy (constant "C_LEFT")
+let coq_c_do_right = lazy (constant "C_RIGHT")
+let coq_c_do_seq = lazy (constant "C_SEQ")
+let coq_c_nop = lazy (constant "C_NOP")
+let coq_c_opp_plus = lazy (constant "C_OPP_PLUS")
+let coq_c_opp_opp = lazy (constant "C_OPP_OPP")
+let coq_c_opp_mult_r = lazy (constant "C_OPP_MULT_R")
+let coq_c_opp_one = lazy (constant "C_OPP_ONE")
+let coq_c_reduce = lazy (constant "C_REDUCE")
+let coq_c_mult_plus_distr = lazy (constant "C_MULT_PLUS_DISTR")
+let coq_c_opp_left = lazy (constant "C_MULT_OPP_LEFT")
+let coq_c_mult_assoc_r = lazy (constant "C_MULT_ASSOC_R")
+let coq_c_plus_assoc_r = lazy (constant "C_PLUS_ASSOC_R")
+let coq_c_plus_assoc_l = lazy (constant "C_PLUS_ASSOC_L")
+let coq_c_plus_permute = lazy (constant "C_PLUS_PERMUTE")
+let coq_c_plus_sym = lazy (constant "C_PLUS_SYM")
+let coq_c_red0 = lazy (constant "C_RED0")
+let coq_c_red1 = lazy (constant "C_RED1")
+let coq_c_red2 = lazy (constant "C_RED2")
+let coq_c_red3 = lazy (constant "C_RED3")
+let coq_c_red4 = lazy (constant "C_RED4")
+let coq_c_red5 = lazy (constant "C_RED5")
+let coq_c_red6 = lazy (constant "C_RED6")
+let coq_c_mult_opp_left = lazy (constant "C_MULT_OPP_LEFT")
+let coq_c_mult_assoc_reduced =
+ lazy (constant "C_MULT_ASSOC_REDUCED")
+let coq_c_minus = lazy (constant "C_MINUS")
+let coq_c_mult_sym = lazy (constant "C_MULT_SYM")
+
+let coq_s_constant_not_nul = lazy (constant "O_CONSTANT_NOT_NUL")
+let coq_s_constant_neg = lazy (constant "O_CONSTANT_NEG")
+let coq_s_div_approx = lazy (constant "O_DIV_APPROX")
+let coq_s_not_exact_divide = lazy (constant "O_NOT_EXACT_DIVIDE")
+let coq_s_exact_divide = lazy (constant "O_EXACT_DIVIDE")
+let coq_s_sum = lazy (constant "O_SUM")
+let coq_s_state = lazy (constant "O_STATE")
+let coq_s_contradiction = lazy (constant "O_CONTRADICTION")
+let coq_s_merge_eq = lazy (constant "O_MERGE_EQ")
+let coq_s_split_ineq =lazy (constant "O_SPLIT_INEQ")
+let coq_s_constant_nul =lazy (constant "O_CONSTANT_NUL")
+let coq_s_negate_contradict =lazy (constant "O_NEGATE_CONTRADICT")
+let coq_s_negate_contradict_inv =lazy (constant "O_NEGATE_CONTRADICT_INV")
+
+(* construction for the [extract_hyp] tactic *)
+let coq_direction = lazy (constant "direction")
+let coq_d_left = lazy (constant "D_left")
+let coq_d_right = lazy (constant "D_right")
+let coq_d_mono = lazy (constant "D_mono")
+
+let coq_e_split = lazy (constant "E_SPLIT")
+let coq_e_extract = lazy (constant "E_EXTRACT")
+let coq_e_solve = lazy (constant "E_SOLVE")
+
+let coq_decompose_solve_valid =
+ lazy (constant "decompose_solve_valid")
+let coq_do_reduce_lhyps = lazy (constant "do_reduce_lhyps")
+let coq_do_omega = lazy (constant "do_omega")
+
+(**
+let constant dir s =
+ try
+ Libnames.constr_of_reference
+ (Nametab.absolute_reference
+ (Libnames.make_path
+ (Names.make_dirpath (List.map Names.id_of_string (List.rev dir)))
+ (Names.id_of_string s)))
+ with e -> print_endline (String.concat "." dir); print_endline s;
+ raise e
+
+let path_fast_integer = ["Coq"; "ZArith"; "fast_integer"]
+let path_zarith_aux = ["Coq"; "ZArith"; "zarith_aux"]
+let path_logic = ["Coq"; "Init";"Logic"]
+let path_datatypes = ["Coq"; "Init";"Datatypes"]
+let path_peano = ["Coq"; "Init"; "Peano"]
+let path_list = ["Coq"; "Lists"; "PolyList"]
+
+let coq_xH = lazy (constant path_fast_integer "xH")
+let coq_xO = lazy (constant path_fast_integer "xO")
+let coq_xI = lazy (constant path_fast_integer "xI")
+let coq_ZERO = lazy (constant path_fast_integer "ZERO")
+let coq_POS = lazy (constant path_fast_integer "POS")
+let coq_NEG = lazy (constant path_fast_integer "NEG")
+let coq_Z = lazy (constant path_fast_integer "Z")
+let coq_relation = lazy (constant path_fast_integer "relation")
+let coq_SUPERIEUR = lazy (constant path_fast_integer "SUPERIEUR")
+let coq_INFEEIEUR = lazy (constant path_fast_integer "INFERIEUR")
+let coq_EGAL = lazy (constant path_fast_integer "EGAL")
+let coq_Zplus = lazy (constant path_fast_integer "Zplus")
+let coq_Zmult = lazy (constant path_fast_integer "Zmult")
+let coq_Zopp = lazy (constant path_fast_integer "Zopp")
+
+(* auxiliaires zarith *)
+let coq_Zminus = lazy (constant path_zarith_aux "Zminus")
+let coq_Zs = lazy (constant path_zarith_aux "Zs")
+let coq_Zgt = lazy (constant path_zarith_aux "Zgt")
+let coq_Zle = lazy (constant path_zarith_aux "Zle")
+let coq_inject_nat = lazy (constant path_zarith_aux "inject_nat")
+
+(* Peano *)
+let coq_le = lazy(constant path_peano "le")
+let coq_gt = lazy(constant path_peano "gt")
+
+(* Integers *)
+let coq_nat = lazy(constant path_datatypes "nat")
+let coq_S = lazy(constant path_datatypes "S")
+let coq_O = lazy(constant path_datatypes "O")
+
+(* Minus *)
+let coq_minus = lazy(constant ["Arith"; "Minus"] "minus")
+
+(* Logic *)
+let coq_eq = lazy(constant path_logic "eq")
+let coq_refl_equal = lazy(constant path_logic "refl_equal")
+let coq_and = lazy(constant path_logic "and")
+let coq_not = lazy(constant path_logic "not")
+let coq_or = lazy(constant path_logic "or")
+let coq_true = lazy(constant path_logic "true")
+let coq_false = lazy(constant path_logic "false")
+let coq_ex = lazy(constant path_logic "ex")
+let coq_I = lazy(constant path_logic "I")
+
+(* Lists *)
+let coq_cons = lazy (constant path_list "cons")
+let coq_nil = lazy (constant path_list "nil")
+
+let coq_pcons = lazy (constant module_refl_path "Pcons")
+let coq_pnil = lazy (constant module_refl_path "Pnil")
+
+let coq_h_step = lazy (constant module_refl_path "h_step")
+let coq_pair_step = lazy (constant module_refl_path "pair_step")
+let coq_p_left = lazy (constant module_refl_path "P_LEFT")
+let coq_p_right = lazy (constant module_refl_path "P_RIGHT")
+let coq_p_invert = lazy (constant module_refl_path "P_INVERT")
+let coq_p_step = lazy (constant module_refl_path "P_STEP")
+let coq_p_nop = lazy (constant module_refl_path "P_NOP")
+
+
+let coq_t_int = lazy (constant module_refl_path "Tint")
+let coq_t_plus = lazy (constant module_refl_path "Tplus")
+let coq_t_mult = lazy (constant module_refl_path "Tmult")
+let coq_t_opp = lazy (constant module_refl_path "Topp")
+let coq_t_minus = lazy (constant module_refl_path "Tminus")
+let coq_t_var = lazy (constant module_refl_path "Tvar")
+
+let coq_p_eq = lazy (constant module_refl_path "EqTerm")
+let coq_p_leq = lazy (constant module_refl_path "LeqTerm")
+let coq_p_geq = lazy (constant module_refl_path "GeqTerm")
+let coq_p_lt = lazy (constant module_refl_path "LtTerm")
+let coq_p_gt = lazy (constant module_refl_path "GtTerm")
+let coq_p_neq = lazy (constant module_refl_path "NeqTerm")
+let coq_p_true = lazy (constant module_refl_path "TrueTerm")
+let coq_p_false = lazy (constant module_refl_path "FalseTerm")
+let coq_p_not = lazy (constant module_refl_path "Tnot")
+let coq_p_or = lazy (constant module_refl_path "Tor")
+let coq_p_and = lazy (constant module_refl_path "Tand")
+let coq_p_imp = lazy (constant module_refl_path "Timp")
+let coq_p_prop = lazy (constant module_refl_path "Tprop")
+
+let coq_proposition = lazy (constant module_refl_path "proposition")
+let coq_interp_sequent = lazy (constant module_refl_path "interp_goal_concl")
+let coq_normalize_sequent = lazy (constant module_refl_path "normalize_goal")
+let coq_execute_sequent = lazy (constant module_refl_path "execute_goal")
+let coq_do_concl_to_hyp = lazy (constant module_refl_path "do_concl_to_hyp")
+let coq_sequent_to_hyps = lazy (constant module_refl_path "goal_to_hyps")
+let coq_normalize_hyps_goal =
+ lazy (constant module_refl_path "normalize_hyps_goal")
+
+(* Constructors for shuffle tactic *)
+let coq_t_fusion = lazy (constant module_refl_path "t_fusion")
+let coq_f_equal = lazy (constant module_refl_path "F_equal")
+let coq_f_cancel = lazy (constant module_refl_path "F_cancel")
+let coq_f_left = lazy (constant module_refl_path "F_left")
+let coq_f_right = lazy (constant module_refl_path "F_right")
+
+(* Constructors for reordering tactics *)
+let coq_step = lazy (constant module_refl_path "step")
+let coq_c_do_both = lazy (constant module_refl_path "C_DO_BOTH")
+let coq_c_do_left = lazy (constant module_refl_path "C_LEFT")
+let coq_c_do_right = lazy (constant module_refl_path "C_RIGHT")
+let coq_c_do_seq = lazy (constant module_refl_path "C_SEQ")
+let coq_c_nop = lazy (constant module_refl_path "C_NOP")
+let coq_c_opp_plus = lazy (constant module_refl_path "C_OPP_PLUS")
+let coq_c_opp_opp = lazy (constant module_refl_path "C_OPP_OPP")
+let coq_c_opp_mult_r = lazy (constant module_refl_path "C_OPP_MULT_R")
+let coq_c_opp_one = lazy (constant module_refl_path "C_OPP_ONE")
+let coq_c_reduce = lazy (constant module_refl_path "C_REDUCE")
+let coq_c_mult_plus_distr = lazy (constant module_refl_path "C_MULT_PLUS_DISTR")
+let coq_c_opp_left = lazy (constant module_refl_path "C_MULT_OPP_LEFT")
+let coq_c_mult_assoc_r = lazy (constant module_refl_path "C_MULT_ASSOC_R")
+let coq_c_plus_assoc_r = lazy (constant module_refl_path "C_PLUS_ASSOC_R")
+let coq_c_plus_assoc_l = lazy (constant module_refl_path "C_PLUS_ASSOC_L")
+let coq_c_plus_permute = lazy (constant module_refl_path "C_PLUS_PERMUTE")
+let coq_c_plus_sym = lazy (constant module_refl_path "C_PLUS_SYM")
+let coq_c_red0 = lazy (constant module_refl_path "C_RED0")
+let coq_c_red1 = lazy (constant module_refl_path "C_RED1")
+let coq_c_red2 = lazy (constant module_refl_path "C_RED2")
+let coq_c_red3 = lazy (constant module_refl_path "C_RED3")
+let coq_c_red4 = lazy (constant module_refl_path "C_RED4")
+let coq_c_red5 = lazy (constant module_refl_path "C_RED5")
+let coq_c_red6 = lazy (constant module_refl_path "C_RED6")
+let coq_c_mult_opp_left = lazy (constant module_refl_path "C_MULT_OPP_LEFT")
+let coq_c_mult_assoc_reduced =
+ lazy (constant module_refl_path "C_MULT_ASSOC_REDUCED")
+let coq_c_minus = lazy (constant module_refl_path "C_MINUS")
+let coq_c_mult_sym = lazy (constant module_refl_path "C_MULT_SYM")
+
+let coq_s_constant_not_nul = lazy (constant module_refl_path "O_CONSTANT_NOT_NUL")
+let coq_s_constant_neg = lazy (constant module_refl_path "O_CONSTANT_NEG")
+let coq_s_div_approx = lazy (constant module_refl_path "O_DIV_APPROX")
+let coq_s_not_exact_divide = lazy (constant module_refl_path "O_NOT_EXACT_DIVIDE")
+let coq_s_exact_divide = lazy (constant module_refl_path "O_EXACT_DIVIDE")
+let coq_s_sum = lazy (constant module_refl_path "O_SUM")
+let coq_s_state = lazy (constant module_refl_path "O_STATE")
+let coq_s_contradiction = lazy (constant module_refl_path "O_CONTRADICTION")
+let coq_s_merge_eq = lazy (constant module_refl_path "O_MERGE_EQ")
+let coq_s_split_ineq =lazy (constant module_refl_path "O_SPLIT_INEQ")
+let coq_s_constant_nul =lazy (constant module_refl_path "O_CONSTANT_NUL")
+let coq_s_negate_contradict =lazy (constant module_refl_path "O_NEGATE_CONTRADICT")
+let coq_s_negate_contradict_inv =lazy (constant module_refl_path "O_NEGATE_CONTRADICT_INV")
+
+(* construction for the [extract_hyp] tactic *)
+let coq_direction = lazy (constant module_refl_path "direction")
+let coq_d_left = lazy (constant module_refl_path "D_left")
+let coq_d_right = lazy (constant module_refl_path "D_right")
+let coq_d_mono = lazy (constant module_refl_path "D_mono")
+
+let coq_e_split = lazy (constant module_refl_path "E_SPLIT")
+let coq_e_extract = lazy (constant module_refl_path "E_EXTRACT")
+let coq_e_solve = lazy (constant module_refl_path "E_SOLVE")
+
+let coq_decompose_solve_valid =
+ lazy (constant module_refl_path "decompose_solve_valid")
+let coq_do_reduce_lhyps = lazy (constant module_refl_path "do_reduce_lhyps")
+let coq_do_omega = lazy (constant module_refl_path "do_omega")
+
+*)
+(* \subsection{Construction d'expressions} *)
+
+
+let mk_var v = Term.mkVar (Names.id_of_string v)
+let mk_plus t1 t2 = Term.mkApp (Lazy.force coq_Zplus,[| t1; t2 |])
+let mk_times t1 t2 = Term.mkApp (Lazy.force coq_Zmult, [| t1; t2 |])
+let mk_minus t1 t2 = Term.mkApp (Lazy.force coq_Zminus, [| t1;t2 |])
+let mk_eq t1 t2 = Term.mkApp (Lazy.force coq_eq, [| Lazy.force coq_Z; t1; t2 |])
+let mk_le t1 t2 = Term.mkApp (Lazy.force coq_Zle, [|t1; t2 |])
+let mk_gt t1 t2 = Term.mkApp (Lazy.force coq_Zgt, [|t1; t2 |])
+let mk_inv t = Term.mkApp (Lazy.force coq_Zopp, [|t |])
+let mk_and t1 t2 = Term.mkApp (Lazy.force coq_and, [|t1; t2 |])
+let mk_or t1 t2 = Term.mkApp (Lazy.force coq_or, [|t1; t2 |])
+let mk_not t = Term.mkApp (Lazy.force coq_not, [|t |])
+let mk_eq_rel t1 t2 = Term.mkApp (Lazy.force coq_eq, [|
+ Lazy.force coq_relation; t1; t2 |])
+let mk_inj t = Term.mkApp (Lazy.force coq_inject_nat, [|t |])
+
+
+let do_left t =
+ if t = Lazy.force coq_c_nop then Lazy.force coq_c_nop
+ else Term.mkApp (Lazy.force coq_c_do_left, [|t |] )
+
+let do_right t =
+ if t = Lazy.force coq_c_nop then Lazy.force coq_c_nop
+ else Term.mkApp (Lazy.force coq_c_do_right, [|t |])
+
+let do_both t1 t2 =
+ if t1 = Lazy.force coq_c_nop then do_right t2
+ else if t2 = Lazy.force coq_c_nop then do_left t1
+ else Term.mkApp (Lazy.force coq_c_do_both , [|t1; t2 |])
+
+let do_seq t1 t2 =
+ if t1 = Lazy.force coq_c_nop then t2
+ else if t2 = Lazy.force coq_c_nop then t1
+ else Term.mkApp (Lazy.force coq_c_do_seq, [|t1; t2 |])
+
+let rec do_list = function
+ | [] -> Lazy.force coq_c_nop
+ | [x] -> x
+ | (x::l) -> do_seq x (do_list l)
+
+
+let mk_integer n =
+ let rec loop n =
+ if n=1 then Lazy.force coq_xH else
+ Term.mkApp ((if n mod 2 = 0 then Lazy.force coq_xO else Lazy.force coq_xI),
+ [| loop (n/2) |]) in
+
+ if n = 0 then Lazy.force coq_ZERO
+ else Term.mkApp ((if n > 0 then Lazy.force coq_POS else Lazy.force coq_NEG),
+ [| loop (abs n) |])
+
+let mk_Z = mk_integer
+
+let rec mk_nat = function
+ | 0 -> Lazy.force coq_O
+ | n -> Term.mkApp (Lazy.force coq_S, [| mk_nat (n-1) |])
+
+let mk_list typ l =
+ let rec loop = function
+ | [] ->
+ Term.mkApp (Lazy.force coq_nil, [|typ|])
+ | (step :: l) ->
+ Term.mkApp (Lazy.force coq_cons, [|typ; step; loop l |]) in
+ loop l
+
+let mk_plist l =
+ let rec loop = function
+ | [] ->
+ (Lazy.force coq_pnil)
+ | (step :: l) ->
+ Term.mkApp (Lazy.force coq_pcons, [| step; loop l |]) in
+ loop l
+
+
+let mk_shuffle_list l = mk_list (Lazy.force coq_t_fusion) l
+
diff --git a/contrib/romega/g_romega.ml4 b/contrib/romega/g_romega.ml4
new file mode 100644
index 00000000..386f7f28
--- /dev/null
+++ b/contrib/romega/g_romega.ml4
@@ -0,0 +1,15 @@
+(*************************************************************************
+
+ PROJET RNRT Calife - 2001
+ Author: Pierre Crégut - France Télécom R&D
+ Licence : LGPL version 2.1
+
+ *************************************************************************)
+
+(*i camlp4deps: "parsing/grammar.cma" i*)
+
+open Refl_omega
+
+TACTIC EXTEND ROmega
+ [ "ROmega" ] -> [ total_reflexive_omega_tactic ]
+END
diff --git a/contrib/romega/omega2.ml b/contrib/romega/omega2.ml
new file mode 100644
index 00000000..91aefc60
--- /dev/null
+++ b/contrib/romega/omega2.ml
@@ -0,0 +1,675 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+(**************************************************************************)
+(* *)
+(* Omega: a solver of quantifier-free problems in Presburger Arithmetic *)
+(* *)
+(* Pierre Crégut (CNET, Lannion, France) *)
+(* *)
+(* 13/10/2002 : modified to cope with an external numbering of equations *)
+(* and hypothesis. Its use for Omega is not more complex and it makes *)
+(* things much simpler for the reflexive version where we should limit *)
+(* the number of source of numbering. *)
+(**************************************************************************)
+
+open Names
+
+let flat_map f =
+ let rec flat_map_f = function
+ | [] -> []
+ | x :: l -> f x @ flat_map_f l
+ in
+ flat_map_f
+
+let pp i = print_int i; print_newline (); flush stdout
+
+let debug = ref false
+
+let filter = List.partition
+
+let push v l = l := v :: !l
+
+let rec pgcd x y = if y = 0 then x else pgcd y (x mod y)
+
+let pgcd_l = function
+ | [] -> failwith "pgcd_l"
+ | x :: l -> List.fold_left pgcd x l
+
+let floor_div a b =
+ match a >=0 , b > 0 with
+ | true,true -> a / b
+ | false,false -> a / b
+ | true, false -> (a-1) / b - 1
+ | false,true -> (a+1) / b - 1
+
+type coeff = {c: int ; v: int}
+
+type linear = coeff list
+
+type eqn_kind = EQUA | INEQ | DISE
+
+type afine = {
+ (* a number uniquely identifying the equation *)
+ id: int ;
+ (* a boolean true for an eq, false for an ineq (Sigma a_i x_i >= 0) *)
+ kind: eqn_kind;
+ (* the variables and their coefficient *)
+ body: coeff list;
+ (* a constant *)
+ constant: int }
+
+type state_action = {
+ st_new_eq : afine;
+ st_def : afine;
+ st_orig : afine;
+ st_coef : int;
+ st_var : int }
+
+type action =
+ | DIVIDE_AND_APPROX of afine * afine * int * int
+ | NOT_EXACT_DIVIDE of afine * int
+ | FORGET_C of int
+ | EXACT_DIVIDE of afine * int
+ | SUM of int * (int * afine) * (int * afine)
+ | STATE of state_action
+ | HYP of afine
+ | FORGET of int * int
+ | FORGET_I of int * int
+ | CONTRADICTION of afine * afine
+ | NEGATE_CONTRADICT of afine * afine * bool
+ | MERGE_EQ of int * afine * int
+ | CONSTANT_NOT_NUL of int * int
+ | CONSTANT_NUL of int
+ | CONSTANT_NEG of int * int
+ | SPLIT_INEQ of afine * (int * action list) * (int * action list)
+ | WEAKEN of int * int
+
+exception UNSOLVABLE
+
+exception NO_CONTRADICTION
+
+let display_eq print_var (l,e) =
+ let _ =
+ List.fold_left
+ (fun not_first f ->
+ print_string
+ (if f.c < 0 then "- " else if not_first then "+ " else "");
+ let c = abs f.c in
+ if c = 1 then
+ Printf.printf "%s " (print_var f.v)
+ else
+ Printf.printf "%d %s " c (print_var f.v);
+ true)
+ false l
+ in
+ if e > 0 then
+ Printf.printf "+ %d " e
+ else if e < 0 then
+ Printf.printf "- %d " (abs e)
+
+let rec trace_length l =
+ let action_length accu = function
+ | SPLIT_INEQ (_,(_,l1),(_,l2)) ->
+ accu + 1 + trace_length l1 + trace_length l2
+ | _ -> accu + 1 in
+ List.fold_left action_length 0 l
+
+let operator_of_eq = function
+ | EQUA -> "=" | DISE -> "!=" | INEQ -> ">="
+
+let kind_of = function
+ | EQUA -> "equation" | DISE -> "disequation" | INEQ -> "inequation"
+
+let display_system print_var l =
+ List.iter
+ (fun { kind=b; body=e; constant=c; id=id} ->
+ print_int id; print_string ": ";
+ display_eq print_var (e,c); print_string (operator_of_eq b);
+ print_string "0\n")
+ l;
+ print_string "------------------------\n\n"
+
+let display_inequations print_var l =
+ List.iter (fun e -> display_eq print_var e;print_string ">= 0\n") l;
+ print_string "------------------------\n\n"
+
+let rec display_action print_var = function
+ | act :: l -> begin match act with
+ | DIVIDE_AND_APPROX (e1,e2,k,d) ->
+ Printf.printf
+ "Inequation E%d is divided by %d and the constant coefficient is \
+ rounded by substracting %d.\n" e1.id k d
+ | NOT_EXACT_DIVIDE (e,k) ->
+ Printf.printf
+ "Constant in equation E%d is not divisible by the pgcd \
+ %d of its other coefficients.\n" e.id k
+ | EXACT_DIVIDE (e,k) ->
+ Printf.printf
+ "Equation E%d is divided by the pgcd \
+ %d of its coefficients.\n" e.id k
+ | WEAKEN (e,k) ->
+ Printf.printf
+ "To ensure a solution in the dark shadow \
+ the equation E%d is weakened by %d.\n" e k
+ | SUM (e,(c1,e1),(c2,e2)) ->
+ Printf.printf
+ "We state %s E%d = %d %s E%d + %d %s E%d.\n"
+ (kind_of e1.kind) e c1 (kind_of e1.kind) e1.id c2
+ (kind_of e2.kind) e2.id
+ | STATE { st_new_eq = e; st_coef = x} ->
+ Printf.printf "We define a new equation %d :" e.id;
+ display_eq print_var (e.body,e.constant);
+ print_string (operator_of_eq e.kind); print_string " 0\n"
+ | HYP e ->
+ Printf.printf "We define %d :" e.id;
+ display_eq print_var (e.body,e.constant);
+ print_string (operator_of_eq e.kind); print_string " 0\n"
+ | FORGET_C e -> Printf.printf "E%d is trivially satisfiable.\n" e
+ | FORGET (e1,e2) -> Printf.printf "E%d subsumes E%d.\n" e1 e2
+ | FORGET_I (e1,e2) -> Printf.printf "E%d subsumes E%d.\n" e1 e2
+ | MERGE_EQ (e,e1,e2) ->
+ Printf.printf "E%d and E%d can be merged into E%d.\n" e1.id e2 e
+ | CONTRADICTION (e1,e2) ->
+ Printf.printf
+ "equations E%d and E%d implie a contradiction on their \
+ constant factors.\n" e1.id e2.id
+ | NEGATE_CONTRADICT(e1,e2,b) ->
+ Printf.printf
+ "Eqations E%d and E%d state that their body is at the same time
+ equal and different\n" e1.id e2.id
+ | CONSTANT_NOT_NUL (e,k) ->
+ Printf.printf "equation E%d states %d=0.\n" e k
+ | CONSTANT_NEG(e,k) ->
+ Printf.printf "equation E%d states %d >= 0.\n" e k
+ | CONSTANT_NUL e ->
+ Printf.printf "inequation E%d states 0 != 0.\n" e
+ | SPLIT_INEQ (e,(e1,l1),(e2,l2)) ->
+ Printf.printf "equation E%d is split in E%d and E%d\n\n" e.id e1 e2;
+ display_action print_var l1;
+ print_newline ();
+ display_action print_var l2;
+ print_newline ()
+ end; display_action print_var l
+ | [] ->
+ flush stdout
+
+(*""*)
+let default_print_var v = Printf.sprintf "XX%d" v
+
+let add_event, history, clear_history =
+ let accu = ref [] in
+ (fun (v:action) -> if !debug then display_action default_print_var [v]; push v accu),
+ (fun () -> !accu),
+ (fun () -> accu := [])
+
+let nf_linear = Sort.list (fun x y -> x.v > y.v)
+
+let nf ((b : bool),(e,(x : int))) = (b,(nf_linear e,x))
+
+let map_eq_linear f =
+ let rec loop = function
+ | x :: l -> let c = f x.c in if c=0 then loop l else {v=x.v; c=c} :: loop l
+ | [] -> []
+ in
+ loop
+
+let map_eq_afine f e =
+ { id = e.id; kind = e.kind; body = map_eq_linear f e.body;
+ constant = f e.constant }
+
+let negate_eq = map_eq_afine (fun x -> -x)
+
+let rec sum p0 p1 = match (p0,p1) with
+ | ([], l) -> l | (l, []) -> l
+ | (((x1::l1) as l1'), ((x2::l2) as l2')) ->
+ if x1.v = x2.v then
+ let c = x1.c + x2.c in
+ if c = 0 then sum l1 l2 else {v=x1.v;c=c} :: sum l1 l2
+ else if x1.v > x2.v then
+ x1 :: sum l1 l2'
+ else
+ x2 :: sum l1' l2
+
+let sum_afine new_eq_id eq1 eq2 =
+ { kind = eq1.kind; id = new_eq_id ();
+ body = sum eq1.body eq2.body; constant = eq1.constant + eq2.constant }
+
+exception FACTOR1
+
+let rec chop_factor_1 = function
+ | x :: l ->
+ if abs x.c = 1 then x,l else let (c',l') = chop_factor_1 l in (c',x::l')
+ | [] -> raise FACTOR1
+
+exception CHOPVAR
+
+let rec chop_var v = function
+ | f :: l -> if f.v = v then f,l else let (f',l') = chop_var v l in (f',f::l')
+ | [] -> raise CHOPVAR
+
+let normalize ({id=id; kind=eq_flag; body=e; constant =x} as eq) =
+ if e = [] then begin
+ match eq_flag with
+ | EQUA ->
+ if x =0 then [] else begin
+ add_event (CONSTANT_NOT_NUL(id,x)); raise UNSOLVABLE
+ end
+ | DISE ->
+ if x <> 0 then [] else begin
+ add_event (CONSTANT_NUL id); raise UNSOLVABLE
+ end
+ | INEQ ->
+ if x >= 0 then [] else begin
+ add_event (CONSTANT_NEG(id,x)); raise UNSOLVABLE
+ end
+ end else
+ let gcd = pgcd_l (List.map (fun f -> abs f.c) e) in
+ if eq_flag=EQUA & x mod gcd <> 0 then begin
+ add_event (NOT_EXACT_DIVIDE (eq,gcd)); raise UNSOLVABLE
+ end else if eq_flag=DISE & x mod gcd <> 0 then begin
+ add_event (FORGET_C eq.id); []
+ end else if gcd <> 1 then begin
+ let c = floor_div x gcd in
+ let d = x - c * gcd in
+ let new_eq = {id=id; kind=eq_flag; constant=c;
+ body=map_eq_linear (fun c -> c / gcd) e} in
+ add_event (if eq_flag=EQUA or eq_flag = DISE then EXACT_DIVIDE(eq,gcd)
+ else DIVIDE_AND_APPROX(eq,new_eq,gcd,d));
+ [new_eq]
+ end else [eq]
+
+let eliminate_with_in new_eq_id {v=v;c=c_unite} eq2
+ ({body=e1; constant=c1} as eq1) =
+ try
+ let (f,_) = chop_var v e1 in
+ let coeff = if c_unite=1 then -f.c else if c_unite= -1 then f.c
+ else failwith "eliminate_with_in" in
+ let res = sum_afine new_eq_id eq1 (map_eq_afine (fun c -> c * coeff) eq2) in
+ add_event (SUM (res.id,(1,eq1),(coeff,eq2))); res
+ with CHOPVAR -> eq1
+
+let omega_mod a b = a - b * floor_div (2 * a + b) (2 * b)
+let banerjee_step (new_eq_id,new_var_id,print_var) original l1 l2 =
+ let e = original.body in
+ let sigma = new_var_id () in
+ let smallest,var =
+ try
+ List.fold_left (fun (v,p) c -> if v > (abs c.c) then abs c.c,c.v else (v,p))
+ (abs (List.hd e).c, (List.hd e).v) (List.tl e)
+ with Failure "tl" -> display_system print_var [original] ; failwith "TL" in
+ let m = smallest + 1 in
+ let new_eq =
+ { constant = omega_mod original.constant m;
+ body = {c= -m;v=sigma} ::
+ map_eq_linear (fun a -> omega_mod a m) original.body;
+ id = new_eq_id (); kind = EQUA } in
+ let definition =
+ { constant = - floor_div (2 * original.constant + m) (2 * m);
+ body = map_eq_linear (fun a -> - floor_div (2 * a + m) (2 * m))
+ original.body;
+ id = new_eq_id (); kind = EQUA } in
+ add_event (STATE {st_new_eq = new_eq; st_def = definition;
+ st_orig =original; st_coef = m; st_var = sigma});
+ let new_eq = List.hd (normalize new_eq) in
+ let eliminated_var, def = chop_var var new_eq.body in
+ let other_equations =
+ flat_map (fun e -> normalize (eliminate_with_in new_eq_id eliminated_var new_eq e))
+ l1 in
+ let inequations =
+ flat_map (fun e -> normalize (eliminate_with_in new_eq_id eliminated_var new_eq e))
+ l2 in
+ let original' = eliminate_with_in new_eq_id eliminated_var new_eq original in
+ let mod_original = map_eq_afine (fun c -> c / m) original' in
+ add_event (EXACT_DIVIDE (original',m));
+ List.hd (normalize mod_original),other_equations,inequations
+
+let rec eliminate_one_equation ((new_eq_id,new_var_id,print_var) as new_ids) (e,other,ineqs) =
+ if !debug then display_system print_var (e::other);
+ try
+ let v,def = chop_factor_1 e.body in
+ (flat_map (fun e' -> normalize (eliminate_with_in new_eq_id v e e')) other,
+ flat_map (fun e' -> normalize (eliminate_with_in new_eq_id v e e')) ineqs)
+ with FACTOR1 ->
+ eliminate_one_equation new_ids (banerjee_step new_ids e other ineqs)
+
+let rec banerjee ((_,_,print_var) as new_ids) (sys_eq,sys_ineq) =
+ let rec fst_eq_1 = function
+ (eq::l) ->
+ if List.exists (fun x -> abs x.c = 1) eq.body then eq,l
+ else let (eq',l') = fst_eq_1 l in (eq',eq::l')
+ | [] -> raise Not_found in
+ match sys_eq with
+ [] -> if !debug then display_system print_var sys_ineq; sys_ineq
+ | (e1::rest) ->
+ let eq,other = try fst_eq_1 sys_eq with Not_found -> (e1,rest) in
+ if eq.body = [] then
+ if eq.constant = 0 then begin
+ add_event (FORGET_C eq.id); banerjee new_ids (other,sys_ineq)
+ end else begin
+ add_event (CONSTANT_NOT_NUL(eq.id,eq.constant)); raise UNSOLVABLE
+ end
+ else
+ banerjee new_ids
+ (eliminate_one_equation new_ids (eq,other,sys_ineq))
+
+type kind = INVERTED | NORMAL
+
+let redundancy_elimination new_eq_id system =
+ let normal = function
+ ({body=f::_} as e) when f.c < 0 -> negate_eq e, INVERTED
+ | e -> e,NORMAL in
+ let table = Hashtbl.create 7 in
+ List.iter
+ (fun e ->
+ let ({body=ne} as nx) ,kind = normal e in
+ if ne = [] then
+ if nx.constant < 0 then begin
+ add_event (CONSTANT_NEG(nx.id,nx.constant)); raise UNSOLVABLE
+ end else add_event (FORGET_C nx.id)
+ else
+ try
+ let (optnormal,optinvert) = Hashtbl.find table ne in
+ let final =
+ if kind = NORMAL then begin
+ match optnormal with
+ Some v ->
+ let kept =
+ if v.constant < nx.constant
+ then begin add_event (FORGET (v.id,nx.id));v end
+ else begin add_event (FORGET (nx.id,v.id));nx end in
+ (Some(kept),optinvert)
+ | None -> Some nx,optinvert
+ end else begin
+ match optinvert with
+ Some v ->
+ let kept =
+ if v.constant > nx.constant
+ then begin add_event (FORGET_I (v.id,nx.id));v end
+ else begin add_event (FORGET_I (nx.id,v.id));nx end in
+ (optnormal,Some(if v.constant > nx.constant then v else nx))
+ | None -> optnormal,Some nx
+ end in
+ begin match final with
+ (Some high, Some low) ->
+ if high.constant < low.constant then begin
+ add_event(CONTRADICTION (high,negate_eq low));
+ raise UNSOLVABLE
+ end
+ | _ -> () end;
+ Hashtbl.remove table ne;
+ Hashtbl.add table ne final
+ with Not_found ->
+ Hashtbl.add table ne
+ (if kind = NORMAL then (Some nx,None) else (None,Some nx)))
+ system;
+ let accu_eq = ref [] in
+ let accu_ineq = ref [] in
+ Hashtbl.iter
+ (fun p0 p1 -> match (p0,p1) with
+ | (e, (Some x, Some y)) when x.constant = y.constant ->
+ let id=new_eq_id () in
+ add_event (MERGE_EQ(id,x,y.id));
+ push {id=id; kind=EQUA; body=x.body; constant=x.constant} accu_eq
+ | (e, (optnorm,optinvert)) ->
+ begin match optnorm with
+ Some x -> push x accu_ineq | _ -> () end;
+ begin match optinvert with
+ Some x -> push (negate_eq x) accu_ineq | _ -> () end)
+ table;
+ !accu_eq,!accu_ineq
+
+exception SOLVED_SYSTEM
+
+let select_variable system =
+ let table = Hashtbl.create 7 in
+ let push v c=
+ try let r = Hashtbl.find table v in r := max !r (abs c)
+ with Not_found -> Hashtbl.add table v (ref (abs c)) in
+ List.iter (fun {body=l} -> List.iter (fun f -> push f.v f.c) l) system;
+ let vmin,cmin = ref (-1), ref 0 in
+ let var_cpt = ref 0 in
+ Hashtbl.iter
+ (fun v ({contents = c}) ->
+ incr var_cpt;
+ if c < !cmin or !vmin = (-1) then begin vmin := v; cmin := c end)
+ table;
+ if !var_cpt < 1 then raise SOLVED_SYSTEM;
+ !vmin
+
+let classify v system =
+ List.fold_left
+ (fun (not_occ,below,over) eq ->
+ try let f,eq' = chop_var v eq.body in
+ if f.c >= 0 then (not_occ,((f.c,eq) :: below),over)
+ else (not_occ,below,((-f.c,eq) :: over))
+ with CHOPVAR -> (eq::not_occ,below,over))
+ ([],[],[]) system
+
+let product new_eq_id dark_shadow low high =
+ List.fold_left
+ (fun accu (a,eq1) ->
+ List.fold_left
+ (fun accu (b,eq2) ->
+ let eq =
+ sum_afine new_eq_id (map_eq_afine (fun c -> c * b) eq1)
+ (map_eq_afine (fun c -> c * a) eq2) in
+ add_event(SUM(eq.id,(b,eq1),(a,eq2)));
+ match normalize eq with
+ | [eq] ->
+ let final_eq =
+ if dark_shadow then
+ let delta = (a - 1) * (b - 1) in
+ add_event(WEAKEN(eq.id,delta));
+ {id = eq.id; kind=INEQ; body = eq.body;
+ constant = eq.constant - delta}
+ else eq
+ in final_eq :: accu
+ | (e::_) -> failwith "Product dardk"
+ | [] -> accu)
+ accu high)
+ [] low
+
+let fourier_motzkin (_,new_eq_id,print_var) dark_shadow system =
+ let v = select_variable system in
+ let (ineq_out, ineq_low,ineq_high) = classify v system in
+ let expanded = ineq_out @ product new_eq_id dark_shadow ineq_low ineq_high in
+ if !debug then display_system print_var expanded; expanded
+
+let simplify ((new_eq_id,new_var_id,print_var) as new_ids) dark_shadow system =
+ if List.exists (fun e -> e.kind = DISE) system then
+ failwith "disequation in simplify";
+ clear_history ();
+ List.iter (fun e -> add_event (HYP e)) system;
+ let system = flat_map normalize system in
+ let eqs,ineqs = filter (fun e -> e.kind=EQUA) system in
+ let simp_eq,simp_ineq = redundancy_elimination new_eq_id ineqs in
+ let system = (eqs @ simp_eq,simp_ineq) in
+ let rec loop1a system =
+ let sys_ineq = banerjee new_ids system in
+ loop1b sys_ineq
+ and loop1b sys_ineq =
+ let simp_eq,simp_ineq = redundancy_elimination new_eq_id sys_ineq in
+ if simp_eq = [] then simp_ineq else loop1a (simp_eq,simp_ineq)
+ in
+ let rec loop2 system =
+ try
+ let expanded = fourier_motzkin new_ids dark_shadow system in
+ loop2 (loop1b expanded)
+ with SOLVED_SYSTEM ->
+ if !debug then display_system print_var system; system
+ in
+ loop2 (loop1a system)
+
+let rec depend relie_on accu = function
+ | act :: l ->
+ begin match act with
+ | DIVIDE_AND_APPROX (e,_,_,_) ->
+ if List.mem e.id relie_on then depend relie_on (act::accu) l
+ else depend relie_on accu l
+ | EXACT_DIVIDE (e,_) ->
+ if List.mem e.id relie_on then depend relie_on (act::accu) l
+ else depend relie_on accu l
+ | WEAKEN (e,_) ->
+ if List.mem e relie_on then depend relie_on (act::accu) l
+ else depend relie_on accu l
+ | SUM (e,(_,e1),(_,e2)) ->
+ if List.mem e relie_on then
+ depend (e1.id::e2.id::relie_on) (act::accu) l
+ else
+ depend relie_on accu l
+ | STATE {st_new_eq=e} ->
+ if List.mem e.id relie_on then depend relie_on (act::accu) l
+ else depend relie_on accu l
+ | HYP e ->
+ if List.mem e.id relie_on then depend relie_on (act::accu) l
+ else depend relie_on accu l
+ | FORGET_C _ -> depend relie_on accu l
+ | FORGET _ -> depend relie_on accu l
+ | FORGET_I _ -> depend relie_on accu l
+ | MERGE_EQ (e,e1,e2) ->
+ if List.mem e relie_on then
+ depend (e1.id::e2::relie_on) (act::accu) l
+ else
+ depend relie_on accu l
+ | NOT_EXACT_DIVIDE (e,_) -> depend (e.id::relie_on) (act::accu) l
+ | CONTRADICTION (e1,e2) ->
+ depend (e1.id::e2.id::relie_on) (act::accu) l
+ | CONSTANT_NOT_NUL (e,_) -> depend (e::relie_on) (act::accu) l
+ | CONSTANT_NEG (e,_) -> depend (e::relie_on) (act::accu) l
+ | CONSTANT_NUL e -> depend (e::relie_on) (act::accu) l
+ | NEGATE_CONTRADICT (e1,e2,_) ->
+ depend (e1.id::e2.id::relie_on) (act::accu) l
+ | SPLIT_INEQ _ -> failwith "depend"
+ end
+ | [] -> relie_on, accu
+
+(*
+let depend relie_on accu trace =
+ Printf.printf "Longueur de la trace initiale : %d\n"
+ (trace_length trace + trace_length accu);
+ let rel',trace' = depend relie_on accu trace in
+ Printf.printf "Longueur de la trace simplifiée : %d\n" (trace_length trace');
+ rel',trace'
+*)
+
+let solve (new_eq_id,new_eq_var,print_var) system =
+ try let _ = simplify new_eq_id false system in failwith "no contradiction"
+ with UNSOLVABLE -> display_action print_var (snd (depend [] [] (history ())))
+
+let negation (eqs,ineqs) =
+ let diseq,_ = filter (fun e -> e.kind = DISE) ineqs in
+ let normal = function
+ | ({body=f::_} as e) when f.c < 0 -> negate_eq e, INVERTED
+ | e -> e,NORMAL in
+ let table = Hashtbl.create 7 in
+ List.iter (fun e ->
+ let {body=ne;constant=c} ,kind = normal e in
+ Hashtbl.add table (ne,c) (kind,e)) diseq;
+ List.iter (fun e ->
+ if e.kind <> EQUA then pp 9999;
+ let {body=ne;constant=c},kind = normal e in
+ try
+ let (kind',e') = Hashtbl.find table (ne,c) in
+ add_event (NEGATE_CONTRADICT (e,e',kind=kind'));
+ raise UNSOLVABLE
+ with Not_found -> ()) eqs
+
+exception FULL_SOLUTION of action list * int list
+
+let simplify_strong ((new_eq_id,new_var_id,print_var) as new_ids) system =
+ clear_history ();
+ List.iter (fun e -> add_event (HYP e)) system;
+ (* Initial simplification phase *)
+ let rec loop1a system =
+ negation system;
+ let sys_ineq = banerjee new_ids system in
+ loop1b sys_ineq
+ and loop1b sys_ineq =
+ let dise,ine = filter (fun e -> e.kind = DISE) sys_ineq in
+ let simp_eq,simp_ineq = redundancy_elimination new_eq_id ine in
+ if simp_eq = [] then dise @ simp_ineq
+ else loop1a (simp_eq,dise @ simp_ineq)
+ in
+ let rec loop2 system =
+ try
+ let expanded = fourier_motzkin new_ids false system in
+ loop2 (loop1b expanded)
+ with SOLVED_SYSTEM -> if !debug then display_system print_var system; system
+ in
+ let rec explode_diseq = function
+ | (de::diseq,ineqs,expl_map) ->
+ let id1 = new_eq_id ()
+ and id2 = new_eq_id () in
+ let e1 =
+ {id = id1; kind=INEQ; body = de.body; constant = de.constant - 1} in
+ let e2 =
+ {id = id2; kind=INEQ; body = map_eq_linear (fun x -> -x) de.body;
+ constant = - de.constant - 1} in
+ let new_sys =
+ List.map (fun (what,sys) -> ((de.id,id1,true)::what, e1::sys))
+ ineqs @
+ List.map (fun (what,sys) -> ((de.id,id2,false)::what,e2::sys))
+ ineqs
+ in
+ explode_diseq (diseq,new_sys,(de.id,(de,id1,id2))::expl_map)
+ | ([],ineqs,expl_map) -> ineqs,expl_map
+ in
+ try
+ let system = flat_map normalize system in
+ let eqs,ineqs = filter (fun e -> e.kind=EQUA) system in
+ let dise,ine = filter (fun e -> e.kind = DISE) ineqs in
+ let simp_eq,simp_ineq = redundancy_elimination new_eq_id ine in
+ let system = (eqs @ simp_eq,simp_ineq @ dise) in
+ let system' = loop1a system in
+ let diseq,ineq = filter (fun e -> e.kind = DISE) system' in
+ let first_segment = history () in
+ let sys_exploded,explode_map = explode_diseq (diseq,[[],ineq],[]) in
+ let all_solutions =
+ List.map
+ (fun (decomp,sys) ->
+ clear_history ();
+ try let _ = loop2 sys in raise NO_CONTRADICTION
+ with UNSOLVABLE ->
+ let relie_on,path = depend [] [] (history ()) in
+ let dc,_ = filter (fun (_,id,_) -> List.mem id relie_on) decomp in
+ let red = List.map (fun (x,_,_) -> x) dc in
+ (red,relie_on,decomp,path))
+ sys_exploded
+ in
+ let max_count sys =
+ let tbl = Hashtbl.create 7 in
+ let augment x =
+ try incr (Hashtbl.find tbl x)
+ with Not_found -> Hashtbl.add tbl x (ref 1) in
+ let eq = ref (-1) and c = ref 0 in
+ List.iter (function
+ | ([],r_on,_,path) -> raise (FULL_SOLUTION (path,r_on))
+ | (l,_,_,_) -> List.iter augment l) sys;
+ Hashtbl.iter (fun x v -> if !v > !c then begin eq := x; c := !v end) tbl;
+ !eq
+ in
+ let rec solve systems =
+ try
+ let id = max_count systems in
+ let rec sign = function
+ | ((id',_,b)::l) -> if id=id' then b else sign l
+ | [] -> failwith "solve" in
+ let s1,s2 = filter (fun (_,_,decomp,_) -> sign decomp) systems in
+ let s1' =
+ List.map (fun (dep,ro,dc,pa) -> (Util.list_except id dep,ro,dc,pa)) s1 in
+ let s2' =
+ List.map (fun (dep,ro,dc,pa) -> (Util.list_except id dep,ro,dc,pa)) s2 in
+ let (r1,relie1) = solve s1'
+ and (r2,relie2) = solve s2' in
+ let (eq,id1,id2) = List.assoc id explode_map in
+ [SPLIT_INEQ(eq,(id1,r1),(id2, r2))], eq.id :: Util.list_union relie1 relie2
+ with FULL_SOLUTION (x0,x1) -> (x0,x1)
+ in
+ let act,relie_on = solve all_solutions in
+ snd(depend relie_on act first_segment)
+ with UNSOLVABLE -> snd (depend [] [] (history ()))
diff --git a/contrib/romega/refl_omega.ml b/contrib/romega/refl_omega.ml
new file mode 100644
index 00000000..ef68c587
--- /dev/null
+++ b/contrib/romega/refl_omega.ml
@@ -0,0 +1,1307 @@
+(*************************************************************************
+
+ PROJET RNRT Calife - 2001
+ Author: Pierre Crégut - France Télécom R&D
+ Licence : LGPL version 2.1
+
+ *************************************************************************)
+
+open Const_omega
+
+
+(* \section{Useful functions and flags} *)
+(* Especially useful debugging functions *)
+let debug = ref false
+
+let show_goal gl =
+ if !debug then Pp.ppnl (Tacmach.pr_gls gl); Tacticals.tclIDTAC gl
+
+let pp i = print_int i; print_newline (); flush stdout
+
+(* More readable than the prefix notation *)
+let (>>) = Tacticals.tclTHEN
+
+(* [list_index t l = i] \eqv $nth l i = t \wedge \forall j < i nth l j != t$ *)
+
+let list_index t =
+ let rec loop i = function
+ | (u::l) -> if u = t then i else loop (i+1) l
+ | [] -> raise Not_found in
+ loop 0
+
+(* [list_uniq l = filter_i (x i -> nth l (i-1) != x) l] *)
+let list_uniq l =
+ let rec uniq = function
+ x :: ((y :: _) as l) when x = y -> uniq l
+ | x :: l -> x :: uniq l
+ | [] -> [] in
+ uniq (List.sort compare l)
+
+(* $\forall x. mem x (list\_union l1 l2) \eqv x \in \{l1\} \cup \{l2\}$ *)
+let list_union l1 l2 =
+ let rec loop buf = function
+ x :: r -> if List.mem x l2 then loop buf r else loop (x :: buf) r
+ | [] -> buf in
+ loop l2 l1
+
+(* $\forall x.
+ mem \;\; x \;\; (list\_intersect\;\; l1\;\;l2) \eqv x \in \{l1\}
+ \cap \{l2\}$ *)
+let list_intersect l1 l2 =
+ let rec loop buf = function
+ x :: r -> if List.mem x l2 then loop (x::buf) r else loop buf r
+ | [] -> buf in
+ loop [] l1
+
+(* cartesian product. Elements are lists and are concatenated.
+ $cartesian [x_1 ... x_n] [y_1 ... y_p] = [x_1 @ y_1, x_2 @ y_1 ... x_n @ y_1 , x_1 @ y_2 ... x_n @ y_p]$ *)
+
+let rec cartesien l1 l2 =
+ let rec loop = function
+ (x2 :: r2) -> List.map (fun x1 -> x1 @ x2) l1 @ loop r2
+ | [] -> [] in
+ loop l2
+
+(* remove element e from list l *)
+let list_remove e l =
+ let rec loop = function
+ x :: l -> if x = e then loop l else x :: loop l
+ | [] -> [] in
+ loop l
+
+(* equivalent of the map function but no element is added when the function
+ raises an exception (and the computation silently continues) *)
+let map_exc f =
+ let rec loop = function
+ (x::l) ->
+ begin match try Some (f x) with exc -> None with
+ Some v -> v :: loop l | None -> loop l
+ end
+ | [] -> [] in
+ loop
+
+let mkApp = Term.mkApp
+
+(* \section{Types}
+ \subsection{How to walk in a term}
+ To represent how to get to a proposition. Only choice points are
+ kept (branch to choose in a disjunction and identifier of the disjunctive
+ connector) *)
+type direction = Left of int | Right of int
+
+(* Step to find a proposition (operators are at most binary). A list is
+ a path *)
+type occ_step = O_left | O_right | O_mono
+type occ_path = occ_step list
+
+(* chemin identifiant une proposition sous forme du nom de l'hypothèse et
+ d'une liste de pas à partir de la racine de l'hypothèse *)
+type occurence = {o_hyp : Names.identifier; o_path : occ_path}
+
+(* \subsection{refiable formulas} *)
+type oformula =
+ (* integer *)
+ | Oint of int
+ (* recognized binary and unary operations *)
+ | Oplus of oformula * oformula
+ | Omult of oformula * oformula
+ | Ominus of oformula * oformula
+ | Oopp of oformula
+ (* an atome in the environment *)
+ | Oatom of int
+ (* weird expression that cannot be translated *)
+ | Oufo of oformula
+
+(* Operators for comparison recognized by Omega *)
+type comparaison = Eq | Leq | Geq | Gt | Lt | Neq
+
+(* Type des prédicats réifiés (fragment de calcul propositionnel. Les
+ * quantifications sont externes au langage) *)
+type oproposition =
+ Pequa of Term.constr * oequation
+ | Ptrue
+ | Pfalse
+ | Pnot of oproposition
+ | Por of int * oproposition * oproposition
+ | Pand of int * oproposition * oproposition
+ | Pimp of int * oproposition * oproposition
+ | Pprop of Term.constr
+
+(* Les équations ou proposiitions atomiques utiles du calcul *)
+and oequation = {
+ e_comp: comparaison; (* comparaison *)
+ e_left: oformula; (* formule brute gauche *)
+ e_right: oformula; (* formule brute droite *)
+ e_trace: Term.constr; (* tactique de normalisation *)
+ e_origin: occurence; (* l'hypothèse dont vient le terme *)
+ e_negated: bool; (* vrai si apparait en position nié
+ après normalisation *)
+ e_depends: direction list; (* liste des points de disjonction dont
+ dépend l'accès à l'équation avec la
+ direction (branche) pour y accéder *)
+ e_omega: Omega2.afine (* la fonction normalisée *)
+ }
+
+(* \subsection{Proof context}
+ This environment codes
+ \begin{itemize}
+ \item the terms and propositions that are given as
+ parameters of the reified proof (and are represented as variables in the
+ reified goals)
+ \item translation functions linking the decision procedure and the Coq proof
+ \end{itemize} *)
+
+type environment = {
+ (* La liste des termes non reifies constituant l'environnement global *)
+ mutable terms : Term.constr list;
+ (* La meme chose pour les propositions *)
+ mutable props : Term.constr list;
+ (* Les variables introduites par omega *)
+ mutable om_vars : (oformula * int) list;
+ (* Traduction des indices utilisés ici en les indices finaux utilisés par
+ * la tactique Omega après dénombrement des variables utiles *)
+ real_indices : (int,int) Hashtbl.t;
+ mutable cnt_connectors : int;
+ equations : (int,oequation) Hashtbl.t;
+ constructors : (int, occurence) Hashtbl.t
+}
+
+(* \subsection{Solution tree}
+ Définition d'une solution trouvée par Omega sous la forme d'un identifiant,
+ d'un ensemble d'équation dont dépend la solution et d'une trace *)
+type solution = {
+ s_index : int;
+ s_equa_deps : int list;
+ s_trace : Omega2.action list }
+
+(* Arbre de solution résolvant complètement un ensemble de systèmes *)
+type solution_tree =
+ Leaf of solution
+ (* un noeud interne représente un point de branchement correspondant à
+ l'élimination d'un connecteur générant plusieurs buts
+ (typ. disjonction). Le premier argument
+ est l'identifiant du connecteur *)
+ | Tree of int * solution_tree * solution_tree
+
+(* Représentation de l'environnement extrait du but initial sous forme de
+ chemins pour extraire des equations ou d'hypothèses *)
+
+type context_content =
+ CCHyp of occurence
+ | CCEqua of int
+
+(* \section{Specific utility functions to handle base types} *)
+(* Nom arbitraire de l'hypothèse codant la négation du but final *)
+let id_concl = Names.id_of_string "__goal__"
+
+(* Initialisation de l'environnement de réification de la tactique *)
+let new_environment () = {
+ terms = []; props = []; om_vars = []; cnt_connectors = 0;
+ real_indices = Hashtbl.create 7;
+ equations = Hashtbl.create 7;
+ constructors = Hashtbl.create 7;
+}
+
+(* Génération d'un nom d'équation *)
+let new_eq_id env =
+ env.cnt_connectors <- env.cnt_connectors + 1; env.cnt_connectors
+
+(* Calcul de la branche complémentaire *)
+let barre = function Left x -> Right x | Right x -> Left x
+
+(* Identifiant associé à une branche *)
+let indice = function Left x | Right x -> x
+
+(* Affichage de l'environnement de réification (termes et propositions) *)
+let print_env_reification env =
+ let rec loop c i = function
+ [] -> Printf.printf "===============================\n\n"
+ | t :: l ->
+ Printf.printf "(%c%02d) : " c i;
+ Pp.ppnl (Printer.prterm t);
+ Pp.flush_all ();
+ loop c (i+1) l in
+ Printf.printf "PROPOSITIONS :\n\n"; loop 'P' 0 env.props;
+ Printf.printf "TERMES :\n\n"; loop 'V' 0 env.terms
+
+
+(* \subsection{Gestion des environnements de variable pour Omega} *)
+(* generation d'identifiant d'equation pour Omega *)
+let new_omega_id = let cpt = ref 0 in function () -> incr cpt; !cpt
+(* Affichage des variables d'un système *)
+let display_omega_id i = Printf.sprintf "O%d" i
+(* Recherche la variable codant un terme pour Omega et crée la variable dans
+ l'environnement si il n'existe pas. Cas ou la variable dans Omega représente
+ le terme d'un monome (le plus souvent un atome) *)
+
+let intern_omega env t =
+ begin try List.assoc t env.om_vars
+ with Not_found ->
+ let v = new_omega_id () in
+ env.om_vars <- (t,v) :: env.om_vars; v
+ end
+
+(* Ajout forcé d'un lien entre un terme et une variable Omega. Cas ou la
+ variable est crée par Omega et ou il faut la lier après coup a un atome
+ réifié introduit de force *)
+let intern_omega_force env t v = env.om_vars <- (t,v) :: env.om_vars
+
+(* Récupère le terme associé à une variable *)
+let unintern_omega env id =
+ let rec loop = function
+ [] -> failwith "unintern"
+ | ((t,j)::l) -> if id = j then t else loop l in
+ loop env.om_vars
+
+(* \subsection{Gestion des environnements de variable pour la réflexion}
+ Gestion des environnements de traduction entre termes des constructions
+ non réifiés et variables des termes reifies. Attention il s'agit de
+ l'environnement initial contenant tout. Il faudra le réduire après
+ calcul des variables utiles. *)
+
+let add_reified_atom t env =
+ try list_index t env.terms
+ with Not_found ->
+ let i = List.length env.terms in
+ env.terms <- env.terms @ [t]; i
+
+let get_reified_atom env =
+ try List.nth env.terms with _ -> failwith "get_reified_atom"
+
+(* \subsection{Gestion de l'environnement de proposition pour Omega} *)
+(* ajout d'une proposition *)
+let add_prop env t =
+ try list_index t env.props
+ with Not_found ->
+ let i = List.length env.props in env.props <- env.props @ [t]; i
+
+(* accès a une proposition *)
+let get_prop v env = try List.nth v env with _ -> failwith "get_prop"
+
+(* \subsection{Gestion du nommage des équations} *)
+(* Ajout d'une equation dans l'environnement de reification *)
+let add_equation env e =
+ let id = e.e_omega.Omega2.id in
+ try let _ = Hashtbl.find env.equations id in ()
+ with Not_found -> Hashtbl.add env.equations id e
+
+(* accès a une equation *)
+let get_equation env id =
+ try Hashtbl.find env.equations id
+ with e -> Printf.printf "Omega Equation %d non trouvée\n" id; raise e
+
+(* Affichage des termes réifiés *)
+let rec oprint ch = function
+ | Oint n -> Printf.fprintf ch "%d" n
+ | Oplus (t1,t2) -> Printf.fprintf ch "(%a + %a)" oprint t1 oprint t2
+ | Omult (t1,t2) -> Printf.fprintf ch "(%a * %a)" oprint t1 oprint t2
+ | Ominus(t1,t2) -> Printf.fprintf ch "(%a - %a)" oprint t1 oprint t2
+ | Oopp t1 ->Printf.fprintf ch "~ %a" oprint t1
+ | Oatom n -> Printf.fprintf ch "V%02d" n
+ | Oufo x -> Printf.fprintf ch "?"
+
+let rec pprint ch = function
+ Pequa (_,{ e_comp=comp; e_left=t1; e_right=t2 }) ->
+ let connector =
+ match comp with
+ Eq -> "=" | Leq -> "=<" | Geq -> ">="
+ | Gt -> ">" | Lt -> "<" | Neq -> "!=" in
+ Printf.fprintf ch "%a %s %a" oprint t1 connector oprint t2
+ | Ptrue -> Printf.fprintf ch "TT"
+ | Pfalse -> Printf.fprintf ch "FF"
+ | Pnot t -> Printf.fprintf ch "not(%a)" pprint t
+ | Por (_,t1,t2) -> Printf.fprintf ch "(%a or %a)" pprint t1 pprint t2
+ | Pand(_,t1,t2) -> Printf.fprintf ch "(%a and %a)" pprint t1 pprint t2
+ | Pimp(_,t1,t2) -> Printf.fprintf ch "(%a => %a)" pprint t1 pprint t2
+ | Pprop c -> Printf.fprintf ch "Prop"
+
+let rec weight env = function
+ | Oint _ -> -1
+ | Oopp c -> weight env c
+ | Omult(c,_) -> weight env c
+ | Oplus _ -> failwith "weight"
+ | Ominus _ -> failwith "weight minus"
+ | Oufo _ -> -1
+ | Oatom _ as c -> (intern_omega env c)
+
+(* \section{Passage entre oformules et représentation interne de Omega} *)
+
+(* \subsection{Oformula vers Omega} *)
+
+let omega_of_oformula env kind =
+ let rec loop accu = function
+ | Oplus(Omult(v,Oint n),r) ->
+ loop ({Omega2.v=intern_omega env v; Omega2.c=n} :: accu) r
+ | Oint n ->
+ let id = new_omega_id () in
+ (*i tag_equation name id; i*)
+ {Omega2.kind = kind; Omega2.body = List.rev accu;
+ Omega2.constant = n; Omega2.id = id}
+ | t -> print_string "CO"; oprint stdout t; failwith "compile_equation" in
+ loop []
+
+(* \subsection{Omega vers Oformula} *)
+
+let reified_of_atom env i =
+ try Hashtbl.find env.real_indices i
+ with Not_found ->
+ Printf.printf "Atome %d non trouvé\n" i;
+ Hashtbl.iter (fun k v -> Printf.printf "%d -> %d\n" k v) env.real_indices;
+ raise Not_found
+
+let rec oformula_of_omega env af =
+ let rec loop = function
+ | ({Omega2.v=v; Omega2.c=n}::r) ->
+ Oplus(Omult(unintern_omega env v,Oint n),loop r)
+ | [] -> Oint af.Omega2.constant in
+ loop af.Omega2.body
+
+let app f v = mkApp(Lazy.force f,v)
+
+(* \subsection{Oformula vers COQ reel} *)
+
+let rec coq_of_formula env t =
+ let rec loop = function
+ | Oplus (t1,t2) -> app coq_Zplus [| loop t1; loop t2 |]
+ | Oopp t -> app coq_Zopp [| loop t |]
+ | Omult(t1,t2) -> app coq_Zmult [| loop t1; loop t2 |]
+ | Oint v -> mk_Z v
+ | Oufo t -> loop t
+ | Oatom var ->
+ (* attention ne traite pas les nouvelles variables si on ne les
+ * met pas dans env.term *)
+ get_reified_atom env var
+ | Ominus(t1,t2) -> app coq_Zminus [| loop t1; loop t2 |] in
+ loop t
+
+(* \subsection{Oformula vers COQ reifié} *)
+
+let rec reified_of_formula env = function
+ | Oplus (t1,t2) ->
+ app coq_t_plus [| reified_of_formula env t1; reified_of_formula env t2 |]
+ | Oopp t ->
+ app coq_t_opp [| reified_of_formula env t |]
+ | Omult(t1,t2) ->
+ app coq_t_mult [| reified_of_formula env t1; reified_of_formula env t2 |]
+ | Oint v -> app coq_t_int [| mk_Z v |]
+ | Oufo t -> reified_of_formula env t
+ | Oatom i -> app coq_t_var [| mk_nat (reified_of_atom env i) |]
+ | Ominus(t1,t2) ->
+ app coq_t_minus [| reified_of_formula env t1; reified_of_formula env t2 |]
+
+let reified_of_formula env f =
+ begin try reified_of_formula env f with e -> oprint stderr f; raise e end
+
+let rec reified_of_proposition env = function
+ Pequa (_,{ e_comp=Eq; e_left=t1; e_right=t2 }) ->
+ app coq_p_eq [| reified_of_formula env t1; reified_of_formula env t2 |]
+ | Pequa (_,{ e_comp=Leq; e_left=t1; e_right=t2 }) ->
+ app coq_p_leq [| reified_of_formula env t1; reified_of_formula env t2 |]
+ | Pequa(_,{ e_comp=Geq; e_left=t1; e_right=t2 }) ->
+ app coq_p_geq [| reified_of_formula env t1; reified_of_formula env t2 |]
+ | Pequa(_,{ e_comp=Gt; e_left=t1; e_right=t2 }) ->
+ app coq_p_gt [| reified_of_formula env t1; reified_of_formula env t2 |]
+ | Pequa(_,{ e_comp=Lt; e_left=t1; e_right=t2 }) ->
+ app coq_p_lt [| reified_of_formula env t1; reified_of_formula env t2 |]
+ | Pequa(_,{ e_comp=Neq; e_left=t1; e_right=t2 }) ->
+ app coq_p_neq [| reified_of_formula env t1; reified_of_formula env t2 |]
+ | Ptrue -> Lazy.force coq_p_true
+ | Pfalse -> Lazy.force coq_p_false
+ | Pnot t ->
+ app coq_p_not [| reified_of_proposition env t |]
+ | Por (_,t1,t2) ->
+ app coq_p_or
+ [| reified_of_proposition env t1; reified_of_proposition env t2 |]
+ | Pand(_,t1,t2) ->
+ app coq_p_and
+ [| reified_of_proposition env t1; reified_of_proposition env t2 |]
+ | Pimp(_,t1,t2) ->
+ app coq_p_imp
+ [| reified_of_proposition env t1; reified_of_proposition env t2 |]
+ | Pprop t -> app coq_p_prop [| mk_nat (add_prop env t) |]
+
+let reified_of_proposition env f =
+ begin try reified_of_proposition env f
+ with e -> pprint stderr f; raise e end
+
+(* \subsection{Omega vers COQ réifié} *)
+
+let reified_of_omega env body constant =
+ let coeff_constant =
+ app coq_t_int [| mk_Z constant |] in
+ let mk_coeff {Omega2.c=c; Omega2.v=v} t =
+ let coef =
+ app coq_t_mult
+ [| reified_of_formula env (unintern_omega env v);
+ app coq_t_int [| mk_Z c |] |] in
+ app coq_t_plus [|coef; t |] in
+ List.fold_right mk_coeff body coeff_constant
+
+let reified_of_omega env body c =
+ begin try
+ reified_of_omega env body c
+ with e ->
+ Omega2.display_eq display_omega_id (body,c); raise e
+ end
+
+(* \section{Opérations sur les équations}
+Ces fonctions préparent les traces utilisées par la tactique réfléchie
+pour faire des opérations de normalisation sur les équations. *)
+
+(* \subsection{Extractions des variables d'une équation} *)
+(* Extraction des variables d'une équation *)
+
+let rec vars_of_formula = function
+ | Oint _ -> []
+ | Oplus (e1,e2) -> (vars_of_formula e1) @ (vars_of_formula e2)
+ | Omult (e1,e2) -> (vars_of_formula e1) @ (vars_of_formula e2)
+ | Ominus (e1,e2) -> (vars_of_formula e1) @ (vars_of_formula e2)
+ | Oopp e -> (vars_of_formula e)
+ | Oatom i -> [i]
+ | Oufo _ -> []
+
+let vars_of_equations l =
+ let rec loop = function
+ e :: l -> vars_of_formula e.e_left @ vars_of_formula e.e_right @ loop l
+ | [] -> [] in
+ list_uniq (List.sort compare (loop l))
+
+(* \subsection{Multiplication par un scalaire} *)
+
+let rec scalar n = function
+ Oplus(t1,t2) ->
+ let tac1,t1' = scalar n t1 and
+ tac2,t2' = scalar n t2 in
+ do_list [Lazy.force coq_c_mult_plus_distr; do_both tac1 tac2],
+ Oplus(t1',t2')
+ | Oopp t ->
+ do_list [Lazy.force coq_c_mult_opp_left], Omult(t,Oint(-n))
+ | Omult(t1,Oint x) ->
+ do_list [Lazy.force coq_c_mult_assoc_reduced], Omult(t1,Oint (n*x))
+ | Omult(t1,t2) ->
+ Util.error "Omega: Can't solve a goal with non-linear products"
+ | (Oatom _ as t) -> do_list [], Omult(t,Oint n)
+ | Oint i -> do_list [Lazy.force coq_c_reduce],Oint(n*i)
+ | (Oufo _ as t)-> do_list [], Oufo (Omult(t,Oint n))
+ | Ominus _ -> failwith "scalar minus"
+
+(* \subsection{Propagation de l'inversion} *)
+
+let rec negate = function
+ Oplus(t1,t2) ->
+ let tac1,t1' = negate t1 and
+ tac2,t2' = negate t2 in
+ do_list [Lazy.force coq_c_opp_plus ; (do_both tac1 tac2)],
+ Oplus(t1',t2')
+ | Oopp t ->
+ do_list [Lazy.force coq_c_opp_opp], t
+ | Omult(t1,Oint x) ->
+ do_list [Lazy.force coq_c_opp_mult_r], Omult(t1,Oint (-x))
+ | Omult(t1,t2) ->
+ Util.error "Omega: Can't solve a goal with non-linear products"
+ | (Oatom _ as t) ->
+ do_list [Lazy.force coq_c_opp_one], Omult(t,Oint(-1))
+ | Oint i -> do_list [Lazy.force coq_c_reduce] ,Oint(-i)
+ | Oufo c -> do_list [], Oufo (Oopp c)
+ | Ominus _ -> failwith "negate minus"
+
+let rec norm l = (List.length l)
+
+(* \subsection{Mélange (fusion) de deux équations} *)
+(* \subsubsection{Version avec coefficients} *)
+let rec shuffle_path k1 e1 k2 e2 =
+ let rec loop = function
+ (({Omega2.c=c1;Omega2.v=v1}::l1) as l1'),
+ (({Omega2.c=c2;Omega2.v=v2}::l2) as l2') ->
+ if v1 = v2 then
+ if k1*c1 + k2 * c2 = 0 then (
+ Lazy.force coq_f_cancel :: loop (l1,l2))
+ else (
+ Lazy.force coq_f_equal :: loop (l1,l2) )
+ else if v1 > v2 then (
+ Lazy.force coq_f_left :: loop(l1,l2'))
+ else (
+ Lazy.force coq_f_right :: loop(l1',l2))
+ | ({Omega2.c=c1;Omega2.v=v1}::l1), [] ->
+ Lazy.force coq_f_left :: loop(l1,[])
+ | [],({Omega2.c=c2;Omega2.v=v2}::l2) ->
+ Lazy.force coq_f_right :: loop([],l2)
+ | [],[] -> flush stdout; [] in
+ mk_shuffle_list (loop (e1,e2))
+
+(* \subsubsection{Version sans coefficients} *)
+let rec shuffle env (t1,t2) =
+ match t1,t2 with
+ Oplus(l1,r1), Oplus(l2,r2) ->
+ if weight env l1 > weight env l2 then
+ let l_action,t' = shuffle env (r1,t2) in
+ do_list [Lazy.force coq_c_plus_assoc_r;do_right l_action], Oplus(l1,t')
+ else
+ let l_action,t' = shuffle env (t1,r2) in
+ do_list [Lazy.force coq_c_plus_permute;do_right l_action], Oplus(l2,t')
+ | Oplus(l1,r1), t2 ->
+ if weight env l1 > weight env t2 then
+ let (l_action,t') = shuffle env (r1,t2) in
+ do_list [Lazy.force coq_c_plus_assoc_r;do_right l_action],Oplus(l1, t')
+ else do_list [Lazy.force coq_c_plus_sym], Oplus(t2,t1)
+ | t1,Oplus(l2,r2) ->
+ if weight env l2 > weight env t1 then
+ let (l_action,t') = shuffle env (t1,r2) in
+ do_list [Lazy.force coq_c_plus_permute;do_right l_action], Oplus(l2,t')
+ else do_list [],Oplus(t1,t2)
+ | Oint t1,Oint t2 ->
+ do_list [Lazy.force coq_c_reduce], Oint(t1+t2)
+ | t1,t2 ->
+ if weight env t1 < weight env t2 then
+ do_list [Lazy.force coq_c_plus_sym], Oplus(t2,t1)
+ else do_list [],Oplus(t1,t2)
+
+(* \subsection{Fusion avec réduction} *)
+
+let shrink_pair f1 f2 =
+ begin match f1,f2 with
+ Oatom v,Oatom _ ->
+ Lazy.force coq_c_red1, Omult(Oatom v,Oint 2)
+ | Oatom v, Omult(_,c2) ->
+ Lazy.force coq_c_red2, Omult(Oatom v,Oplus(c2,Oint 1))
+ | Omult (v1,c1),Oatom v ->
+ Lazy.force coq_c_red3, Omult(Oatom v,Oplus(c1,Oint 1))
+ | Omult (Oatom v,c1),Omult (v2,c2) ->
+ Lazy.force coq_c_red4, Omult(Oatom v,Oplus(c1,c2))
+ | t1,t2 ->
+ oprint stdout t1; print_newline (); oprint stdout t2; print_newline ();
+ flush Pervasives.stdout; Util.error "shrink.1"
+ end
+
+(* \subsection{Calcul d'une sous formule constante} *)
+
+let reduce_factor = function
+ Oatom v ->
+ let r = Omult(Oatom v,Oint 1) in
+ [Lazy.force coq_c_red0],r
+ | Omult(Oatom v,Oint n) as f -> [],f
+ | Omult(Oatom v,c) ->
+ let rec compute = function
+ Oint n -> n
+ | Oplus(t1,t2) -> compute t1 + compute t2
+ | _ -> Util.error "condense.1" in
+ [Lazy.force coq_c_reduce], Omult(Oatom v,Oint(compute c))
+ | t -> Util.error "reduce_factor.1"
+
+(* \subsection{Réordonancement} *)
+
+let rec condense env = function
+ Oplus(f1,(Oplus(f2,r) as t)) ->
+ if weight env f1 = weight env f2 then begin
+ let shrink_tac,t = shrink_pair f1 f2 in
+ let assoc_tac = Lazy.force coq_c_plus_assoc_l in
+ let tac_list,t' = condense env (Oplus(t,r)) in
+ assoc_tac :: do_left (do_list [shrink_tac]) :: tac_list, t'
+ end else begin
+ let tac,f = reduce_factor f1 in
+ let tac',t' = condense env t in
+ [do_both (do_list tac) (do_list tac')], Oplus(f,t')
+ end
+ | (Oplus(f1,Oint n) as t) ->
+ let tac,f1' = reduce_factor f1 in
+ [do_left (do_list tac)],Oplus(f1',Oint n)
+ | Oplus(f1,f2) ->
+ if weight env f1 = weight env f2 then begin
+ let tac_shrink,t = shrink_pair f1 f2 in
+ let tac,t' = condense env t in
+ tac_shrink :: tac,t'
+ end else begin
+ let tac,f = reduce_factor f1 in
+ let tac',t' = condense env f2 in
+ [do_both (do_list tac) (do_list tac')],Oplus(f,t')
+ end
+ | (Oint _ as t)-> [],t
+ | t ->
+ let tac,t' = reduce_factor t in
+ let final = Oplus(t',Oint 0) in
+ tac @ [Lazy.force coq_c_red6], final
+
+(* \subsection{Elimination des zéros} *)
+
+let rec clear_zero = function
+ Oplus(Omult(Oatom v,Oint 0),r) ->
+ let tac',t = clear_zero r in
+ Lazy.force coq_c_red5 :: tac',t
+ | Oplus(f,r) ->
+ let tac,t = clear_zero r in
+ (if tac = [] then [] else [do_right (do_list tac)]),Oplus(f,t)
+ | t -> [],t;;
+
+(* \subsection{Transformation des hypothèses} *)
+
+let rec reduce env = function
+ Oplus(t1,t2) ->
+ let t1', trace1 = reduce env t1 in
+ let t2', trace2 = reduce env t2 in
+ let trace3,t' = shuffle env (t1',t2') in
+ t', do_list [do_both trace1 trace2; trace3]
+ | Ominus(t1,t2) ->
+ let t,trace = reduce env (Oplus(t1, Oopp t2)) in
+ t, do_list [Lazy.force coq_c_minus; trace]
+ | Omult(t1,t2) as t ->
+ let t1', trace1 = reduce env t1 in
+ let t2', trace2 = reduce env t2 in
+ begin match t1',t2' with
+ | (_, Oint n) ->
+ let tac,t' = scalar n t1' in
+ t', do_list [do_both trace1 trace2; tac]
+ | (Oint n,_) ->
+ let tac,t' = scalar n t2' in
+ t', do_list [do_both trace1 trace2; Lazy.force coq_c_mult_sym; tac]
+ | _ -> Oufo t, Lazy.force coq_c_nop
+ end
+ | Oopp t ->
+ let t',trace = reduce env t in
+ let trace',t'' = negate t' in
+ t'', do_list [do_left trace; trace']
+ | (Oint _ | Oatom _ | Oufo _) as t -> t, Lazy.force coq_c_nop
+
+let normalize_linear_term env t =
+ let t1,trace1 = reduce env t in
+ let trace2,t2 = condense env t1 in
+ let trace3,t3 = clear_zero t2 in
+ do_list [trace1; do_list trace2; do_list trace3], t3
+
+(* Cette fonction reproduit très exactement le comportement de [p_invert] *)
+let negate_oper = function
+ Eq -> Neq | Neq -> Eq | Leq -> Gt | Geq -> Lt | Lt -> Geq | Gt -> Leq
+
+let normalize_equation env (negated,depends,origin,path) (oper,t1,t2) =
+ let mk_step t1 t2 f kind =
+ let t = f t1 t2 in
+ let trace, oterm = normalize_linear_term env t in
+ let equa = omega_of_oformula env kind oterm in
+ { e_comp = oper; e_left = t1; e_right = t2;
+ e_negated = negated; e_depends = depends;
+ e_origin = { o_hyp = origin; o_path = List.rev path };
+ e_trace = trace; e_omega = equa } in
+ try match (if negated then (negate_oper oper) else oper) with
+ | Eq -> mk_step t1 t2 (fun o1 o2 -> Oplus (o1,Oopp o2)) Omega2.EQUA
+ | Neq -> mk_step t1 t2 (fun o1 o2 -> Oplus (o1,Oopp o2)) Omega2.DISE
+ | Leq -> mk_step t1 t2 (fun o1 o2 -> Oplus (o2,Oopp o1)) Omega2.INEQ
+ | Geq -> mk_step t1 t2 (fun o1 o2 -> Oplus (o1,Oopp o2)) Omega2.INEQ
+ | Lt ->
+ mk_step t1 t2 (fun o1 o2 -> Oplus (Oplus(o2,Oint (-1)),Oopp o1))
+ Omega2.INEQ
+ | Gt ->
+ mk_step t1 t2 (fun o1 o2 -> Oplus (Oplus(o1,Oint (-1)),Oopp o2))
+ Omega2.INEQ
+ with e when Logic.catchable_exception e -> raise e
+
+(* \section{Compilation des hypothèses} *)
+
+let rec oformula_of_constr env t =
+ try match destructurate t with
+ | Kapp("Zplus",[t1;t2]) -> binop env (fun x y -> Oplus(x,y)) t1 t2
+ | Kapp("Zminus",[t1;t2]) ->binop env (fun x y -> Ominus(x,y)) t1 t2
+ | Kapp("Zmult",[t1;t2]) ->binop env (fun x y -> Omult(x,y)) t1 t2
+ | Kapp(("Zpos"|"Zneg"|"Z0"),_) ->
+ begin try Oint(recognize_number t)
+ with _ -> Oatom (add_reified_atom t env) end
+ | _ ->
+ Oatom (add_reified_atom t env)
+ with e when Logic.catchable_exception e ->
+ Oatom (add_reified_atom t env)
+
+and binop env c t1 t2 =
+ let t1' = oformula_of_constr env t1 in
+ let t2' = oformula_of_constr env t2 in
+ c t1' t2'
+
+and binprop env (neg2,depends,origin,path)
+ add_to_depends neg1 gl c t1 t2 =
+ let i = new_eq_id env in
+ let depends1 = if add_to_depends then Left i::depends else depends in
+ let depends2 = if add_to_depends then Right i::depends else depends in
+ if add_to_depends then
+ Hashtbl.add env.constructors i {o_hyp = origin; o_path = List.rev path};
+ let t1' =
+ oproposition_of_constr env (neg1,depends1,origin,O_left::path) gl t1 in
+ let t2' =
+ oproposition_of_constr env (neg2,depends2,origin,O_right::path) gl t2 in
+ (* On numérote le connecteur dans l'environnement. *)
+ c i t1' t2'
+
+and mk_equation env ctxt c connector t1 t2 =
+ let t1' = oformula_of_constr env t1 in
+ let t2' = oformula_of_constr env t2 in
+ (* On ajoute l'equation dans l'environnement. *)
+ let omega = normalize_equation env ctxt (connector,t1',t2') in
+ add_equation env omega;
+ Pequa (c,omega)
+
+and oproposition_of_constr env ((negated,depends,origin,path) as ctxt) gl c =
+ try match destructurate c with
+ | Kapp("eq",[typ;t1;t2])
+ when destructurate (Tacmach.pf_nf gl typ) = Kapp("Z",[]) ->
+ mk_equation env ctxt c Eq t1 t2
+ | Kapp("Zne",[t1;t2]) ->
+ mk_equation env ctxt c Neq t1 t2
+ | Kapp("Zle",[t1;t2]) ->
+ mk_equation env ctxt c Leq t1 t2
+ | Kapp("Zlt",[t1;t2]) ->
+ mk_equation env ctxt c Lt t1 t2
+ | Kapp("Zge",[t1;t2]) ->
+ mk_equation env ctxt c Geq t1 t2
+ | Kapp("Zgt",[t1;t2]) ->
+ mk_equation env ctxt c Gt t1 t2
+ | Kapp("True",[]) -> Ptrue
+ | Kapp("False",[]) -> Pfalse
+ | Kapp("not",[t]) ->
+ let t' =
+ oproposition_of_constr
+ env (not negated, depends, origin,(O_mono::path)) gl t in
+ Pnot t'
+ | Kapp("or",[t1;t2]) ->
+ binprop env ctxt (not negated) negated gl (fun i x y -> Por(i,x,y)) t1 t2
+ | Kapp("and",[t1;t2]) ->
+ binprop env ctxt negated negated gl
+ (fun i x y -> Pand(i,x,y)) t1 t2
+ | Kimp(t1,t2) ->
+ binprop env ctxt (not negated) (not negated) gl
+ (fun i x y -> Pimp(i,x,y)) t1 t2
+ | _ -> Pprop c
+ with e when Logic.catchable_exception e -> Pprop c
+
+(* Destructuration des hypothèses et de la conclusion *)
+
+let reify_gl env gl =
+ let concl = Tacmach.pf_concl gl in
+ let t_concl =
+ Pnot (oproposition_of_constr env (true,[],id_concl,[O_mono]) gl concl) in
+ if !debug then begin
+ Printf.printf "CONCL: "; pprint stdout t_concl; Printf.printf "\n"
+ end;
+ let rec loop = function
+ (i,t) :: lhyps ->
+ let t' = oproposition_of_constr env (false,[],i,[]) gl t in
+ if !debug then begin
+ Printf.printf "%s: " (Names.string_of_id i);
+ pprint stdout t';
+ Printf.printf "\n"
+ end;
+ (i,t') :: loop lhyps
+ | [] ->
+ if !debug then print_env_reification env;
+ [] in
+ let t_lhyps = loop (Tacmach.pf_hyps_types gl) in
+ (id_concl,t_concl) :: t_lhyps
+
+let rec destructurate_pos_hyp orig list_equations list_depends = function
+ | Pequa (_,e) -> [e :: list_equations]
+ | Ptrue | Pfalse | Pprop _ -> [list_equations]
+ | Pnot t -> destructurate_neg_hyp orig list_equations list_depends t
+ | Por (i,t1,t2) ->
+ let s1 =
+ destructurate_pos_hyp orig list_equations (i::list_depends) t1 in
+ let s2 =
+ destructurate_pos_hyp orig list_equations (i::list_depends) t2 in
+ s1 @ s2
+ | Pand(i,t1,t2) ->
+ let list_s1 =
+ destructurate_pos_hyp orig list_equations (list_depends) t1 in
+ let rec loop = function
+ le1 :: ll -> destructurate_pos_hyp orig le1 list_depends t2 @ loop ll
+ | [] -> [] in
+ loop list_s1
+ | Pimp(i,t1,t2) ->
+ let s1 =
+ destructurate_neg_hyp orig list_equations (i::list_depends) t1 in
+ let s2 =
+ destructurate_pos_hyp orig list_equations (i::list_depends) t2 in
+ s1 @ s2
+
+and destructurate_neg_hyp orig list_equations list_depends = function
+ | Pequa (_,e) -> [e :: list_equations]
+ | Ptrue | Pfalse | Pprop _ -> [list_equations]
+ | Pnot t -> destructurate_pos_hyp orig list_equations list_depends t
+ | Pand (i,t1,t2) ->
+ let s1 =
+ destructurate_neg_hyp orig list_equations (i::list_depends) t1 in
+ let s2 =
+ destructurate_neg_hyp orig list_equations (i::list_depends) t2 in
+ s1 @ s2
+ | Por(_,t1,t2) ->
+ let list_s1 =
+ destructurate_neg_hyp orig list_equations list_depends t1 in
+ let rec loop = function
+ le1 :: ll -> destructurate_neg_hyp orig le1 list_depends t2 @ loop ll
+ | [] -> [] in
+ loop list_s1
+ | Pimp(_,t1,t2) ->
+ let list_s1 =
+ destructurate_pos_hyp orig list_equations list_depends t1 in
+ let rec loop = function
+ le1 :: ll -> destructurate_neg_hyp orig le1 list_depends t2 @ loop ll
+ | [] -> [] in
+ loop list_s1
+
+let destructurate_hyps syst =
+ let rec loop = function
+ (i,t) :: l ->
+ let l_syst1 = destructurate_pos_hyp i [] [] t in
+ let l_syst2 = loop l in
+ cartesien l_syst1 l_syst2
+ | [] -> [[]] in
+ loop syst
+
+(* \subsection{Affichage d'un système d'équation} *)
+
+(* Affichage des dépendances de système *)
+let display_depend = function
+ Left i -> Printf.printf " L%d" i
+ | Right i -> Printf.printf " R%d" i
+
+let display_systems syst_list =
+ let display_omega om_e =
+ Printf.printf "%d : %a %s 0\n"
+ om_e.Omega2.id
+ (fun _ -> Omega2.display_eq display_omega_id)
+ (om_e.Omega2.body, om_e.Omega2.constant)
+ (Omega2.operator_of_eq om_e.Omega2.kind) in
+
+ let display_equation oformula_eq =
+ pprint stdout (Pequa (Lazy.force coq_c_nop,oformula_eq)); print_newline ();
+ display_omega oformula_eq.e_omega;
+ Printf.printf " Depends on:";
+ List.iter display_depend oformula_eq.e_depends;
+ Printf.printf "\n Path: %s"
+ (String.concat ""
+ (List.map (function O_left -> "L" | O_right -> "R" | O_mono -> "M")
+ oformula_eq.e_origin.o_path));
+ Printf.printf "\n Origin: %s -- Negated : %s\n"
+ (Names.string_of_id oformula_eq.e_origin.o_hyp)
+ (if oformula_eq.e_negated then "yes" else "false") in
+
+ let display_system syst =
+ Printf.printf "=SYSTEME==================================\n";
+ List.iter display_equation syst in
+ List.iter display_system syst_list
+
+(* Extraction des prédicats utilisées dans une trace. Permet ensuite le
+ calcul des hypothèses *)
+
+let rec hyps_used_in_trace = function
+ | act :: l ->
+ begin match act with
+ | Omega2.HYP e -> e.Omega2.id :: hyps_used_in_trace l
+ | Omega2.SPLIT_INEQ (_,(_,act1),(_,act2)) ->
+ hyps_used_in_trace act1 @ hyps_used_in_trace act2
+ | _ -> hyps_used_in_trace l
+ end
+ | [] -> []
+
+(* Extraction des variables déclarées dans une équation. Permet ensuite
+ de les déclarer dans l'environnement de la procédure réflexive et
+ éviter les créations de variable au vol *)
+
+let rec variable_stated_in_trace = function
+ | act :: l ->
+ begin match act with
+ | Omega2.STATE action ->
+ (*i nlle_equa: afine, def: afine, eq_orig: afine, i*)
+ (*i coef: int, var:int i*)
+ action :: variable_stated_in_trace l
+ | Omega2.SPLIT_INEQ (_,(_,act1),(_,act2)) ->
+ variable_stated_in_trace act1 @ variable_stated_in_trace act2
+ | _ -> variable_stated_in_trace l
+ end
+ | [] -> []
+;;
+
+let add_stated_equations env tree =
+ let rec loop = function
+ Tree(_,t1,t2) ->
+ list_union (loop t1) (loop t2)
+ | Leaf s -> variable_stated_in_trace s.s_trace in
+ (* Il faut trier les variables par ordre d'introduction pour ne pas risquer
+ de définir dans le mauvais ordre *)
+ let stated_equations =
+ List.sort (fun x y -> x.Omega2.st_var - y.Omega2.st_var) (loop tree) in
+ let add_env st =
+ (* On retransforme la définition de v en formule reifiée *)
+ let v_def = oformula_of_omega env st.Omega2.st_def in
+ (* Notez que si l'ordre de création des variables n'est pas respecté,
+ * ca va planter *)
+ let coq_v = coq_of_formula env v_def in
+ let v = add_reified_atom coq_v env in
+ (* Le terme qu'il va falloir introduire *)
+ let term_to_generalize = app coq_refl_equal [|Lazy.force coq_Z; coq_v|] in
+ (* sa représentation sous forme d'équation mais non réifié car on n'a pas
+ * l'environnement pour le faire correctement *)
+ let term_to_reify = (v_def,Oatom v) in
+ (* enregistre le lien entre la variable omega et la variable Coq *)
+ intern_omega_force env (Oatom v) st.Omega2.st_var;
+ (v, term_to_generalize,term_to_reify,st.Omega2.st_def.Omega2.id) in
+ List.map add_env stated_equations
+
+(* Calcule la liste des éclatements à réaliser sur les hypothèses
+ nécessaires pour extraire une liste d'équations donnée *)
+
+let rec get_eclatement env = function
+ i :: r ->
+ let l = try (get_equation env i).e_depends with Not_found -> [] in
+ list_union l (get_eclatement env r)
+ | [] -> []
+
+let select_smaller l =
+ let comp (_,x) (_,y) = List.length x - List.length y in
+ try List.hd (List.sort comp l) with Failure _ -> failwith "select_smaller"
+
+let filter_compatible_systems required systems =
+ let rec select = function
+ (x::l) ->
+ if List.mem x required then select l
+ else if List.mem (barre x) required then raise Exit
+ else x :: select l
+ | [] -> [] in
+ map_exc (function (sol,splits) -> (sol,select splits)) systems
+
+let rec equas_of_solution_tree = function
+ Tree(_,t1,t2) ->
+ list_union (equas_of_solution_tree t1) (equas_of_solution_tree t2)
+ | Leaf s -> s.s_equa_deps
+
+
+let really_useful_prop l_equa c =
+ let rec real_of = function
+ Pequa(t,_) -> t
+ | Ptrue -> app coq_true [||]
+ | Pfalse -> app coq_false [||]
+ | Pnot t1 -> app coq_not [|real_of t1|]
+ | Por(_,t1,t2) -> app coq_or [|real_of t1; real_of t2|]
+ | Pand(_,t1,t2) -> app coq_and [|real_of t1; real_of t2|]
+ (* Attention : implications sur le lifting des variables à comprendre ! *)
+ | Pimp(_,t1,t2) -> Term.mkArrow (real_of t1) (real_of t2)
+ | Pprop t -> t in
+ let rec loop c =
+ match c with
+ Pequa(_,e) ->
+ if List.mem e.e_omega.Omega2.id l_equa then Some c else None
+ | Ptrue -> None
+ | Pfalse -> None
+ | Pnot t1 ->
+ begin match loop t1 with None -> None | Some t1' -> Some (Pnot t1') end
+ | Por(i,t1,t2) -> binop (fun (t1,t2) -> Por(i,t1,t2)) t1 t2
+ | Pand(i,t1,t2) -> binop (fun (t1,t2) -> Pand(i,t1,t2)) t1 t2
+ | Pimp(i,t1,t2) -> binop (fun (t1,t2) -> Pimp(i,t1,t2)) t1 t2
+ | Pprop t -> None
+ and binop f t1 t2 =
+ begin match loop t1, loop t2 with
+ None, None -> None
+ | Some t1',Some t2' -> Some (f(t1',t2'))
+ | Some t1',None -> Some (f(t1',Pprop (real_of t2)))
+ | None,Some t2' -> Some (f(Pprop (real_of t1),t2'))
+ end in
+ match loop c with
+ None -> Pprop (real_of c)
+ | Some t -> t
+
+let rec display_solution_tree ch = function
+ Leaf t ->
+ output_string ch
+ (Printf.sprintf "%d[%s]"
+ t.s_index
+ (String.concat " " (List.map string_of_int t.s_equa_deps)))
+ | Tree(i,t1,t2) ->
+ Printf.fprintf ch "S%d(%a,%a)" i
+ display_solution_tree t1 display_solution_tree t2
+
+let rec solve_with_constraints all_solutions path =
+ let rec build_tree sol buf = function
+ [] -> Leaf sol
+ | (Left i :: remainder) ->
+ Tree(i,
+ build_tree sol (Left i :: buf) remainder,
+ solve_with_constraints all_solutions (List.rev(Right i :: buf)))
+ | (Right i :: remainder) ->
+ Tree(i,
+ solve_with_constraints all_solutions (List.rev (Left i :: buf)),
+ build_tree sol (Right i :: buf) remainder) in
+ let weighted = filter_compatible_systems path all_solutions in
+ let (winner_sol,winner_deps) =
+ try select_smaller weighted
+ with e ->
+ Printf.printf "%d - %d\n"
+ (List.length weighted) (List.length all_solutions);
+ List.iter display_depend path; raise e in
+ build_tree winner_sol (List.rev path) winner_deps
+
+let find_path {o_hyp=id;o_path=p} env =
+ let rec loop_path = function
+ ([],l) -> Some l
+ | (x1::l1,x2::l2) when x1 = x2 -> loop_path (l1,l2)
+ | _ -> None in
+ let rec loop_id i = function
+ CCHyp{o_hyp=id';o_path=p'} :: l when id = id' ->
+ begin match loop_path (p',p) with
+ Some r -> i,r
+ | None -> loop_id (i+1) l
+ end
+ | _ :: l -> loop_id (i+1) l
+ | [] -> failwith "find_path" in
+ loop_id 0 env
+
+let mk_direction_list l =
+ let trans = function
+ O_left -> coq_d_left | O_right -> coq_d_right | O_mono -> coq_d_mono in
+ mk_list (Lazy.force coq_direction) (List.map (fun d-> Lazy.force(trans d)) l)
+
+
+(* \section{Rejouer l'historique} *)
+
+let get_hyp env_hyp i =
+ try list_index (CCEqua i) env_hyp
+ with Not_found -> failwith (Printf.sprintf "get_hyp %d" i)
+
+let replay_history env env_hyp =
+ let rec loop env_hyp t =
+ match t with
+ | Omega2.CONTRADICTION (e1,e2) :: l ->
+ let trace = mk_nat (List.length e1.Omega2.body) in
+ mkApp (Lazy.force coq_s_contradiction,
+ [| trace ; mk_nat (get_hyp env_hyp e1.Omega2.id);
+ mk_nat (get_hyp env_hyp e2.Omega2.id) |])
+ | Omega2.DIVIDE_AND_APPROX (e1,e2,k,d) :: l ->
+ mkApp (Lazy.force coq_s_div_approx,
+ [| mk_Z k; mk_Z d;
+ reified_of_omega env e2.Omega2.body e2.Omega2.constant;
+ mk_nat (List.length e2.Omega2.body);
+ loop env_hyp l; mk_nat (get_hyp env_hyp e1.Omega2.id) |])
+ | Omega2.NOT_EXACT_DIVIDE (e1,k) :: l ->
+ let e2_constant = Omega2.floor_div e1.Omega2.constant k in
+ let d = e1.Omega2.constant - e2_constant * k in
+ let e2_body = Omega2.map_eq_linear (fun c -> c / k) e1.Omega2.body in
+ mkApp (Lazy.force coq_s_not_exact_divide,
+ [|mk_Z k; mk_Z d;
+ reified_of_omega env e2_body e2_constant;
+ mk_nat (List.length e2_body);
+ mk_nat (get_hyp env_hyp e1.Omega2.id)|])
+ | Omega2.EXACT_DIVIDE (e1,k) :: l ->
+ let e2_body =
+ Omega2.map_eq_linear (fun c -> c / k) e1.Omega2.body in
+ let e2_constant = Omega2.floor_div e1.Omega2.constant k in
+ mkApp (Lazy.force coq_s_exact_divide,
+ [|mk_Z k;
+ reified_of_omega env e2_body e2_constant;
+ mk_nat (List.length e2_body);
+ loop env_hyp l; mk_nat (get_hyp env_hyp e1.Omega2.id)|])
+ | (Omega2.MERGE_EQ(e3,e1,e2)) :: l ->
+ let n1 = get_hyp env_hyp e1.Omega2.id and n2 = get_hyp env_hyp e2 in
+ mkApp (Lazy.force coq_s_merge_eq,
+ [| mk_nat (List.length e1.Omega2.body);
+ mk_nat n1; mk_nat n2;
+ loop (CCEqua e3:: env_hyp) l |])
+ | Omega2.SUM(e3,(k1,e1),(k2,e2)) :: l ->
+ let n1 = get_hyp env_hyp e1.Omega2.id
+ and n2 = get_hyp env_hyp e2.Omega2.id in
+ let trace = shuffle_path k1 e1.Omega2.body k2 e2.Omega2.body in
+ mkApp (Lazy.force coq_s_sum,
+ [| mk_Z k1; mk_nat n1; mk_Z k2;
+ mk_nat n2; trace; (loop (CCEqua e3 :: env_hyp) l) |])
+ | Omega2.CONSTANT_NOT_NUL(e,k) :: l ->
+ mkApp (Lazy.force coq_s_constant_not_nul,
+ [| mk_nat (get_hyp env_hyp e) |])
+ | Omega2.CONSTANT_NEG(e,k) :: l ->
+ mkApp (Lazy.force coq_s_constant_neg,
+ [| mk_nat (get_hyp env_hyp e) |])
+ | Omega2.STATE {Omega2.st_new_eq=new_eq; Omega2.st_def =def;
+ Omega2.st_orig=orig; Omega2.st_coef=m;
+ Omega2.st_var=sigma } :: l ->
+ let n1 = get_hyp env_hyp orig.Omega2.id
+ and n2 = get_hyp env_hyp def.Omega2.id in
+ let v = unintern_omega env sigma in
+ let o_def = oformula_of_omega env def in
+ let o_orig = oformula_of_omega env orig in
+ let body =
+ Oplus (o_orig,Omult (Oplus (Oopp v,o_def), Oint m)) in
+ let trace,_ = normalize_linear_term env body in
+ mkApp (Lazy.force coq_s_state,
+ [| mk_Z m; trace; mk_nat n1; mk_nat n2;
+ loop (CCEqua new_eq.Omega2.id :: env_hyp) l |])
+ | Omega2.HYP _ :: l -> loop env_hyp l
+ | Omega2.CONSTANT_NUL e :: l ->
+ mkApp (Lazy.force coq_s_constant_nul,
+ [| mk_nat (get_hyp env_hyp e) |])
+ | Omega2.NEGATE_CONTRADICT(e1,e2,b) :: l ->
+ mkApp (Lazy.force coq_s_negate_contradict,
+ [| mk_nat (get_hyp env_hyp e1.Omega2.id);
+ mk_nat (get_hyp env_hyp e2.Omega2.id) |])
+ | Omega2.SPLIT_INEQ(e,(e1,l1),(e2,l2)) :: l ->
+ let i = get_hyp env_hyp e.Omega2.id in
+ let r1 = loop (CCEqua e1 :: env_hyp) l1 in
+ let r2 = loop (CCEqua e2 :: env_hyp) l2 in
+ mkApp (Lazy.force coq_s_split_ineq,
+ [| mk_nat (List.length e.Omega2.body); mk_nat i; r1 ; r2 |])
+ | (Omega2.FORGET_C _ | Omega2.FORGET _ | Omega2.FORGET_I _) :: l ->
+ loop env_hyp l
+ | (Omega2.WEAKEN _ ) :: l -> failwith "not_treated"
+ | [] -> failwith "no contradiction"
+ in loop env_hyp
+
+let rec decompose_tree env ctxt = function
+ Tree(i,left,right) ->
+ let org =
+ try Hashtbl.find env.constructors i
+ with Not_found ->
+ failwith (Printf.sprintf "Cannot find constructor %d" i) in
+ let (index,path) = find_path org ctxt in
+ let left_hyp = CCHyp{o_hyp=org.o_hyp;o_path=org.o_path @ [O_left]} in
+ let right_hyp = CCHyp{o_hyp=org.o_hyp;o_path=org.o_path @ [O_right]} in
+ app coq_e_split
+ [| mk_nat index;
+ mk_direction_list path;
+ decompose_tree env (left_hyp::ctxt) left;
+ decompose_tree env (right_hyp::ctxt) right |]
+ | Leaf s ->
+ decompose_tree_hyps s.s_trace env ctxt s.s_equa_deps
+and decompose_tree_hyps trace env ctxt = function
+ [] -> app coq_e_solve [| replay_history env ctxt trace |]
+ | (i::l) ->
+ let equation =
+ try Hashtbl.find env.equations i
+ with Not_found ->
+ failwith (Printf.sprintf "Cannot find equation %d" i) in
+ let (index,path) = find_path equation.e_origin ctxt in
+ let full_path = if equation.e_negated then path @ [O_mono] else path in
+ let cont =
+ decompose_tree_hyps trace env
+ (CCEqua equation.e_omega.Omega2.id :: ctxt) l in
+ app coq_e_extract [|mk_nat index;
+ mk_direction_list full_path;
+ cont |]
+
+(* \section{La fonction principale} *)
+ (* Cette fonction construit la
+trace pour la procédure de décision réflexive. A partir des résultats
+de l'extraction des systèmes, elle lance la résolution par Omega, puis
+l'extraction d'un ensemble minimal de solutions permettant la
+résolution globale du système et enfin construit la trace qui permet
+de faire rejouer cette solution par la tactique réflexive. *)
+
+let resolution env full_reified_goal systems_list =
+ let num = ref 0 in
+ let solve_system list_eq =
+ let index = !num in
+ let system = List.map (fun eq -> eq.e_omega) list_eq in
+ let trace =
+ Omega2.simplify_strong
+ ((fun () -> new_eq_id env),new_omega_id,display_omega_id)
+ system in
+ (* calcule les hypotheses utilisées pour la solution *)
+ let vars = hyps_used_in_trace trace in
+ let splits = get_eclatement env vars in
+ if !debug then begin
+ Printf.printf "SYSTEME %d\n" index;
+ Omega2.display_action display_omega_id trace;
+ print_string "\n Depend :";
+ List.iter (fun i -> Printf.printf " %d" i) vars;
+ print_string "\n Split points :";
+ List.iter display_depend splits;
+ Printf.printf "\n------------------------------------\n"
+ end;
+ incr num;
+ {s_index = index; s_trace = trace; s_equa_deps = vars}, splits in
+ if !debug then Printf.printf "\n====================================\n";
+ let all_solutions = List.map solve_system systems_list in
+ let solution_tree = solve_with_constraints all_solutions [] in
+ if !debug then begin
+ display_solution_tree stdout solution_tree;
+ print_newline()
+ end;
+ (* calcule la liste de toutes les hypothèses utilisées dans l'arbre de solution *)
+ let useful_equa_id = list_uniq (equas_of_solution_tree solution_tree) in
+ (* recupere explicitement ces equations *)
+ let equations = List.map (get_equation env) useful_equa_id in
+ let l_hyps' = list_uniq (List.map (fun e -> e.e_origin.o_hyp) equations) in
+ let l_hyps = id_concl :: list_remove id_concl l_hyps' in
+ let useful_hyps =
+ List.map (fun id -> List.assoc id full_reified_goal) l_hyps in
+ let useful_vars = vars_of_equations equations in
+ (* variables a introduire *)
+ let to_introduce = add_stated_equations env solution_tree in
+ let stated_vars = List.map (fun (v,_,_,_) -> v) to_introduce in
+ let l_generalize_arg = List.map (fun (_,t,_,_) -> t) to_introduce in
+ let hyp_stated_vars = List.map (fun (_,_,_,id) -> CCEqua id) to_introduce in
+ (* L'environnement de base se construit en deux morceaux :
+ - les variables des équations utiles
+ - les nouvelles variables declarées durant les preuves *)
+ let all_vars_env = useful_vars @ stated_vars in
+ let basic_env =
+ let rec loop i = function
+ var :: l ->
+ let t = get_reified_atom env var in
+ Hashtbl.add env.real_indices var i; t :: loop (i+1) l
+ | [] -> [] in
+ loop 0 all_vars_env in
+ let env_terms_reified = mk_list (Lazy.force coq_Z) basic_env in
+ (* On peut maintenant généraliser le but : env est a jour *)
+ let l_reified_stated =
+ List.map (fun (_,_,(l,r),_) ->
+ app coq_p_eq [| reified_of_formula env l;
+ reified_of_formula env r |])
+ to_introduce in
+ let reified_concl =
+ match useful_hyps with
+ (Pnot p) :: _ ->
+ reified_of_proposition env (really_useful_prop useful_equa_id p)
+ | _ -> reified_of_proposition env Pfalse in
+ let l_reified_terms =
+ (List.map
+ (fun p ->
+ reified_of_proposition env (really_useful_prop useful_equa_id p))
+ (List.tl useful_hyps)) in
+ let env_props_reified = mk_plist env.props in
+ let reified_goal =
+ mk_list (Lazy.force coq_proposition)
+ (l_reified_stated @ l_reified_terms) in
+ let reified =
+ app coq_interp_sequent
+ [| env_props_reified;env_terms_reified;reified_concl;reified_goal |] in
+ let normalize_equation e =
+ let rec loop = function
+ [] -> app (if e.e_negated then coq_p_invert else coq_p_step)
+ [| e.e_trace |]
+ | ((O_left | O_mono) :: l) -> app coq_p_left [| loop l |]
+ | (O_right :: l) -> app coq_p_right [| loop l |] in
+ app coq_pair_step
+ [| mk_nat (list_index e.e_origin.o_hyp l_hyps) ;
+ loop e.e_origin.o_path |] in
+ let normalization_trace =
+ mk_list (Lazy.force coq_h_step) (List.map normalize_equation equations) in
+
+ let initial_context =
+ List.map (fun id -> CCHyp{o_hyp=id;o_path=[]}) (List.tl l_hyps) in
+ let context =
+ CCHyp{o_hyp=id_concl;o_path=[]} :: hyp_stated_vars @ initial_context in
+ let decompose_tactic = decompose_tree env context solution_tree in
+
+ Tactics.generalize
+ (l_generalize_arg @ List.map Term.mkVar (List.tl l_hyps)) >>
+ Tactics.change_in_concl None reified >>
+ Tactics.apply (app coq_do_omega [|decompose_tactic; normalization_trace|]) >>
+ show_goal >>
+ Tactics.normalise_in_concl >>
+ Tactics.apply (Lazy.force coq_I)
+
+let total_reflexive_omega_tactic gl =
+ if !Options.v7 then Util.error "ROmega does not work in v7 mode";
+ try
+ let env = new_environment () in
+ let full_reified_goal = reify_gl env gl in
+ let systems_list = destructurate_hyps full_reified_goal in
+ if !debug then begin
+ display_systems systems_list
+ end;
+ resolution env full_reified_goal systems_list gl
+ with Omega2.NO_CONTRADICTION -> Util.error "ROmega can't solve this system"
+
+
+(*i let tester = Tacmach.hide_atomic_tactic "TestOmega" test_tactic i*)
+
+