diff options
author | Samuel Mimram <samuel.mimram@ens-lyon.org> | 2004-07-28 21:54:47 +0000 |
---|---|---|
committer | Samuel Mimram <samuel.mimram@ens-lyon.org> | 2004-07-28 21:54:47 +0000 |
commit | 6b649aba925b6f7462da07599fe67ebb12a3460e (patch) | |
tree | 43656bcaa51164548f3fa14e5b10de5ef1088574 /contrib/romega/omega2.ml |
Imported Upstream version 8.0pl1upstream/8.0pl1
Diffstat (limited to 'contrib/romega/omega2.ml')
-rw-r--r-- | contrib/romega/omega2.ml | 675 |
1 files changed, 675 insertions, 0 deletions
diff --git a/contrib/romega/omega2.ml b/contrib/romega/omega2.ml new file mode 100644 index 00000000..91aefc60 --- /dev/null +++ b/contrib/romega/omega2.ml @@ -0,0 +1,675 @@ +(************************************************************************) +(* v * The Coq Proof Assistant / The Coq Development Team *) +(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(************************************************************************) +(**************************************************************************) +(* *) +(* Omega: a solver of quantifier-free problems in Presburger Arithmetic *) +(* *) +(* Pierre Crégut (CNET, Lannion, France) *) +(* *) +(* 13/10/2002 : modified to cope with an external numbering of equations *) +(* and hypothesis. Its use for Omega is not more complex and it makes *) +(* things much simpler for the reflexive version where we should limit *) +(* the number of source of numbering. *) +(**************************************************************************) + +open Names + +let flat_map f = + let rec flat_map_f = function + | [] -> [] + | x :: l -> f x @ flat_map_f l + in + flat_map_f + +let pp i = print_int i; print_newline (); flush stdout + +let debug = ref false + +let filter = List.partition + +let push v l = l := v :: !l + +let rec pgcd x y = if y = 0 then x else pgcd y (x mod y) + +let pgcd_l = function + | [] -> failwith "pgcd_l" + | x :: l -> List.fold_left pgcd x l + +let floor_div a b = + match a >=0 , b > 0 with + | true,true -> a / b + | false,false -> a / b + | true, false -> (a-1) / b - 1 + | false,true -> (a+1) / b - 1 + +type coeff = {c: int ; v: int} + +type linear = coeff list + +type eqn_kind = EQUA | INEQ | DISE + +type afine = { + (* a number uniquely identifying the equation *) + id: int ; + (* a boolean true for an eq, false for an ineq (Sigma a_i x_i >= 0) *) + kind: eqn_kind; + (* the variables and their coefficient *) + body: coeff list; + (* a constant *) + constant: int } + +type state_action = { + st_new_eq : afine; + st_def : afine; + st_orig : afine; + st_coef : int; + st_var : int } + +type action = + | DIVIDE_AND_APPROX of afine * afine * int * int + | NOT_EXACT_DIVIDE of afine * int + | FORGET_C of int + | EXACT_DIVIDE of afine * int + | SUM of int * (int * afine) * (int * afine) + | STATE of state_action + | HYP of afine + | FORGET of int * int + | FORGET_I of int * int + | CONTRADICTION of afine * afine + | NEGATE_CONTRADICT of afine * afine * bool + | MERGE_EQ of int * afine * int + | CONSTANT_NOT_NUL of int * int + | CONSTANT_NUL of int + | CONSTANT_NEG of int * int + | SPLIT_INEQ of afine * (int * action list) * (int * action list) + | WEAKEN of int * int + +exception UNSOLVABLE + +exception NO_CONTRADICTION + +let display_eq print_var (l,e) = + let _ = + List.fold_left + (fun not_first f -> + print_string + (if f.c < 0 then "- " else if not_first then "+ " else ""); + let c = abs f.c in + if c = 1 then + Printf.printf "%s " (print_var f.v) + else + Printf.printf "%d %s " c (print_var f.v); + true) + false l + in + if e > 0 then + Printf.printf "+ %d " e + else if e < 0 then + Printf.printf "- %d " (abs e) + +let rec trace_length l = + let action_length accu = function + | SPLIT_INEQ (_,(_,l1),(_,l2)) -> + accu + 1 + trace_length l1 + trace_length l2 + | _ -> accu + 1 in + List.fold_left action_length 0 l + +let operator_of_eq = function + | EQUA -> "=" | DISE -> "!=" | INEQ -> ">=" + +let kind_of = function + | EQUA -> "equation" | DISE -> "disequation" | INEQ -> "inequation" + +let display_system print_var l = + List.iter + (fun { kind=b; body=e; constant=c; id=id} -> + print_int id; print_string ": "; + display_eq print_var (e,c); print_string (operator_of_eq b); + print_string "0\n") + l; + print_string "------------------------\n\n" + +let display_inequations print_var l = + List.iter (fun e -> display_eq print_var e;print_string ">= 0\n") l; + print_string "------------------------\n\n" + +let rec display_action print_var = function + | act :: l -> begin match act with + | DIVIDE_AND_APPROX (e1,e2,k,d) -> + Printf.printf + "Inequation E%d is divided by %d and the constant coefficient is \ + rounded by substracting %d.\n" e1.id k d + | NOT_EXACT_DIVIDE (e,k) -> + Printf.printf + "Constant in equation E%d is not divisible by the pgcd \ + %d of its other coefficients.\n" e.id k + | EXACT_DIVIDE (e,k) -> + Printf.printf + "Equation E%d is divided by the pgcd \ + %d of its coefficients.\n" e.id k + | WEAKEN (e,k) -> + Printf.printf + "To ensure a solution in the dark shadow \ + the equation E%d is weakened by %d.\n" e k + | SUM (e,(c1,e1),(c2,e2)) -> + Printf.printf + "We state %s E%d = %d %s E%d + %d %s E%d.\n" + (kind_of e1.kind) e c1 (kind_of e1.kind) e1.id c2 + (kind_of e2.kind) e2.id + | STATE { st_new_eq = e; st_coef = x} -> + Printf.printf "We define a new equation %d :" e.id; + display_eq print_var (e.body,e.constant); + print_string (operator_of_eq e.kind); print_string " 0\n" + | HYP e -> + Printf.printf "We define %d :" e.id; + display_eq print_var (e.body,e.constant); + print_string (operator_of_eq e.kind); print_string " 0\n" + | FORGET_C e -> Printf.printf "E%d is trivially satisfiable.\n" e + | FORGET (e1,e2) -> Printf.printf "E%d subsumes E%d.\n" e1 e2 + | FORGET_I (e1,e2) -> Printf.printf "E%d subsumes E%d.\n" e1 e2 + | MERGE_EQ (e,e1,e2) -> + Printf.printf "E%d and E%d can be merged into E%d.\n" e1.id e2 e + | CONTRADICTION (e1,e2) -> + Printf.printf + "equations E%d and E%d implie a contradiction on their \ + constant factors.\n" e1.id e2.id + | NEGATE_CONTRADICT(e1,e2,b) -> + Printf.printf + "Eqations E%d and E%d state that their body is at the same time + equal and different\n" e1.id e2.id + | CONSTANT_NOT_NUL (e,k) -> + Printf.printf "equation E%d states %d=0.\n" e k + | CONSTANT_NEG(e,k) -> + Printf.printf "equation E%d states %d >= 0.\n" e k + | CONSTANT_NUL e -> + Printf.printf "inequation E%d states 0 != 0.\n" e + | SPLIT_INEQ (e,(e1,l1),(e2,l2)) -> + Printf.printf "equation E%d is split in E%d and E%d\n\n" e.id e1 e2; + display_action print_var l1; + print_newline (); + display_action print_var l2; + print_newline () + end; display_action print_var l + | [] -> + flush stdout + +(*""*) +let default_print_var v = Printf.sprintf "XX%d" v + +let add_event, history, clear_history = + let accu = ref [] in + (fun (v:action) -> if !debug then display_action default_print_var [v]; push v accu), + (fun () -> !accu), + (fun () -> accu := []) + +let nf_linear = Sort.list (fun x y -> x.v > y.v) + +let nf ((b : bool),(e,(x : int))) = (b,(nf_linear e,x)) + +let map_eq_linear f = + let rec loop = function + | x :: l -> let c = f x.c in if c=0 then loop l else {v=x.v; c=c} :: loop l + | [] -> [] + in + loop + +let map_eq_afine f e = + { id = e.id; kind = e.kind; body = map_eq_linear f e.body; + constant = f e.constant } + +let negate_eq = map_eq_afine (fun x -> -x) + +let rec sum p0 p1 = match (p0,p1) with + | ([], l) -> l | (l, []) -> l + | (((x1::l1) as l1'), ((x2::l2) as l2')) -> + if x1.v = x2.v then + let c = x1.c + x2.c in + if c = 0 then sum l1 l2 else {v=x1.v;c=c} :: sum l1 l2 + else if x1.v > x2.v then + x1 :: sum l1 l2' + else + x2 :: sum l1' l2 + +let sum_afine new_eq_id eq1 eq2 = + { kind = eq1.kind; id = new_eq_id (); + body = sum eq1.body eq2.body; constant = eq1.constant + eq2.constant } + +exception FACTOR1 + +let rec chop_factor_1 = function + | x :: l -> + if abs x.c = 1 then x,l else let (c',l') = chop_factor_1 l in (c',x::l') + | [] -> raise FACTOR1 + +exception CHOPVAR + +let rec chop_var v = function + | f :: l -> if f.v = v then f,l else let (f',l') = chop_var v l in (f',f::l') + | [] -> raise CHOPVAR + +let normalize ({id=id; kind=eq_flag; body=e; constant =x} as eq) = + if e = [] then begin + match eq_flag with + | EQUA -> + if x =0 then [] else begin + add_event (CONSTANT_NOT_NUL(id,x)); raise UNSOLVABLE + end + | DISE -> + if x <> 0 then [] else begin + add_event (CONSTANT_NUL id); raise UNSOLVABLE + end + | INEQ -> + if x >= 0 then [] else begin + add_event (CONSTANT_NEG(id,x)); raise UNSOLVABLE + end + end else + let gcd = pgcd_l (List.map (fun f -> abs f.c) e) in + if eq_flag=EQUA & x mod gcd <> 0 then begin + add_event (NOT_EXACT_DIVIDE (eq,gcd)); raise UNSOLVABLE + end else if eq_flag=DISE & x mod gcd <> 0 then begin + add_event (FORGET_C eq.id); [] + end else if gcd <> 1 then begin + let c = floor_div x gcd in + let d = x - c * gcd in + let new_eq = {id=id; kind=eq_flag; constant=c; + body=map_eq_linear (fun c -> c / gcd) e} in + add_event (if eq_flag=EQUA or eq_flag = DISE then EXACT_DIVIDE(eq,gcd) + else DIVIDE_AND_APPROX(eq,new_eq,gcd,d)); + [new_eq] + end else [eq] + +let eliminate_with_in new_eq_id {v=v;c=c_unite} eq2 + ({body=e1; constant=c1} as eq1) = + try + let (f,_) = chop_var v e1 in + let coeff = if c_unite=1 then -f.c else if c_unite= -1 then f.c + else failwith "eliminate_with_in" in + let res = sum_afine new_eq_id eq1 (map_eq_afine (fun c -> c * coeff) eq2) in + add_event (SUM (res.id,(1,eq1),(coeff,eq2))); res + with CHOPVAR -> eq1 + +let omega_mod a b = a - b * floor_div (2 * a + b) (2 * b) +let banerjee_step (new_eq_id,new_var_id,print_var) original l1 l2 = + let e = original.body in + let sigma = new_var_id () in + let smallest,var = + try + List.fold_left (fun (v,p) c -> if v > (abs c.c) then abs c.c,c.v else (v,p)) + (abs (List.hd e).c, (List.hd e).v) (List.tl e) + with Failure "tl" -> display_system print_var [original] ; failwith "TL" in + let m = smallest + 1 in + let new_eq = + { constant = omega_mod original.constant m; + body = {c= -m;v=sigma} :: + map_eq_linear (fun a -> omega_mod a m) original.body; + id = new_eq_id (); kind = EQUA } in + let definition = + { constant = - floor_div (2 * original.constant + m) (2 * m); + body = map_eq_linear (fun a -> - floor_div (2 * a + m) (2 * m)) + original.body; + id = new_eq_id (); kind = EQUA } in + add_event (STATE {st_new_eq = new_eq; st_def = definition; + st_orig =original; st_coef = m; st_var = sigma}); + let new_eq = List.hd (normalize new_eq) in + let eliminated_var, def = chop_var var new_eq.body in + let other_equations = + flat_map (fun e -> normalize (eliminate_with_in new_eq_id eliminated_var new_eq e)) + l1 in + let inequations = + flat_map (fun e -> normalize (eliminate_with_in new_eq_id eliminated_var new_eq e)) + l2 in + let original' = eliminate_with_in new_eq_id eliminated_var new_eq original in + let mod_original = map_eq_afine (fun c -> c / m) original' in + add_event (EXACT_DIVIDE (original',m)); + List.hd (normalize mod_original),other_equations,inequations + +let rec eliminate_one_equation ((new_eq_id,new_var_id,print_var) as new_ids) (e,other,ineqs) = + if !debug then display_system print_var (e::other); + try + let v,def = chop_factor_1 e.body in + (flat_map (fun e' -> normalize (eliminate_with_in new_eq_id v e e')) other, + flat_map (fun e' -> normalize (eliminate_with_in new_eq_id v e e')) ineqs) + with FACTOR1 -> + eliminate_one_equation new_ids (banerjee_step new_ids e other ineqs) + +let rec banerjee ((_,_,print_var) as new_ids) (sys_eq,sys_ineq) = + let rec fst_eq_1 = function + (eq::l) -> + if List.exists (fun x -> abs x.c = 1) eq.body then eq,l + else let (eq',l') = fst_eq_1 l in (eq',eq::l') + | [] -> raise Not_found in + match sys_eq with + [] -> if !debug then display_system print_var sys_ineq; sys_ineq + | (e1::rest) -> + let eq,other = try fst_eq_1 sys_eq with Not_found -> (e1,rest) in + if eq.body = [] then + if eq.constant = 0 then begin + add_event (FORGET_C eq.id); banerjee new_ids (other,sys_ineq) + end else begin + add_event (CONSTANT_NOT_NUL(eq.id,eq.constant)); raise UNSOLVABLE + end + else + banerjee new_ids + (eliminate_one_equation new_ids (eq,other,sys_ineq)) + +type kind = INVERTED | NORMAL + +let redundancy_elimination new_eq_id system = + let normal = function + ({body=f::_} as e) when f.c < 0 -> negate_eq e, INVERTED + | e -> e,NORMAL in + let table = Hashtbl.create 7 in + List.iter + (fun e -> + let ({body=ne} as nx) ,kind = normal e in + if ne = [] then + if nx.constant < 0 then begin + add_event (CONSTANT_NEG(nx.id,nx.constant)); raise UNSOLVABLE + end else add_event (FORGET_C nx.id) + else + try + let (optnormal,optinvert) = Hashtbl.find table ne in + let final = + if kind = NORMAL then begin + match optnormal with + Some v -> + let kept = + if v.constant < nx.constant + then begin add_event (FORGET (v.id,nx.id));v end + else begin add_event (FORGET (nx.id,v.id));nx end in + (Some(kept),optinvert) + | None -> Some nx,optinvert + end else begin + match optinvert with + Some v -> + let kept = + if v.constant > nx.constant + then begin add_event (FORGET_I (v.id,nx.id));v end + else begin add_event (FORGET_I (nx.id,v.id));nx end in + (optnormal,Some(if v.constant > nx.constant then v else nx)) + | None -> optnormal,Some nx + end in + begin match final with + (Some high, Some low) -> + if high.constant < low.constant then begin + add_event(CONTRADICTION (high,negate_eq low)); + raise UNSOLVABLE + end + | _ -> () end; + Hashtbl.remove table ne; + Hashtbl.add table ne final + with Not_found -> + Hashtbl.add table ne + (if kind = NORMAL then (Some nx,None) else (None,Some nx))) + system; + let accu_eq = ref [] in + let accu_ineq = ref [] in + Hashtbl.iter + (fun p0 p1 -> match (p0,p1) with + | (e, (Some x, Some y)) when x.constant = y.constant -> + let id=new_eq_id () in + add_event (MERGE_EQ(id,x,y.id)); + push {id=id; kind=EQUA; body=x.body; constant=x.constant} accu_eq + | (e, (optnorm,optinvert)) -> + begin match optnorm with + Some x -> push x accu_ineq | _ -> () end; + begin match optinvert with + Some x -> push (negate_eq x) accu_ineq | _ -> () end) + table; + !accu_eq,!accu_ineq + +exception SOLVED_SYSTEM + +let select_variable system = + let table = Hashtbl.create 7 in + let push v c= + try let r = Hashtbl.find table v in r := max !r (abs c) + with Not_found -> Hashtbl.add table v (ref (abs c)) in + List.iter (fun {body=l} -> List.iter (fun f -> push f.v f.c) l) system; + let vmin,cmin = ref (-1), ref 0 in + let var_cpt = ref 0 in + Hashtbl.iter + (fun v ({contents = c}) -> + incr var_cpt; + if c < !cmin or !vmin = (-1) then begin vmin := v; cmin := c end) + table; + if !var_cpt < 1 then raise SOLVED_SYSTEM; + !vmin + +let classify v system = + List.fold_left + (fun (not_occ,below,over) eq -> + try let f,eq' = chop_var v eq.body in + if f.c >= 0 then (not_occ,((f.c,eq) :: below),over) + else (not_occ,below,((-f.c,eq) :: over)) + with CHOPVAR -> (eq::not_occ,below,over)) + ([],[],[]) system + +let product new_eq_id dark_shadow low high = + List.fold_left + (fun accu (a,eq1) -> + List.fold_left + (fun accu (b,eq2) -> + let eq = + sum_afine new_eq_id (map_eq_afine (fun c -> c * b) eq1) + (map_eq_afine (fun c -> c * a) eq2) in + add_event(SUM(eq.id,(b,eq1),(a,eq2))); + match normalize eq with + | [eq] -> + let final_eq = + if dark_shadow then + let delta = (a - 1) * (b - 1) in + add_event(WEAKEN(eq.id,delta)); + {id = eq.id; kind=INEQ; body = eq.body; + constant = eq.constant - delta} + else eq + in final_eq :: accu + | (e::_) -> failwith "Product dardk" + | [] -> accu) + accu high) + [] low + +let fourier_motzkin (_,new_eq_id,print_var) dark_shadow system = + let v = select_variable system in + let (ineq_out, ineq_low,ineq_high) = classify v system in + let expanded = ineq_out @ product new_eq_id dark_shadow ineq_low ineq_high in + if !debug then display_system print_var expanded; expanded + +let simplify ((new_eq_id,new_var_id,print_var) as new_ids) dark_shadow system = + if List.exists (fun e -> e.kind = DISE) system then + failwith "disequation in simplify"; + clear_history (); + List.iter (fun e -> add_event (HYP e)) system; + let system = flat_map normalize system in + let eqs,ineqs = filter (fun e -> e.kind=EQUA) system in + let simp_eq,simp_ineq = redundancy_elimination new_eq_id ineqs in + let system = (eqs @ simp_eq,simp_ineq) in + let rec loop1a system = + let sys_ineq = banerjee new_ids system in + loop1b sys_ineq + and loop1b sys_ineq = + let simp_eq,simp_ineq = redundancy_elimination new_eq_id sys_ineq in + if simp_eq = [] then simp_ineq else loop1a (simp_eq,simp_ineq) + in + let rec loop2 system = + try + let expanded = fourier_motzkin new_ids dark_shadow system in + loop2 (loop1b expanded) + with SOLVED_SYSTEM -> + if !debug then display_system print_var system; system + in + loop2 (loop1a system) + +let rec depend relie_on accu = function + | act :: l -> + begin match act with + | DIVIDE_AND_APPROX (e,_,_,_) -> + if List.mem e.id relie_on then depend relie_on (act::accu) l + else depend relie_on accu l + | EXACT_DIVIDE (e,_) -> + if List.mem e.id relie_on then depend relie_on (act::accu) l + else depend relie_on accu l + | WEAKEN (e,_) -> + if List.mem e relie_on then depend relie_on (act::accu) l + else depend relie_on accu l + | SUM (e,(_,e1),(_,e2)) -> + if List.mem e relie_on then + depend (e1.id::e2.id::relie_on) (act::accu) l + else + depend relie_on accu l + | STATE {st_new_eq=e} -> + if List.mem e.id relie_on then depend relie_on (act::accu) l + else depend relie_on accu l + | HYP e -> + if List.mem e.id relie_on then depend relie_on (act::accu) l + else depend relie_on accu l + | FORGET_C _ -> depend relie_on accu l + | FORGET _ -> depend relie_on accu l + | FORGET_I _ -> depend relie_on accu l + | MERGE_EQ (e,e1,e2) -> + if List.mem e relie_on then + depend (e1.id::e2::relie_on) (act::accu) l + else + depend relie_on accu l + | NOT_EXACT_DIVIDE (e,_) -> depend (e.id::relie_on) (act::accu) l + | CONTRADICTION (e1,e2) -> + depend (e1.id::e2.id::relie_on) (act::accu) l + | CONSTANT_NOT_NUL (e,_) -> depend (e::relie_on) (act::accu) l + | CONSTANT_NEG (e,_) -> depend (e::relie_on) (act::accu) l + | CONSTANT_NUL e -> depend (e::relie_on) (act::accu) l + | NEGATE_CONTRADICT (e1,e2,_) -> + depend (e1.id::e2.id::relie_on) (act::accu) l + | SPLIT_INEQ _ -> failwith "depend" + end + | [] -> relie_on, accu + +(* +let depend relie_on accu trace = + Printf.printf "Longueur de la trace initiale : %d\n" + (trace_length trace + trace_length accu); + let rel',trace' = depend relie_on accu trace in + Printf.printf "Longueur de la trace simplifiée : %d\n" (trace_length trace'); + rel',trace' +*) + +let solve (new_eq_id,new_eq_var,print_var) system = + try let _ = simplify new_eq_id false system in failwith "no contradiction" + with UNSOLVABLE -> display_action print_var (snd (depend [] [] (history ()))) + +let negation (eqs,ineqs) = + let diseq,_ = filter (fun e -> e.kind = DISE) ineqs in + let normal = function + | ({body=f::_} as e) when f.c < 0 -> negate_eq e, INVERTED + | e -> e,NORMAL in + let table = Hashtbl.create 7 in + List.iter (fun e -> + let {body=ne;constant=c} ,kind = normal e in + Hashtbl.add table (ne,c) (kind,e)) diseq; + List.iter (fun e -> + if e.kind <> EQUA then pp 9999; + let {body=ne;constant=c},kind = normal e in + try + let (kind',e') = Hashtbl.find table (ne,c) in + add_event (NEGATE_CONTRADICT (e,e',kind=kind')); + raise UNSOLVABLE + with Not_found -> ()) eqs + +exception FULL_SOLUTION of action list * int list + +let simplify_strong ((new_eq_id,new_var_id,print_var) as new_ids) system = + clear_history (); + List.iter (fun e -> add_event (HYP e)) system; + (* Initial simplification phase *) + let rec loop1a system = + negation system; + let sys_ineq = banerjee new_ids system in + loop1b sys_ineq + and loop1b sys_ineq = + let dise,ine = filter (fun e -> e.kind = DISE) sys_ineq in + let simp_eq,simp_ineq = redundancy_elimination new_eq_id ine in + if simp_eq = [] then dise @ simp_ineq + else loop1a (simp_eq,dise @ simp_ineq) + in + let rec loop2 system = + try + let expanded = fourier_motzkin new_ids false system in + loop2 (loop1b expanded) + with SOLVED_SYSTEM -> if !debug then display_system print_var system; system + in + let rec explode_diseq = function + | (de::diseq,ineqs,expl_map) -> + let id1 = new_eq_id () + and id2 = new_eq_id () in + let e1 = + {id = id1; kind=INEQ; body = de.body; constant = de.constant - 1} in + let e2 = + {id = id2; kind=INEQ; body = map_eq_linear (fun x -> -x) de.body; + constant = - de.constant - 1} in + let new_sys = + List.map (fun (what,sys) -> ((de.id,id1,true)::what, e1::sys)) + ineqs @ + List.map (fun (what,sys) -> ((de.id,id2,false)::what,e2::sys)) + ineqs + in + explode_diseq (diseq,new_sys,(de.id,(de,id1,id2))::expl_map) + | ([],ineqs,expl_map) -> ineqs,expl_map + in + try + let system = flat_map normalize system in + let eqs,ineqs = filter (fun e -> e.kind=EQUA) system in + let dise,ine = filter (fun e -> e.kind = DISE) ineqs in + let simp_eq,simp_ineq = redundancy_elimination new_eq_id ine in + let system = (eqs @ simp_eq,simp_ineq @ dise) in + let system' = loop1a system in + let diseq,ineq = filter (fun e -> e.kind = DISE) system' in + let first_segment = history () in + let sys_exploded,explode_map = explode_diseq (diseq,[[],ineq],[]) in + let all_solutions = + List.map + (fun (decomp,sys) -> + clear_history (); + try let _ = loop2 sys in raise NO_CONTRADICTION + with UNSOLVABLE -> + let relie_on,path = depend [] [] (history ()) in + let dc,_ = filter (fun (_,id,_) -> List.mem id relie_on) decomp in + let red = List.map (fun (x,_,_) -> x) dc in + (red,relie_on,decomp,path)) + sys_exploded + in + let max_count sys = + let tbl = Hashtbl.create 7 in + let augment x = + try incr (Hashtbl.find tbl x) + with Not_found -> Hashtbl.add tbl x (ref 1) in + let eq = ref (-1) and c = ref 0 in + List.iter (function + | ([],r_on,_,path) -> raise (FULL_SOLUTION (path,r_on)) + | (l,_,_,_) -> List.iter augment l) sys; + Hashtbl.iter (fun x v -> if !v > !c then begin eq := x; c := !v end) tbl; + !eq + in + let rec solve systems = + try + let id = max_count systems in + let rec sign = function + | ((id',_,b)::l) -> if id=id' then b else sign l + | [] -> failwith "solve" in + let s1,s2 = filter (fun (_,_,decomp,_) -> sign decomp) systems in + let s1' = + List.map (fun (dep,ro,dc,pa) -> (Util.list_except id dep,ro,dc,pa)) s1 in + let s2' = + List.map (fun (dep,ro,dc,pa) -> (Util.list_except id dep,ro,dc,pa)) s2 in + let (r1,relie1) = solve s1' + and (r2,relie2) = solve s2' in + let (eq,id1,id2) = List.assoc id explode_map in + [SPLIT_INEQ(eq,(id1,r1),(id2, r2))], eq.id :: Util.list_union relie1 relie2 + with FULL_SOLUTION (x0,x1) -> (x0,x1) + in + let act,relie_on = solve all_solutions in + snd(depend relie_on act first_segment) + with UNSOLVABLE -> snd (depend [] [] (history ())) |