summaryrefslogtreecommitdiff
path: root/contrib/omega
diff options
context:
space:
mode:
authorGravatar Samuel Mimram <smimram@debian.org>2008-07-25 15:12:53 +0200
committerGravatar Samuel Mimram <smimram@debian.org>2008-07-25 15:12:53 +0200
commita0cfa4f118023d35b767a999d5a2ac4b082857b4 (patch)
treedabcac548e299fee1da464c93b3dba98484f45b1 /contrib/omega
parent2281410e38ef99d025ea77194585a9bc019fdaa9 (diff)
Imported Upstream version 8.2~beta3+dfsgupstream/8.2.beta3+dfsg
Diffstat (limited to 'contrib/omega')
-rw-r--r--contrib/omega/Omega.v5
-rw-r--r--contrib/omega/PreOmega.v445
-rw-r--r--contrib/omega/coq_omega.ml10
-rw-r--r--contrib/omega/g_omega.ml427
4 files changed, 477 insertions, 10 deletions
diff --git a/contrib/omega/Omega.v b/contrib/omega/Omega.v
index 66f86a49..ee823502 100644
--- a/contrib/omega/Omega.v
+++ b/contrib/omega/Omega.v
@@ -9,15 +9,16 @@
(* *)
(* Omega: a solver of quantifier-free problems in Presburger Arithmetic *)
(* *)
-(* Pierre Crégut (CNET, Lannion, France) *)
+(* Pierre Crégut (CNET, Lannion, France) *)
(* *)
(**************************************************************************)
-(* $Id: Omega.v 8642 2006-03-17 10:09:02Z notin $ *)
+(* $Id: Omega.v 10028 2007-07-18 22:38:06Z letouzey $ *)
(* We do not require [ZArith] anymore, but only what's necessary for Omega *)
Require Export ZArith_base.
Require Export OmegaLemmas.
+Require Export PreOmega.
Hint Resolve Zle_refl Zplus_comm Zplus_assoc Zmult_comm Zmult_assoc Zplus_0_l
Zplus_0_r Zmult_1_l Zplus_opp_l Zplus_opp_r Zmult_plus_distr_l
diff --git a/contrib/omega/PreOmega.v b/contrib/omega/PreOmega.v
new file mode 100644
index 00000000..47e22a97
--- /dev/null
+++ b/contrib/omega/PreOmega.v
@@ -0,0 +1,445 @@
+Require Import Arith Max Min ZArith_base NArith Nnat.
+
+Open Local Scope Z_scope.
+
+
+(** * zify: the Z-ification tactic *)
+
+(* This tactic searches for nat and N and positive elements in the goal and
+ translates everything into Z. It is meant as a pre-processor for
+ (r)omega; for instance a positivity hypothesis is added whenever
+ - a multiplication is encountered
+ - an atom is encountered (that is a variable or an unknown construct)
+
+ Recognized relations (can be handled as deeply as allowed by setoid rewrite):
+ - { eq, le, lt, ge, gt } on { Z, positive, N, nat }
+
+ Recognized operations:
+ - on Z: Zmin, Zmax, Zabs, Zsgn are translated in term of <= < =
+ - on nat: + * - S O pred min max nat_of_P nat_of_N Zabs_nat
+ - on positive: Zneg Zpos xI xO xH + * - Psucc Ppred Pmin Pmax P_of_succ_nat
+ - on N: N0 Npos + * - Nsucc Nmin Nmax N_of_nat Zabs_N
+*)
+
+
+
+
+(** I) translation of Zmax, Zmin, Zabs, Zsgn into recognized equations *)
+
+Ltac zify_unop_core t thm a :=
+ (* Let's introduce the specification theorem for t *)
+ let H:= fresh "H" in assert (H:=thm a);
+ (* Then we replace (t a) everywhere with a fresh variable *)
+ let z := fresh "z" in set (z:=t a) in *; clearbody z.
+
+Ltac zify_unop_var_or_term t thm a :=
+ (* If a is a variable, no need for aliasing *)
+ let za := fresh "z" in
+ (rename a into za; rename za into a; zify_unop_core t thm a) ||
+ (* Otherwise, a is a complex term: we alias it. *)
+ (remember a as za; zify_unop_core t thm za).
+
+Ltac zify_unop t thm a :=
+ (* if a is a scalar, we can simply reduce the unop *)
+ let isz := isZcst a in
+ match isz with
+ | true => simpl (t a) in *
+ | _ => zify_unop_var_or_term t thm a
+ end.
+
+Ltac zify_unop_nored t thm a :=
+ (* in this version, we don't try to reduce the unop (that can be (Zplus x)) *)
+ let isz := isZcst a in
+ match isz with
+ | true => zify_unop_core t thm a
+ | _ => zify_unop_var_or_term t thm a
+ end.
+
+Ltac zify_binop t thm a b:=
+ (* works as zify_unop, except that we should be careful when
+ dealing with b, since it can be equal to a *)
+ let isza := isZcst a in
+ match isza with
+ | true => zify_unop (t a) (thm a) b
+ | _ =>
+ let za := fresh "z" in
+ (rename a into za; rename za into a; zify_unop_nored (t a) (thm a) b) ||
+ (remember a as za; match goal with
+ | H : za = b |- _ => zify_unop_nored (t za) (thm za) za
+ | _ => zify_unop_nored (t za) (thm za) b
+ end)
+ end.
+
+Ltac zify_op_1 :=
+ match goal with
+ | |- context [ Zmax ?a ?b ] => zify_binop Zmax Zmax_spec a b
+ | H : context [ Zmax ?a ?b ] |- _ => zify_binop Zmax Zmax_spec a b
+ | |- context [ Zmin ?a ?b ] => zify_binop Zmin Zmin_spec a b
+ | H : context [ Zmin ?a ?b ] |- _ => zify_binop Zmin Zmin_spec a b
+ | |- context [ Zsgn ?a ] => zify_unop Zsgn Zsgn_spec a
+ | H : context [ Zsgn ?a ] |- _ => zify_unop Zsgn Zsgn_spec a
+ | |- context [ Zabs ?a ] => zify_unop Zabs Zabs_spec a
+ | H : context [ Zabs ?a ] |- _ => zify_unop Zabs Zabs_spec a
+ end.
+
+Ltac zify_op := repeat zify_op_1.
+
+
+
+
+
+(** II) Conversion from nat to Z *)
+
+
+Definition Z_of_nat' := Z_of_nat.
+
+Ltac hide_Z_of_nat t :=
+ let z := fresh "z" in set (z:=Z_of_nat t) in *;
+ change Z_of_nat with Z_of_nat' in z;
+ unfold z in *; clear z.
+
+Ltac zify_nat_rel :=
+ match goal with
+ (* I: equalities *)
+ | H : (@eq nat ?a ?b) |- _ => generalize (inj_eq _ _ H); clear H; intro H
+ | |- (@eq nat ?a ?b) => apply (inj_eq_rev a b)
+ | H : context [ @eq nat ?a ?b ] |- _ => rewrite (inj_eq_iff a b) in H
+ | |- context [ @eq nat ?a ?b ] => rewrite (inj_eq_iff a b)
+ (* II: less than *)
+ | H : (lt ?a ?b) |- _ => generalize (inj_lt _ _ H); clear H; intro H
+ | |- (lt ?a ?b) => apply (inj_lt_rev a b)
+ | H : context [ lt ?a ?b ] |- _ => rewrite (inj_lt_iff a b) in H
+ | |- context [ lt ?a ?b ] => rewrite (inj_lt_iff a b)
+ (* III: less or equal *)
+ | H : (le ?a ?b) |- _ => generalize (inj_le _ _ H); clear H; intro H
+ | |- (le ?a ?b) => apply (inj_le_rev a b)
+ | H : context [ le ?a ?b ] |- _ => rewrite (inj_le_iff a b) in H
+ | |- context [ le ?a ?b ] => rewrite (inj_le_iff a b)
+ (* IV: greater than *)
+ | H : (gt ?a ?b) |- _ => generalize (inj_gt _ _ H); clear H; intro H
+ | |- (gt ?a ?b) => apply (inj_gt_rev a b)
+ | H : context [ gt ?a ?b ] |- _ => rewrite (inj_gt_iff a b) in H
+ | |- context [ gt ?a ?b ] => rewrite (inj_gt_iff a b)
+ (* V: greater or equal *)
+ | H : (ge ?a ?b) |- _ => generalize (inj_ge _ _ H); clear H; intro H
+ | |- (ge ?a ?b) => apply (inj_ge_rev a b)
+ | H : context [ ge ?a ?b ] |- _ => rewrite (inj_ge_iff a b) in H
+ | |- context [ ge ?a ?b ] => rewrite (inj_ge_iff a b)
+ end.
+
+Ltac zify_nat_op :=
+ match goal with
+ (* misc type conversions: positive/N/Z to nat *)
+ | H : context [ Z_of_nat (nat_of_P ?a) ] |- _ => rewrite <- (Zpos_eq_Z_of_nat_o_nat_of_P a) in H
+ | |- context [ Z_of_nat (nat_of_P ?a) ] => rewrite <- (Zpos_eq_Z_of_nat_o_nat_of_P a)
+ | H : context [ Z_of_nat (nat_of_N ?a) ] |- _ => rewrite (Z_of_nat_of_N a) in H
+ | |- context [ Z_of_nat (nat_of_N ?a) ] => rewrite (Z_of_nat_of_N a)
+ | H : context [ Z_of_nat (Zabs_nat ?a) ] |- _ => rewrite (inj_Zabs_nat a) in H
+ | |- context [ Z_of_nat (Zabs_nat ?a) ] => rewrite (inj_Zabs_nat a)
+
+ (* plus -> Zplus *)
+ | H : context [ Z_of_nat (plus ?a ?b) ] |- _ => rewrite (inj_plus a b) in H
+ | |- context [ Z_of_nat (plus ?a ?b) ] => rewrite (inj_plus a b)
+
+ (* min -> Zmin *)
+ | H : context [ Z_of_nat (min ?a ?b) ] |- _ => rewrite (inj_min a b) in H
+ | |- context [ Z_of_nat (min ?a ?b) ] => rewrite (inj_min a b)
+
+ (* max -> Zmax *)
+ | H : context [ Z_of_nat (max ?a ?b) ] |- _ => rewrite (inj_max a b) in H
+ | |- context [ Z_of_nat (max ?a ?b) ] => rewrite (inj_max a b)
+
+ (* minus -> Zmax (Zminus ... ...) 0 *)
+ | H : context [ Z_of_nat (minus ?a ?b) ] |- _ => rewrite (inj_minus a b) in H
+ | |- context [ Z_of_nat (minus ?a ?b) ] => rewrite (inj_minus a b)
+
+ (* pred -> minus ... -1 -> Zmax (Zminus ... -1) 0 *)
+ | H : context [ Z_of_nat (pred ?a) ] |- _ => rewrite (pred_of_minus a) in H
+ | |- context [ Z_of_nat (pred ?a) ] => rewrite (pred_of_minus a)
+
+ (* mult -> Zmult and a positivity hypothesis *)
+ | H : context [ Z_of_nat (mult ?a ?b) ] |- _ =>
+ let H:= fresh "H" in
+ assert (H:=Zle_0_nat (mult a b)); rewrite (inj_mult a b) in *
+ | |- context [ Z_of_nat (mult ?a ?b) ] =>
+ let H:= fresh "H" in
+ assert (H:=Zle_0_nat (mult a b)); rewrite (inj_mult a b) in *
+
+ (* O -> Z0 *)
+ | H : context [ Z_of_nat O ] |- _ => simpl (Z_of_nat O) in H
+ | |- context [ Z_of_nat O ] => simpl (Z_of_nat O)
+
+ (* S -> number or Zsucc *)
+ | H : context [ Z_of_nat (S ?a) ] |- _ =>
+ let isnat := isnatcst a in
+ match isnat with
+ | true => simpl (Z_of_nat (S a)) in H
+ | _ => rewrite (inj_S a) in H
+ end
+ | |- context [ Z_of_nat (S ?a) ] =>
+ let isnat := isnatcst a in
+ match isnat with
+ | true => simpl (Z_of_nat (S a))
+ | _ => rewrite (inj_S a)
+ end
+
+ (* atoms of type nat : we add a positivity condition (if not already there) *)
+ | H : context [ Z_of_nat ?a ] |- _ =>
+ match goal with
+ | H' : 0 <= Z_of_nat a |- _ => hide_Z_of_nat a
+ | H' : 0 <= Z_of_nat' a |- _ => fail
+ | _ => let H:= fresh "H" in
+ assert (H:=Zle_0_nat a); hide_Z_of_nat a
+ end
+ | |- context [ Z_of_nat ?a ] =>
+ match goal with
+ | H' : 0 <= Z_of_nat a |- _ => hide_Z_of_nat a
+ | H' : 0 <= Z_of_nat' a |- _ => fail
+ | _ => let H:= fresh "H" in
+ assert (H:=Zle_0_nat a); hide_Z_of_nat a
+ end
+ end.
+
+Ltac zify_nat := repeat zify_nat_rel; repeat zify_nat_op; unfold Z_of_nat' in *.
+
+
+
+
+(* III) conversion from positive to Z *)
+
+Definition Zpos' := Zpos.
+Definition Zneg' := Zneg.
+
+Ltac hide_Zpos t :=
+ let z := fresh "z" in set (z:=Zpos t) in *;
+ change Zpos with Zpos' in z;
+ unfold z in *; clear z.
+
+Ltac zify_positive_rel :=
+ match goal with
+ (* I: equalities *)
+ | H : (@eq positive ?a ?b) |- _ => generalize (Zpos_eq _ _ H); clear H; intro H
+ | |- (@eq positive ?a ?b) => apply (Zpos_eq_rev a b)
+ | H : context [ @eq positive ?a ?b ] |- _ => rewrite (Zpos_eq_iff a b) in H
+ | |- context [ @eq positive ?a ?b ] => rewrite (Zpos_eq_iff a b)
+ (* II: less than *)
+ | H : context [ (?a<?b)%positive ] |- _ => change (a<b)%positive with (Zpos a<Zpos b) in H
+ | |- context [ (?a<?b)%positive ] => change (a<b)%positive with (Zpos a<Zpos b)
+ (* III: less or equal *)
+ | H : context [ (?a<=?b)%positive ] |- _ => change (a<=b)%positive with (Zpos a<=Zpos b) in H
+ | |- context [ (?a<=?b)%positive ] => change (a<=b)%positive with (Zpos a<=Zpos b)
+ (* IV: greater than *)
+ | H : context [ (?a>?b)%positive ] |- _ => change (a>b)%positive with (Zpos a>Zpos b) in H
+ | |- context [ (?a>?b)%positive ] => change (a>b)%positive with (Zpos a>Zpos b)
+ (* V: greater or equal *)
+ | H : context [ (?a>=?b)%positive ] |- _ => change (a>=b)%positive with (Zpos a>=Zpos b) in H
+ | |- context [ (?a>=?b)%positive ] => change (a>=b)%positive with (Zpos a>=Zpos b)
+ end.
+
+Ltac zify_positive_op :=
+ match goal with
+ (* Zneg -> -Zpos (except for numbers) *)
+ | H : context [ Zneg ?a ] |- _ =>
+ let isp := isPcst a in
+ match isp with
+ | true => change (Zneg a) with (Zneg' a) in H
+ | _ => change (Zneg a) with (- Zpos a) in H
+ end
+ | |- context [ Zneg ?a ] =>
+ let isp := isPcst a in
+ match isp with
+ | true => change (Zneg a) with (Zneg' a)
+ | _ => change (Zneg a) with (- Zpos a)
+ end
+
+ (* misc type conversions: nat to positive *)
+ | H : context [ Zpos (P_of_succ_nat ?a) ] |- _ => rewrite (Zpos_P_of_succ_nat a) in H
+ | |- context [ Zpos (P_of_succ_nat ?a) ] => rewrite (Zpos_P_of_succ_nat a)
+
+ (* Pplus -> Zplus *)
+ | H : context [ Zpos (Pplus ?a ?b) ] |- _ => change (Zpos (Pplus a b)) with (Zplus (Zpos a) (Zpos b)) in H
+ | |- context [ Zpos (Pplus ?a ?b) ] => change (Zpos (Pplus a b)) with (Zplus (Zpos a) (Zpos b))
+
+ (* Pmin -> Zmin *)
+ | H : context [ Zpos (Pmin ?a ?b) ] |- _ => rewrite (Zpos_min a b) in H
+ | |- context [ Zpos (Pmin ?a ?b) ] => rewrite (Zpos_min a b)
+
+ (* Pmax -> Zmax *)
+ | H : context [ Zpos (Pmax ?a ?b) ] |- _ => rewrite (Zpos_max a b) in H
+ | |- context [ Zpos (Pmax ?a ?b) ] => rewrite (Zpos_max a b)
+
+ (* Pminus -> Zmax 1 (Zminus ... ...) *)
+ | H : context [ Zpos (Pminus ?a ?b) ] |- _ => rewrite (Zpos_minus a b) in H
+ | |- context [ Zpos (Pminus ?a ?b) ] => rewrite (Zpos_minus a b)
+
+ (* Psucc -> Zsucc *)
+ | H : context [ Zpos (Psucc ?a) ] |- _ => rewrite (Zpos_succ_morphism a) in H
+ | |- context [ Zpos (Psucc ?a) ] => rewrite (Zpos_succ_morphism a)
+
+ (* Ppred -> Pminus ... -1 -> Zmax 1 (Zminus ... - 1) *)
+ | H : context [ Zpos (Ppred ?a) ] |- _ => rewrite (Ppred_minus a) in H
+ | |- context [ Zpos (Ppred ?a) ] => rewrite (Ppred_minus a)
+
+ (* Pmult -> Zmult and a positivity hypothesis *)
+ | H : context [ Zpos (Pmult ?a ?b) ] |- _ =>
+ let H:= fresh "H" in
+ assert (H:=Zgt_pos_0 (Pmult a b)); rewrite (Zpos_mult_morphism a b) in *
+ | |- context [ Zpos (Pmult ?a ?b) ] =>
+ let H:= fresh "H" in
+ assert (H:=Zgt_pos_0 (Pmult a b)); rewrite (Zpos_mult_morphism a b) in *
+
+ (* xO *)
+ | H : context [ Zpos (xO ?a) ] |- _ =>
+ let isp := isPcst a in
+ match isp with
+ | true => change (Zpos (xO a)) with (Zpos' (xO a)) in H
+ | _ => rewrite (Zpos_xO a) in H
+ end
+ | |- context [ Zpos (xO ?a) ] =>
+ let isp := isPcst a in
+ match isp with
+ | true => change (Zpos (xO a)) with (Zpos' (xO a))
+ | _ => rewrite (Zpos_xO a)
+ end
+ (* xI *)
+ | H : context [ Zpos (xI ?a) ] |- _ =>
+ let isp := isPcst a in
+ match isp with
+ | true => change (Zpos (xI a)) with (Zpos' (xI a)) in H
+ | _ => rewrite (Zpos_xI a) in H
+ end
+ | |- context [ Zpos (xI ?a) ] =>
+ let isp := isPcst a in
+ match isp with
+ | true => change (Zpos (xI a)) with (Zpos' (xI a))
+ | _ => rewrite (Zpos_xI a)
+ end
+
+ (* xI : nothing to do, just prevent adding a useless positivity condition *)
+ | H : context [ Zpos xH ] |- _ => hide_Zpos xH
+ | |- context [ Zpos xH ] => hide_Zpos xH
+
+ (* atoms of type positive : we add a positivity condition (if not already there) *)
+ | H : context [ Zpos ?a ] |- _ =>
+ match goal with
+ | H' : Zpos a > 0 |- _ => hide_Zpos a
+ | H' : Zpos' a > 0 |- _ => fail
+ | _ => let H:= fresh "H" in assert (H:=Zgt_pos_0 a); hide_Zpos a
+ end
+ | |- context [ Zpos ?a ] =>
+ match goal with
+ | H' : Zpos a > 0 |- _ => hide_Zpos a
+ | H' : Zpos' a > 0 |- _ => fail
+ | _ => let H:= fresh "H" in assert (H:=Zgt_pos_0 a); hide_Zpos a
+ end
+ end.
+
+Ltac zify_positive :=
+ repeat zify_positive_rel; repeat zify_positive_op; unfold Zpos',Zneg' in *.
+
+
+
+
+
+(* IV) conversion from N to Z *)
+
+Definition Z_of_N' := Z_of_N.
+
+Ltac hide_Z_of_N t :=
+ let z := fresh "z" in set (z:=Z_of_N t) in *;
+ change Z_of_N with Z_of_N' in z;
+ unfold z in *; clear z.
+
+Ltac zify_N_rel :=
+ match goal with
+ (* I: equalities *)
+ | H : (@eq N ?a ?b) |- _ => generalize (Z_of_N_eq _ _ H); clear H; intro H
+ | |- (@eq N ?a ?b) => apply (Z_of_N_eq_rev a b)
+ | H : context [ @eq N ?a ?b ] |- _ => rewrite (Z_of_N_eq_iff a b) in H
+ | |- context [ @eq N ?a ?b ] => rewrite (Z_of_N_eq_iff a b)
+ (* II: less than *)
+ | H : (?a<?b)%N |- _ => generalize (Z_of_N_lt _ _ H); clear H; intro H
+ | |- (?a<?b)%N => apply (Z_of_N_lt_rev a b)
+ | H : context [ (?a<?b)%N ] |- _ => rewrite (Z_of_N_lt_iff a b) in H
+ | |- context [ (?a<?b)%N ] => rewrite (Z_of_N_lt_iff a b)
+ (* III: less or equal *)
+ | H : (?a<=?b)%N |- _ => generalize (Z_of_N_le _ _ H); clear H; intro H
+ | |- (?a<=?b)%N => apply (Z_of_N_le_rev a b)
+ | H : context [ (?a<=?b)%N ] |- _ => rewrite (Z_of_N_le_iff a b) in H
+ | |- context [ (?a<=?b)%N ] => rewrite (Z_of_N_le_iff a b)
+ (* IV: greater than *)
+ | H : (?a>?b)%N |- _ => generalize (Z_of_N_gt _ _ H); clear H; intro H
+ | |- (?a>?b)%N => apply (Z_of_N_gt_rev a b)
+ | H : context [ (?a>?b)%N ] |- _ => rewrite (Z_of_N_gt_iff a b) in H
+ | |- context [ (?a>?b)%N ] => rewrite (Z_of_N_gt_iff a b)
+ (* V: greater or equal *)
+ | H : (?a>=?b)%N |- _ => generalize (Z_of_N_ge _ _ H); clear H; intro H
+ | |- (?a>=?b)%N => apply (Z_of_N_ge_rev a b)
+ | H : context [ (?a>=?b)%N ] |- _ => rewrite (Z_of_N_ge_iff a b) in H
+ | |- context [ (?a>=?b)%N ] => rewrite (Z_of_N_ge_iff a b)
+ end.
+
+Ltac zify_N_op :=
+ match goal with
+ (* misc type conversions: nat to positive *)
+ | H : context [ Z_of_N (N_of_nat ?a) ] |- _ => rewrite (Z_of_N_of_nat a) in H
+ | |- context [ Z_of_N (N_of_nat ?a) ] => rewrite (Z_of_N_of_nat a)
+ | H : context [ Z_of_N (Zabs_N ?a) ] |- _ => rewrite (Z_of_N_abs a) in H
+ | |- context [ Z_of_N (Zabs_N ?a) ] => rewrite (Z_of_N_abs a)
+ | H : context [ Z_of_N (Npos ?a) ] |- _ => rewrite (Z_of_N_pos a) in H
+ | |- context [ Z_of_N (Npos ?a) ] => rewrite (Z_of_N_pos a)
+ | H : context [ Z_of_N N0 ] |- _ => change (Z_of_N N0) with Z0 in H
+ | |- context [ Z_of_N N0 ] => change (Z_of_N N0) with Z0
+
+ (* Nplus -> Zplus *)
+ | H : context [ Z_of_N (Nplus ?a ?b) ] |- _ => rewrite (Z_of_N_plus a b) in H
+ | |- context [ Z_of_N (Nplus ?a ?b) ] => rewrite (Z_of_N_plus a b)
+
+ (* Nmin -> Zmin *)
+ | H : context [ Z_of_N (Nmin ?a ?b) ] |- _ => rewrite (Z_of_N_min a b) in H
+ | |- context [ Z_of_N (Nmin ?a ?b) ] => rewrite (Z_of_N_min a b)
+
+ (* Nmax -> Zmax *)
+ | H : context [ Z_of_N (Nmax ?a ?b) ] |- _ => rewrite (Z_of_N_max a b) in H
+ | |- context [ Z_of_N (Nmax ?a ?b) ] => rewrite (Z_of_N_max a b)
+
+ (* Nminus -> Zmax 0 (Zminus ... ...) *)
+ | H : context [ Z_of_N (Nminus ?a ?b) ] |- _ => rewrite (Z_of_N_minus a b) in H
+ | |- context [ Z_of_N (Nminus ?a ?b) ] => rewrite (Z_of_N_minus a b)
+
+ (* Nsucc -> Zsucc *)
+ | H : context [ Z_of_N (Nsucc ?a) ] |- _ => rewrite (Z_of_N_succ a) in H
+ | |- context [ Z_of_N (Nsucc ?a) ] => rewrite (Z_of_N_succ a)
+
+ (* Nmult -> Zmult and a positivity hypothesis *)
+ | H : context [ Z_of_N (Nmult ?a ?b) ] |- _ =>
+ let H:= fresh "H" in
+ assert (H:=Z_of_N_le_0 (Nmult a b)); rewrite (Z_of_N_mult a b) in *
+ | |- context [ Z_of_N (Nmult ?a ?b) ] =>
+ let H:= fresh "H" in
+ assert (H:=Z_of_N_le_0 (Nmult a b)); rewrite (Z_of_N_mult a b) in *
+
+ (* atoms of type N : we add a positivity condition (if not already there) *)
+ | H : context [ Z_of_N ?a ] |- _ =>
+ match goal with
+ | H' : 0 <= Z_of_N a |- _ => hide_Z_of_N a
+ | H' : 0 <= Z_of_N' a |- _ => fail
+ | _ => let H:= fresh "H" in assert (H:=Z_of_N_le_0 a); hide_Z_of_N a
+ end
+ | |- context [ Z_of_N ?a ] =>
+ match goal with
+ | H' : 0 <= Z_of_N a |- _ => hide_Z_of_N a
+ | H' : 0 <= Z_of_N' a |- _ => fail
+ | _ => let H:= fresh "H" in assert (H:=Z_of_N_le_0 a); hide_Z_of_N a
+ end
+ end.
+
+Ltac zify_N := repeat zify_N_rel; repeat zify_N_op; unfold Z_of_N' in *.
+
+
+
+(** The complete Z-ification tactic *)
+
+Ltac zify :=
+ repeat progress (zify_nat; zify_positive; zify_N); zify_op.
+
diff --git a/contrib/omega/coq_omega.ml b/contrib/omega/coq_omega.ml
index be9ea5ae..84092812 100644
--- a/contrib/omega/coq_omega.ml
+++ b/contrib/omega/coq_omega.ml
@@ -13,7 +13,7 @@
(* *)
(**************************************************************************)
-(* $Id: coq_omega.ml 9963 2007-07-09 14:02:20Z letouzey $ *)
+(* $Id: coq_omega.ml 11094 2008-06-10 19:35:23Z herbelin $ *)
open Util
open Pp
@@ -128,12 +128,12 @@ let intern_id,unintern_id =
let mk_then = tclTHENLIST
-let exists_tac c = constructor_tac (Some 1) 1 (Rawterm.ImplicitBindings [c])
+let exists_tac c = constructor_tac false (Some 1) 1 (Rawterm.ImplicitBindings [c])
let generalize_tac t = generalize_time (generalize t)
let elim t = elim_time (simplest_elim t)
let exact t = exact_time (Tactics.refine t)
-let unfold s = Tactics.unfold_in_concl [[], Lazy.force s]
+let unfold s = Tactics.unfold_in_concl [all_occurrences, Lazy.force s]
let rev_assoc k =
let rec loop = function
@@ -180,8 +180,6 @@ let coq_Zneg = lazy (constant "Zneg")
let coq_Z = lazy (constant "Z")
let coq_comparison = lazy (constant "comparison")
let coq_Gt = lazy (constant "Gt")
-let coq_INFEEIEUR = lazy (constant "Lt")
-let coq_Eq = lazy (constant "Eq")
let coq_Zplus = lazy (constant "Zplus")
let coq_Zmult = lazy (constant "Zmult")
let coq_Zopp = lazy (constant "Zopp")
@@ -1227,7 +1225,7 @@ let replay_history tactic_normalisation =
(clear [aux]);
(intros_using [id]);
(loop l) ];
- tclTHEN (exists_tac eq1) reflexivity ]
+ tclTHEN (exists_tac (inj_open eq1)) reflexivity ]
| SPLIT_INEQ(e,(e1,act1),(e2,act2)) :: l ->
let id1 = new_identifier ()
and id2 = new_identifier () in
diff --git a/contrib/omega/g_omega.ml4 b/contrib/omega/g_omega.ml4
index 01592ebe..02545b30 100644
--- a/contrib/omega/g_omega.ml4
+++ b/contrib/omega/g_omega.ml4
@@ -15,10 +15,33 @@
(*i camlp4deps: "parsing/grammar.cma" i*)
-(* $Id: g_omega.ml4 7734 2005-12-26 14:06:51Z herbelin $ *)
+(* $Id: g_omega.ml4 10028 2007-07-18 22:38:06Z letouzey $ *)
open Coq_omega
+open Refiner
+
+let omega_tactic l =
+ let tacs = List.map
+ (function
+ | "nat" -> Tacinterp.interp <:tactic<zify_nat>>
+ | "positive" -> Tacinterp.interp <:tactic<zify_positive>>
+ | "N" -> Tacinterp.interp <:tactic<zify_N>>
+ | "Z" -> Tacinterp.interp <:tactic<zify_op>>
+ | s -> Util.error ("No Omega knowledge base for type "^s))
+ (Util.list_uniquize (List.sort compare l))
+ in
+ tclTHEN
+ (tclREPEAT (tclPROGRESS (tclTHENLIST tacs)))
+ omega_solver
+
TACTIC EXTEND omega
- [ "omega" ] -> [ omega_solver ]
+| [ "omega" ] -> [ omega_tactic [] ]
END
+
+TACTIC EXTEND omega'
+| [ "omega" "with" ne_ident_list(l) ] ->
+ [ omega_tactic (List.map Names.string_of_id l) ]
+| [ "omega" "with" "*" ] -> [ omega_tactic ["nat";"positive";"N";"Z"] ]
+END
+