summaryrefslogtreecommitdiff
path: root/contrib/micromega
diff options
context:
space:
mode:
authorGravatar Stephane Glondu <steph@glondu.net>2008-08-08 13:18:42 +0200
committerGravatar Stephane Glondu <steph@glondu.net>2008-08-08 13:18:42 +0200
commit870075f34dd9fa5792bfbf413afd3b96f17e76a0 (patch)
tree0c647056de1832cf1dba5ba58758b9121418e4be /contrib/micromega
parenta0cfa4f118023d35b767a999d5a2ac4b082857b4 (diff)
Imported Upstream version 8.2~beta4+dfsgupstream/8.2.beta4+dfsg
Diffstat (limited to 'contrib/micromega')
-rw-r--r--contrib/micromega/Psatz.v (renamed from contrib/micromega/Micromegatac.v)42
-rw-r--r--contrib/micromega/QMicromega.v72
-rw-r--r--contrib/micromega/RMicromega.v36
-rw-r--r--contrib/micromega/ZMicromega.v11
-rw-r--r--contrib/micromega/certificate.ml342
-rw-r--r--contrib/micromega/coq_micromega.ml334
-rw-r--r--contrib/micromega/csdpcert.ml158
-rw-r--r--contrib/micromega/g_micromega.ml439
8 files changed, 492 insertions, 542 deletions
diff --git a/contrib/micromega/Micromegatac.v b/contrib/micromega/Psatz.v
index 13c7eace..b2dd9910 100644
--- a/contrib/micromega/Micromegatac.v
+++ b/contrib/micromega/Psatz.v
@@ -23,57 +23,53 @@ Require Export RingMicromega.
Require Import VarMap.
Require Tauto.
-Ltac micromegac dom d :=
+Ltac xpsatz dom d :=
let tac := lazymatch dom with
| Z =>
- micromegap d ;
+ (sos_Z || psatz_Z d) ;
intros __wit __varmap __ff ;
change (Tauto.eval_f (Zeval_formula (@find Z Z0 __varmap)) __ff) ;
apply (ZTautoChecker_sound __ff __wit); vm_compute ; reflexivity
| R =>
- rmicromegap d ;
+ (sos_R || psatz_R d) ;
intros __wit __varmap __ff ;
change (Tauto.eval_f (Reval_formula (@find R 0%R __varmap)) __ff) ;
apply (RTautoChecker_sound __ff __wit); vm_compute ; reflexivity
+ | Q =>
+ (sos_Q || psatz_Q d) ;
+ intros __wit __varmap __ff ;
+ change (Tauto.eval_f (Qeval_formula (@find Q 0%Q __varmap)) __ff) ;
+ apply (QTautoChecker_sound __ff __wit); vm_compute ; reflexivity
| _ => fail "Unsupported domain"
end in tac.
-Tactic Notation "micromega" constr(dom) int_or_var(n) := micromegac dom n.
-Tactic Notation "micromega" constr(dom) := micromegac dom ltac:-1.
+Tactic Notation "psatz" constr(dom) int_or_var(n) := xpsatz dom n.
+Tactic Notation "psatz" constr(dom) := xpsatz dom ltac:-1.
-Ltac zfarkas := omicronp ;
- intros __wit __varmap __ff ;
- change (Tauto.eval_f (Zeval_formula (@find Z Z0 __varmap)) __ff) ;
- apply (ZTautoChecker_sound __ff __wit); vm_compute ; reflexivity.
-
-Ltac omicron dom :=
+Ltac psatzl dom :=
let tac := lazymatch dom with
| Z =>
- zomicronp ;
+ psatzl_Z ;
intros __wit __varmap __ff ;
change (Tauto.eval_f (Zeval_formula (@find Z Z0 __varmap)) __ff) ;
apply (ZTautoChecker_sound __ff __wit); vm_compute ; reflexivity
| Q =>
- qomicronp ;
+ psatzl_Q ;
intros __wit __varmap __ff ;
change (Tauto.eval_f (Qeval_formula (@find Q 0%Q __varmap)) __ff) ;
apply (QTautoChecker_sound __ff __wit); vm_compute ; reflexivity
| R =>
- romicronp ;
+ psatzl_R ;
intros __wit __varmap __ff ;
change (Tauto.eval_f (Reval_formula (@find R 0%R __varmap)) __ff) ;
apply (RTautoChecker_sound __ff __wit); vm_compute ; reflexivity
| _ => fail "Unsupported domain"
end in tac.
-Ltac sos dom :=
- let tac := lazymatch dom with
- | Z =>
- sosp ;
- intros __wit __varmap __ff ;
- change (Tauto.eval_f (Zeval_formula (@find Z Z0 __varmap)) __ff) ;
- apply (ZTautoChecker_sound __ff __wit); vm_compute ; reflexivity
- | _ => fail "Unsupported domain"
- end in tac.
+Ltac lia :=
+ xlia ;
+ intros __wit __varmap __ff ;
+ change (Tauto.eval_f (Zeval_formula (@find Z Z0 __varmap)) __ff) ;
+ apply (ZTautoChecker_sound __ff __wit); vm_compute ; reflexivity.
diff --git a/contrib/micromega/QMicromega.v b/contrib/micromega/QMicromega.v
index 9e95f6c4..c054f218 100644
--- a/contrib/micromega/QMicromega.v
+++ b/contrib/micromega/QMicromega.v
@@ -16,38 +16,11 @@ Require Import OrderedRing.
Require Import RingMicromega.
Require Import Refl.
Require Import QArith.
-Require Import Qring.
-
-(* Qsrt has been removed from the library ? *)
-Definition Qsrt : ring_theory 0 1 Qplus Qmult Qminus Qopp Qeq.
-Proof.
- constructor.
- exact Qplus_0_l.
- exact Qplus_comm.
- exact Qplus_assoc.
- exact Qmult_1_l.
- exact Qmult_comm.
- exact Qmult_assoc.
- exact Qmult_plus_distr_l.
- reflexivity.
- exact Qplus_opp_r.
-Qed.
-
-
-Add Ring Qring : Qsrt.
-
-Lemma Qmult_neutral : forall x , 0 * x == 0.
-Proof.
- intros.
- compute.
- reflexivity.
-Qed.
-
-(* Is there any qarith database ? *)
+Require Import Qfield.
Lemma Qsor : SOR 0 1 Qplus Qmult Qminus Qopp Qeq Qle Qlt.
Proof.
- constructor; intros ; subst ; try (intuition (subst; auto with qarith)).
+ constructor; intros ; subst ; try (intuition (subst; auto with qarith)).
apply Q_Setoid.
rewrite H ; rewrite H0 ; reflexivity.
rewrite H ; rewrite H0 ; reflexivity.
@@ -67,45 +40,12 @@ Proof.
destruct(Q_dec n m) as [[H1 |H1] | H1 ] ; tauto.
apply (Qplus_le_compat p p n m (Qle_refl p) H).
generalize (Qmult_lt_compat_r 0 n m H0 H).
- rewrite Qmult_neutral.
+ rewrite Qmult_0_l.
auto.
compute in H.
discriminate.
Qed.
-Definition Qeq_bool (p q : Q) : bool := Zeq_bool (Qnum p * ' Qden q)%Z (Qnum q * ' Qden p)%Z.
-
-Definition Qle_bool (x y : Q) : bool := Zle_bool (Qnum x * ' Qden y)%Z (Qnum y * ' Qden x)%Z.
-
-Require ZMicromega.
-
-Lemma Qeq_bool_ok : forall x y, Qeq_bool x y = true -> x == y.
-Proof.
- intros.
- unfold Qeq_bool in H.
- unfold Qeq.
- apply (Zeqb_ok _ _ H).
-Qed.
-
-
-Lemma Qeq_bool_neq : forall x y, Qeq_bool x y = false -> ~ x == y.
-Proof.
- unfold Qeq_bool,Qeq.
- red ; intros ; subst.
- rewrite H0 in H.
- apply (ZMicromega.Zeq_bool_neq _ _ H).
- reflexivity.
-Qed.
-
-Lemma Qle_bool_imp_le : forall x y : Q, Qle_bool x y = true -> x <= y.
-Proof.
- unfold Qle_bool, Qle.
- intros.
- apply Zle_bool_imp_le ; auto.
-Qed.
-
-
-
Lemma QSORaddon :
SORaddon 0 1 Qplus Qmult Qminus Qopp Qeq Qle (* ring elements *)
@@ -115,7 +55,7 @@ Lemma QSORaddon :
Proof.
constructor.
constructor ; intros ; try reflexivity.
- apply Qeq_bool_ok ; auto.
+ apply Qeq_bool_eq; auto.
constructor.
reflexivity.
intros x y.
@@ -173,9 +113,9 @@ match o with
| OpEq => Qeq
| OpNEq => fun x y => ~ x == y
| OpLe => Qle
-| OpGe => Qge
+| OpGe => fun x y => Qle y x
| OpLt => Qlt
-| OpGt => Qgt
+| OpGt => fun x y => Qlt y x
end.
Definition Qeval_formula (e:PolEnv Q) (ff : Formula Q) :=
diff --git a/contrib/micromega/RMicromega.v b/contrib/micromega/RMicromega.v
index ef28db32..7c6969c2 100644
--- a/contrib/micromega/RMicromega.v
+++ b/contrib/micromega/RMicromega.v
@@ -76,12 +76,12 @@ Proof.
apply mult_IZR.
apply Ropp_Ropp_IZR.
apply IZR_eq.
- apply Zeqb_ok ; auto.
+ apply Zeq_bool_eq ; auto.
apply R_power_theory.
intros x y.
intro.
apply IZR_neq.
- apply ZMicromega.Zeq_bool_neq ; auto.
+ apply Zeq_bool_neq ; auto.
intros. apply IZR_le. apply Zle_bool_imp_le. auto.
Qed.
@@ -97,9 +97,34 @@ Definition INZ (n:N) : R :=
Definition Reval_expr := eval_pexpr Rplus Rmult Rminus Ropp IZR Nnat.nat_of_N pow.
-Definition Reval_formula :=
+Definition Reval_op2 (o:Op2) : R -> R -> Prop :=
+ match o with
+ | OpEq => @eq R
+ | OpNEq => fun x y => ~ x = y
+ | OpLe => Rle
+ | OpGe => Rge
+ | OpLt => Rlt
+ | OpGt => Rgt
+ end.
+
+
+Definition Reval_formula (e: PolEnv R) (ff : Formula Z) :=
+ let (lhs,o,rhs) := ff in Reval_op2 o (Reval_expr e lhs) (Reval_expr e rhs).
+
+Definition Reval_formula' :=
eval_formula Rplus Rmult Rminus Ropp (@eq R) Rle Rlt IZR Nnat.nat_of_N pow.
+Lemma Reval_formula_compat : forall env f, Reval_formula env f <-> Reval_formula' env f.
+Proof.
+ intros.
+ unfold Reval_formula.
+ destruct f.
+ unfold Reval_formula'.
+ unfold Reval_expr.
+ split ; destruct Fop ; simpl ; auto.
+ apply Rge_le.
+ apply Rle_ge.
+Qed.
Definition Reval_nformula :=
eval_nformula 0 Rplus Rmult Rminus Ropp (@eq R) Rle Rlt IZR Nnat.nat_of_N pow.
@@ -139,8 +164,9 @@ Proof.
unfold RTautoChecker.
apply (tauto_checker_sound Reval_formula Reval_nformula).
apply Reval_nformula_dec.
- intros. unfold Reval_formula. now apply (cnf_normalise_correct Rsor).
- intros. unfold Reval_formula. now apply (cnf_negate_correct Rsor).
+ intros. rewrite Reval_formula_compat.
+ unfold Reval_formula'. now apply (cnf_normalise_correct Rsor).
+ intros. rewrite Reval_formula_compat. unfold Reval_formula. now apply (cnf_negate_correct Rsor).
intros t w0.
apply RWeakChecker_sound.
Qed.
diff --git a/contrib/micromega/ZMicromega.v b/contrib/micromega/ZMicromega.v
index 94c83f73..0855925a 100644
--- a/contrib/micromega/ZMicromega.v
+++ b/contrib/micromega/ZMicromega.v
@@ -39,15 +39,6 @@ Proof.
apply Zmult_lt_0_compat ; auto.
Qed.
-Lemma Zeq_bool_neq : forall x y, Zeq_bool x y = false -> x <> y.
-Proof.
- red ; intros.
- subst.
- unfold Zeq_bool in H.
- rewrite Zcompare_refl in H.
- discriminate.
-Qed.
-
Lemma ZSORaddon :
SORaddon 0 1 Zplus Zmult Zminus Zopp (@eq Z) Zle (* ring elements *)
0%Z 1%Z Zplus Zmult Zminus Zopp (* coefficients *)
@@ -56,7 +47,7 @@ Lemma ZSORaddon :
Proof.
constructor.
constructor ; intros ; try reflexivity.
- apply Zeqb_ok ; auto.
+ apply Zeq_bool_eq ; auto.
constructor.
reflexivity.
intros x y.
diff --git a/contrib/micromega/certificate.ml b/contrib/micromega/certificate.ml
index 88e882e6..f4efcd08 100644
--- a/contrib/micromega/certificate.ml
+++ b/contrib/micromega/certificate.ml
@@ -108,7 +108,7 @@ struct
if compare_num v (Int 0) <> 0
then
if Monomial.compare Monomial.const k = 0
- then Printf.fprintf o "%s " (string_of_num v)
+ then Printf.fprintf o "%s " (string_of_num v)
else Printf.fprintf o "%s*%a " (string_of_num v) Monomial.pp k) p
(* Get the coefficient of monomial mn *)
@@ -304,8 +304,8 @@ let factorise_linear_cone c =
(match pending with
| None -> rebuild_cone l (Some e)
| Some p -> (match factorise p e with
- | None -> Mc.S_Add(p, rebuild_cone l (Some e))
- | Some f -> rebuild_cone l (Some f) )
+ | None -> Mc.S_Add(p, rebuild_cone l (Some e))
+ | Some f -> rebuild_cone l (Some f) )
) in
(rebuild_cone (List.sort Pervasives.compare (cone_list c [])) None)
@@ -387,10 +387,10 @@ let build_linear_system l =
(* I need at least something strictly positive *)
let strict = {
coeffs = Vect.from_list ((Big_int unit_big_int)::
- (List.map (fun (x,y) ->
- match y with Mc.Strict ->
- Big_int unit_big_int
- | _ -> Big_int zero_big_int) l));
+ (List.map (fun (x,y) ->
+ match y with Mc.Strict ->
+ Big_int unit_big_int
+ | _ -> Big_int zero_big_int) l));
op = Ge ; cst = Big_int unit_big_int } in
(* Add the positivity constraint *)
{coeffs = Vect.from_list ([Big_int unit_big_int]) ;
@@ -414,22 +414,22 @@ let make_certificate n_spec cert li =
in
let rec scalar_product cert l =
match cert with
- | [] -> Mc.S_Z
- | c::cert -> match l with
- | [] -> failwith "make_certificate(1)"
- | i::l ->
- let r = scalar_product cert l in
- match compare_big_int c zero_big_int with
- | -1 -> Mc.S_Add (
- Mc.S_Ideal (Mc.PEc ( bint_to_cst c), Mc.S_In (Ml2C.nat i)),
- r)
- | 0 -> r
- | _ -> Mc.S_Add (
- Mc.S_Mult (Mc.S_Pos (bint_to_cst c), Mc.S_In (Ml2C.nat i)),
- r) in
+ | [] -> Mc.S_Z
+ | c::cert -> match l with
+ | [] -> failwith "make_certificate(1)"
+ | i::l ->
+ let r = scalar_product cert l in
+ match compare_big_int c zero_big_int with
+ | -1 -> Mc.S_Add (
+ Mc.S_Ideal (Mc.PEc ( bint_to_cst c), Mc.S_In (Ml2C.nat i)),
+ r)
+ | 0 -> r
+ | _ -> Mc.S_Add (
+ Mc.S_Mult (Mc.S_Pos (bint_to_cst c), Mc.S_In (Ml2C.nat i)),
+ r) in
Some ((factorise_linear_cone
- (simplify_cone n_spec (Mc.S_Add (cst, scalar_product cert' li)))))
+ (simplify_cone n_spec (Mc.S_Add (cst, scalar_product cert' li)))))
exception Found of Monomial.t
@@ -444,7 +444,7 @@ let raw_certificate l =
with x ->
if debug
then (Printf.printf "raw certificate %s" (Printexc.to_string x);
- flush stdout) ;
+ flush stdout) ;
None
@@ -462,9 +462,9 @@ let linear_prover n_spec l =
(fun (x,_) -> if snd' x = Mc.NonEqual then true else false) li in
let l' = List.map
(fun (c,i) -> let (Mc.Pair(x,y)) = c in
- match y with
- Mc.NonEqual -> failwith "cannot happen"
- | y -> ((dev_form n_spec x, y),i)) l' in
+ match y with
+ Mc.NonEqual -> failwith "cannot happen"
+ | y -> ((dev_form n_spec x, y),i)) l' in
simple_linear_prover n_spec l'
@@ -513,106 +513,228 @@ let rec remove_assoc p x l =
let eq x y = Vect.compare x y = 0
-(* Beurk... this code is a shame *)
+let remove e l = List.fold_left (fun l x -> if eq x e then l else x::l) [] l
-let rec zlinear_prover sys = xzlinear_prover [] sys
-and xzlinear_prover enum l : (Mc.proofTerm option) =
- match linear_prover z_spec l with
- | Some prf -> Some (Mc.RatProof prf)
- | None ->
+(* The prover is (probably) incomplete --
+ only searching for naive cutting planes *)
+
+let candidates sys =
+ let ll = List.fold_right (
+ fun (Mc.Pair(e,k)) r ->
+ match k with
+ | Mc.NonStrict -> (dev_form z_spec e , Ge)::r
+ | Mc.Equal -> (dev_form z_spec e , Eq)::r
+ (* we already know the bound -- don't compute it again *)
+ | _ -> failwith "Cannot happen candidates") sys [] in
+
+ let (sys,var_mn) = make_linear_system ll in
+ let vars = mapi (fun _ i -> Vect.set i (Int 1) Vect.null) var_mn in
+ (List.fold_left (fun l cstr ->
+ let gcd = Big_int (Vect.gcd cstr.coeffs) in
+ if gcd =/ (Int 1) && cstr.op = Eq
+ then l
+ else (Vect.mul (Int 1 // gcd) cstr.coeffs)::l) [] sys) @ vars
+
+
+let rec xzlinear_prover planes sys =
+ match linear_prover z_spec sys with
+ | Some prf -> Some (Mc.RatProof prf)
+ | None -> (* find the candidate with the smallest range *)
+ (* Grrr - linear_prover is also calling 'make_linear_system' *)
let ll = List.fold_right (fun (Mc.Pair(e,k)) r -> match k with
Mc.NonEqual -> r
| k -> (dev_form z_spec e ,
- match k with
- | Mc.Strict | Mc.NonStrict -> Ge
- (* Loss of precision -- weakness of fourier*)
- | Mc.Equal -> Eq
- | Mc.NonEqual -> failwith "Cannot happen") :: r) l [] in
-
- let (sys,var) = make_linear_system ll in
- let res =
- match Fourier.find_Q_interval sys with
- | Some(i,x,j) -> if i =/ j
- then Some(i,Vect.set x (Int 1) Vect.null,i) else None
- | None -> None in
- let res = match res with
- | None ->
- begin
- let candidates = List.fold_right
- (fun cstr acc ->
- let gcd = Big_int (Vect.gcd cstr.coeffs) in
- let vect = Vect.mul (Int 1 // gcd) cstr.coeffs in
- if mem eq vect enum then acc
- else ((vect,Fourier.optimise vect sys)::acc)) sys [] in
- let candidates = List.fold_left (fun l (x,i) ->
- match i with
- None -> (x,Empty)::l
- | Some i -> (x,i)::l) [] (candidates) in
- match List.fold_left (fun (x1,i1) (x2,i2) ->
- if smaller_itv i1 i2
- then (x1,i1) else (x2,i2)) (Vect.null,Itv(None,None)) candidates
- with
- | (i,Empty) -> None
- | (x,Itv(Some i, Some j)) -> Some(i,x,j)
- | (x,Point n) -> Some(n,x,n)
- | x -> match Fourier.find_Q_interval sys with
- | None -> None
- | Some(i,x,j) ->
- if i =/ j
- then Some(i,Vect.set x (Int 1) Vect.null,i)
- else None
- end
- | _ -> res in
-
- match res with
+ match k with
+ Mc.NonStrict -> Ge
+ | Mc.Equal -> Eq
+ | Mc.Strict | Mc.NonEqual -> failwith "Cannot happen") :: r) sys [] in
+ let (ll,var) = make_linear_system ll in
+ let candidates = List.fold_left (fun acc vect ->
+ match Fourier.optimise vect ll with
+ | None -> acc
+ | Some i ->
+(* Printf.printf "%s in %s\n" (Vect.string vect) (string_of_intrvl i) ; *)
+ flush stdout ;
+ (vect,i) ::acc) [] planes in
+
+ let smallest_interval =
+ match List.fold_left (fun (x1,i1) (x2,i2) ->
+ if smaller_itv i1 i2
+ then (x1,i1) else (x2,i2)) (Vect.null,Itv(None,None)) candidates
+ with
+ | (x,Itv(Some i, Some j)) -> Some(i,x,j)
+ | (x,Point n) -> Some(n,x,n)
+ | x -> None (* This might be a cutting plane *)
+ in
+ match smallest_interval with
| Some (lb,e,ub) ->
- let (lbn,lbd) =
- (Ml2C.bigint (sub_big_int (numerator lb) unit_big_int),
- Ml2C.bigint (denominator lb)) in
- let (ubn,ubd) =
- (Ml2C.bigint (add_big_int unit_big_int (numerator ub)) ,
- Ml2C.bigint (denominator ub)) in
- let expr = list_to_polynomial var (Vect.to_list e) in
- (match
- (*x <= ub -> x > ub *)
- linear_prover z_spec
- (Mc.Pair(pplus (pmult (pconst ubd) expr) (popp (pconst ubn)),
- Mc.NonStrict) :: l),
- (* lb <= x -> lb > x *)
- linear_prover z_spec
- (Mc.Pair( pplus (popp (pmult (pconst lbd) expr)) (pconst lbn) ,
- Mc.NonStrict)::l)
- with
- | Some cub , Some clb ->
- (match zlinear_enum (e::enum) expr
- (ceiling_num lb) (floor_num ub) l
- with
- | None -> None
- | Some prf ->
- Some (Mc.EnumProof(Ml2C.q lb,expr,Ml2C.q ub,clb,cub,prf)))
- | _ -> None
- )
+ let (lbn,lbd) =
+ (Ml2C.bigint (sub_big_int (numerator lb) unit_big_int),
+ Ml2C.bigint (denominator lb)) in
+ let (ubn,ubd) =
+ (Ml2C.bigint (add_big_int unit_big_int (numerator ub)) ,
+ Ml2C.bigint (denominator ub)) in
+ let expr = list_to_polynomial var (Vect.to_list e) in
+ (match
+ (*x <= ub -> x > ub *)
+ linear_prover z_spec
+ (Mc.Pair(pplus (pmult (pconst ubd) expr) (popp (pconst ubn)),
+ Mc.NonStrict) :: sys),
+ (* lb <= x -> lb > x *)
+ linear_prover z_spec
+ (Mc.Pair( pplus (popp (pmult (pconst lbd) expr)) (pconst lbn) ,
+ Mc.NonStrict)::sys)
+ with
+ | Some cub , Some clb ->
+ (match zlinear_enum (remove e planes) expr
+ (ceiling_num lb) (floor_num ub) sys
+ with
+ | None -> None
+ | Some prf ->
+ Some (Mc.EnumProof(Ml2C.q lb,expr,Ml2C.q ub,clb,cub,prf)))
+ | _ -> None
+ )
| _ -> None
-and xzlinear_enum enum expr clb cub l =
+and zlinear_enum planes expr clb cub l =
if clb >/ cub
then Some Mc.Nil
else
let pexpr = pplus (popp (pconst (Ml2C.bigint (numerator clb)))) expr in
let sys' = (Mc.Pair(pexpr, Mc.Equal))::l in
- match xzlinear_prover enum sys' with
+ (*let enum = *)
+ match xzlinear_prover planes sys' with
| None -> if debug then print_string "zlp?"; None
| Some prf -> if debug then print_string "zlp!";
- match zlinear_enum enum expr (clb +/ (Int 1)) cub l with
+ match zlinear_enum planes expr (clb +/ (Int 1)) cub l with
| None -> None
| Some prfl -> Some (Mc.Cons(prf,prfl))
-and zlinear_enum enum expr clb cub l =
- let res = xzlinear_enum enum expr clb cub l in
- if debug then Printf.printf "zlinear_enum %s %s -> %s\n"
- (string_of_num clb)
- (string_of_num cub)
- (match res with
- | None -> "None"
- | Some r -> "Some") ; res
+let zlinear_prover sys =
+ let candidates = candidates sys in
+ (* Printf.printf "candidates %d" (List.length candidates) ; *)
+ xzlinear_prover candidates sys
+
+open Sos
+
+let rec scale_term t =
+ match t with
+ | Zero -> unit_big_int , Zero
+ | Const n -> (denominator n) , Const (Big_int (numerator n))
+ | Var n -> unit_big_int , Var n
+ | Inv _ -> failwith "scale_term : not implemented"
+ | Opp t -> let s, t = scale_term t in s, Opp t
+ | Add(t1,t2) -> let s1,y1 = scale_term t1 and s2,y2 = scale_term t2 in
+ let g = gcd_big_int s1 s2 in
+ let s1' = div_big_int s1 g in
+ let s2' = div_big_int s2 g in
+ let e = mult_big_int g (mult_big_int s1' s2') in
+ if (compare_big_int e unit_big_int) = 0
+ then (unit_big_int, Add (y1,y2))
+ else e, Add (Mul(Const (Big_int s2'), y1),
+ Mul (Const (Big_int s1'), y2))
+ | Sub _ -> failwith "scale term: not implemented"
+ | Mul(y,z) -> let s1,y1 = scale_term y and s2,y2 = scale_term z in
+ mult_big_int s1 s2 , Mul (y1, y2)
+ | Pow(t,n) -> let s,t = scale_term t in
+ power_big_int_positive_int s n , Pow(t,n)
+ | _ -> failwith "scale_term : not implemented"
+
+let scale_term t =
+ let (s,t') = scale_term t in
+ s,t'
+
+
+let get_index_of_ith_match f i l =
+ let rec get j res l =
+ match l with
+ | [] -> failwith "bad index"
+ | e::l -> if f e
+ then
+ (if j = i then res else get (j+1) (res+1) l )
+ else get j (res+1) l in
+ get 0 0 l
+
+
+let rec scale_certificate pos = match pos with
+ | Axiom_eq i -> unit_big_int , Axiom_eq i
+ | Axiom_le i -> unit_big_int , Axiom_le i
+ | Axiom_lt i -> unit_big_int , Axiom_lt i
+ | Monoid l -> unit_big_int , Monoid l
+ | Rational_eq n -> (denominator n) , Rational_eq (Big_int (numerator n))
+ | Rational_le n -> (denominator n) , Rational_le (Big_int (numerator n))
+ | Rational_lt n -> (denominator n) , Rational_lt (Big_int (numerator n))
+ | Square t -> let s,t' = scale_term t in
+ mult_big_int s s , Square t'
+ | Eqmul (t, y) -> let s1,y1 = scale_term t and s2,y2 = scale_certificate y in
+ mult_big_int s1 s2 , Eqmul (y1,y2)
+ | Sum (y, z) -> let s1,y1 = scale_certificate y
+ and s2,y2 = scale_certificate z in
+ let g = gcd_big_int s1 s2 in
+ let s1' = div_big_int s1 g in
+ let s2' = div_big_int s2 g in
+ mult_big_int g (mult_big_int s1' s2'),
+ Sum (Product(Rational_le (Big_int s2'), y1),
+ Product (Rational_le (Big_int s1'), y2))
+ | Product (y, z) ->
+ let s1,y1 = scale_certificate y and s2,y2 = scale_certificate z in
+ mult_big_int s1 s2 , Product (y1,y2)
+
+
+open Micromega
+ let rec term_to_q_expr = function
+ | Const n -> PEc (Ml2C.q n)
+ | Zero -> PEc ( Ml2C.q (Int 0))
+ | Var s -> PEX (Ml2C.index
+ (int_of_string (String.sub s 1 (String.length s - 1))))
+ | Mul(p1,p2) -> PEmul(term_to_q_expr p1, term_to_q_expr p2)
+ | Add(p1,p2) -> PEadd(term_to_q_expr p1, term_to_q_expr p2)
+ | Opp p -> PEopp (term_to_q_expr p)
+ | Pow(t,n) -> PEpow (term_to_q_expr t,Ml2C.n n)
+ | Sub(t1,t2) -> PEsub (term_to_q_expr t1, term_to_q_expr t2)
+ | _ -> failwith "term_to_q_expr: not implemented"
+
+let q_cert_of_pos pos =
+ let rec _cert_of_pos = function
+ Axiom_eq i -> Mc.S_In (Ml2C.nat i)
+ | Axiom_le i -> Mc.S_In (Ml2C.nat i)
+ | Axiom_lt i -> Mc.S_In (Ml2C.nat i)
+ | Monoid l -> Mc.S_Monoid (Ml2C.list Ml2C.nat l)
+ | Rational_eq n | Rational_le n | Rational_lt n ->
+ if compare_num n (Int 0) = 0 then Mc.S_Z else
+ Mc.S_Pos (Ml2C.q n)
+ | Square t -> Mc.S_Square (term_to_q_expr t)
+ | Eqmul (t, y) -> Mc.S_Ideal(term_to_q_expr t, _cert_of_pos y)
+ | Sum (y, z) -> Mc.S_Add (_cert_of_pos y, _cert_of_pos z)
+ | Product (y, z) -> Mc.S_Mult (_cert_of_pos y, _cert_of_pos z) in
+ simplify_cone q_spec (_cert_of_pos pos)
+
+
+ let rec term_to_z_expr = function
+ | Const n -> PEc (Ml2C.bigint (big_int_of_num n))
+ | Zero -> PEc ( Z0)
+ | Var s -> PEX (Ml2C.index
+ (int_of_string (String.sub s 1 (String.length s - 1))))
+ | Mul(p1,p2) -> PEmul(term_to_z_expr p1, term_to_z_expr p2)
+ | Add(p1,p2) -> PEadd(term_to_z_expr p1, term_to_z_expr p2)
+ | Opp p -> PEopp (term_to_z_expr p)
+ | Pow(t,n) -> PEpow (term_to_z_expr t,Ml2C.n n)
+ | Sub(t1,t2) -> PEsub (term_to_z_expr t1, term_to_z_expr t2)
+ | _ -> failwith "term_to_z_expr: not implemented"
+
+let z_cert_of_pos pos =
+ let s,pos = (scale_certificate pos) in
+ let rec _cert_of_pos = function
+ Axiom_eq i -> Mc.S_In (Ml2C.nat i)
+ | Axiom_le i -> Mc.S_In (Ml2C.nat i)
+ | Axiom_lt i -> Mc.S_In (Ml2C.nat i)
+ | Monoid l -> Mc.S_Monoid (Ml2C.list Ml2C.nat l)
+ | Rational_eq n | Rational_le n | Rational_lt n ->
+ if compare_num n (Int 0) = 0 then Mc.S_Z else
+ Mc.S_Pos (Ml2C.bigint (big_int_of_num n))
+ | Square t -> Mc.S_Square (term_to_z_expr t)
+ | Eqmul (t, y) -> Mc.S_Ideal(term_to_z_expr t, _cert_of_pos y)
+ | Sum (y, z) -> Mc.S_Add (_cert_of_pos y, _cert_of_pos z)
+ | Product (y, z) -> Mc.S_Mult (_cert_of_pos y, _cert_of_pos z) in
+ simplify_cone z_spec (_cert_of_pos pos)
diff --git a/contrib/micromega/coq_micromega.ml b/contrib/micromega/coq_micromega.ml
index 29e2a183..02ff61a1 100644
--- a/contrib/micromega/coq_micromega.ml
+++ b/contrib/micromega/coq_micromega.ml
@@ -106,6 +106,7 @@ struct
["Coq" ; "micromega" ; "EnvRing"];
["Coq";"QArith"; "QArith_base"];
["Coq";"Reals" ; "Rdefinitions"];
+ ["Coq";"Reals" ; "Rpow_def"];
["LRing_normalise"]]
let constant = gen_constant_in_modules "ZMicromega" coq_modules
@@ -163,6 +164,9 @@ struct
let coq_Qmake = lazy (constant "Qmake")
+ let coq_R0 = lazy (constant "R0")
+ let coq_R1 = lazy (constant "R1")
+
let coq_proofTerm = lazy (constant "ProofTerm")
let coq_ratProof = lazy (constant "RatProof")
@@ -179,10 +183,36 @@ struct
let coq_Zminus = lazy (constant "Zminus")
let coq_Zopp = lazy (constant "Zopp")
let coq_Zmult = lazy (constant "Zmult")
+ let coq_Zpower = lazy (constant "Zpower")
let coq_N_of_Z = lazy
(gen_constant_in_modules "ZArithRing"
[["Coq";"setoid_ring";"ZArithRing"]] "N_of_Z")
+ let coq_Qgt = lazy (constant "Qgt")
+ let coq_Qge = lazy (constant "Qge")
+ let coq_Qle = lazy (constant "Qle")
+ let coq_Qlt = lazy (constant "Qlt")
+ let coq_Qeq = lazy (constant "Qeq")
+
+
+ let coq_Qplus = lazy (constant "Qplus")
+ let coq_Qminus = lazy (constant "Qminus")
+ let coq_Qopp = lazy (constant "Qopp")
+ let coq_Qmult = lazy (constant "Qmult")
+ let coq_Qpower = lazy (constant "Qpower")
+
+
+ let coq_Rgt = lazy (constant "Rgt")
+ let coq_Rge = lazy (constant "Rge")
+ let coq_Rle = lazy (constant "Rle")
+ let coq_Rlt = lazy (constant "Rlt")
+
+ let coq_Rplus = lazy (constant "Rplus")
+ let coq_Rminus = lazy (constant "Rminus")
+ let coq_Ropp = lazy (constant "Ropp")
+ let coq_Rmult = lazy (constant "Rmult")
+ let coq_Rpower = lazy (constant "pow")
+
let coq_PEX = lazy (constant "PEX" )
let coq_PEc = lazy (constant"PEc")
@@ -225,6 +255,7 @@ struct
(gen_constant_in_modules "RingMicromega"
[["Coq" ; "micromega" ; "RingMicromega"] ; ["RingMicromega"] ] "Formula")
+
type parse_error =
| Ukn
| BadStr of string
@@ -347,16 +378,11 @@ let dump_q q =
let parse_q term =
match Term.kind_of_term term with
- | Term.App(c, args) ->
- (
- match Term.kind_of_term c with
- Term.Construct((n,j),i) ->
- if Names.string_of_kn n = "Coq.QArith.QArith_base#<>#Q"
- then {Mc.qnum = parse_z args.(0) ; Mc.qden = parse_positive args.(1) }
+ | Term.App(c, args) -> if c = Lazy.force coq_Qmake then
+ {Mc.qnum = parse_z args.(0) ; Mc.qden = parse_positive args.(1) }
else raise ParseError
- | _ -> raise ParseError
- )
- | _ -> raise ParseError
+ | _ -> raise ParseError
+
let rec parse_list parse_elt term =
let (i,c) = get_left_construct term in
@@ -466,19 +492,6 @@ let parse_q term =
pp_cone o e
-
-
- let rec parse_op term =
- let (i,c) = get_left_construct term in
- match i with
- | 1 -> Mc.OpEq
- | 2 -> Mc.OpLe
- | 3 -> Mc.OpGe
- | 4 -> Mc.OpGt
- | 5 -> Mc.OpLt
- | i -> raise ParseError
-
-
let rec dump_op = function
| Mc.OpEq-> Lazy.force coq_OpEq
| Mc.OpNEq-> Lazy.force coq_OpNEq
@@ -510,68 +523,52 @@ let parse_q term =
dump_op o ;
dump_expr typ dump_constant e2|])
+ let assoc_const x l =
+ try
+ snd (List.find (fun (x',y) -> x = Lazy.force x') l)
+ with
+ Not_found -> raise ParseError
+
+ let zop_table = [
+ coq_Zgt, Mc.OpGt ;
+ coq_Zge, Mc.OpGe ;
+ coq_Zlt, Mc.OpLt ;
+ coq_Zle, Mc.OpLe ]
+
+ let rop_table = [
+ coq_Rgt, Mc.OpGt ;
+ coq_Rge, Mc.OpGe ;
+ coq_Rlt, Mc.OpLt ;
+ coq_Rle, Mc.OpLe ]
+
+ let qop_table = [
+ coq_Qlt, Mc.OpLt ;
+ coq_Qle, Mc.OpLe ;
+ coq_Qeq, Mc.OpEq
+ ]
let parse_zop (op,args) =
match kind_of_term op with
- | Const x ->
- (match Names.string_of_con x with
- | "Coq.ZArith.BinInt#<>#Zgt" -> (Mc.OpGt, args.(0), args.(1))
- | "Coq.ZArith.BinInt#<>#Zge" -> (Mc.OpGe, args.(0), args.(1))
- | "Coq.ZArith.BinInt#<>#Zlt" -> (Mc.OpLt, args.(0), args.(1))
- | "Coq.ZArith.BinInt#<>#Zle" -> (Mc.OpLe, args.(0), args.(1))
- (*| "Coq.Init.Logic#<>#not" -> Mc.OpNEq (* for backward compat *)*)
- | s -> raise ParseError
- )
+ | Const x -> (assoc_const op zop_table, args.(0) , args.(1))
| Ind(n,0) ->
- (match Names.string_of_kn n with
- | "Coq.Init.Logic#<>#eq" ->
- if args.(0) <> Lazy.force coq_Z
- then raise ParseError
- else (Mc.OpEq, args.(1), args.(2))
- | _ -> raise ParseError)
+ if op = Lazy.force coq_Eq && args.(0) = Lazy.force coq_Z
+ then (Mc.OpEq, args.(1), args.(2))
+ else raise ParseError
| _ -> failwith "parse_zop"
let parse_rop (op,args) =
- try
match kind_of_term op with
- | Const x ->
- (match Names.string_of_con x with
- | "Coq.Reals.Rdefinitions#<>#Rgt" -> (Mc.OpGt, args.(0), args.(1))
- | "Coq.Reals.Rdefinitions#<>#Rge" -> (Mc.OpGe, args.(0), args.(1))
- | "Coq.Reals.Rdefinitions#<>#Rlt" -> (Mc.OpLt, args.(0), args.(1))
- | "Coq.Reals.Rdefinitions#<>#Rle" -> (Mc.OpLe, args.(0), args.(1))
- (*| "Coq.Init.Logic#<>#not"-> Mc.OpNEq (* for backward compat *)*)
- | s -> raise ParseError
- )
+ | Const x -> (assoc_const op rop_table, args.(0) , args.(1))
| Ind(n,0) ->
- (match Names.string_of_kn n with
- | "Coq.Init.Logic#<>#eq" ->
- (* if args.(0) <> Lazy.force coq_R
- then raise ParseError
- else*) (Mc.OpEq, args.(1), args.(2))
- | _ -> raise ParseError)
- | _ -> failwith "parse_rop"
- with x ->
- (Pp.pp (Pp.str "parse_rop failure ") ;
- Pp.pp (Printer.prterm op) ; Pp.pp_flush ())
- ; raise x
-
+ if op = Lazy.force coq_Eq && args.(0) = Lazy.force coq_R
+ then (Mc.OpEq, args.(1), args.(2))
+ else raise ParseError
+ | _ -> failwith "parse_zop"
let parse_qop (op,args) =
- (
- (match kind_of_term op with
- | Const x ->
- (match Names.string_of_con x with
- | "Coq.QArith.QArith_base#<>#Qgt" -> Mc.OpGt
- | "Coq.QArith.QArith_base#<>#Qge" -> Mc.OpGe
- | "Coq.QArith.QArith_base#<>#Qlt" -> Mc.OpLt
- | "Coq.QArith.QArith_base#<>#Qle" -> Mc.OpLe
- | "Coq.QArith.QArith_base#<>#Qeq" -> Mc.OpEq
- | s -> raise ParseError
- )
- | _ -> failwith "parse_zop") , args.(0) , args.(1))
+ (assoc_const op qop_table, args.(0) , args.(1))
module Env =
@@ -612,6 +609,14 @@ let parse_q term =
| Ukn of string
+ let assoc_ops x l =
+ try
+ snd (List.find (fun (x',y) -> x = Lazy.force x') l)
+ with
+ Not_found -> Ukn "Oups"
+
+
+
let parse_expr parse_constant parse_exp ops_spec env term =
if debug
then (Pp.pp (Pp.str "parse_expr: ");
@@ -634,7 +639,7 @@ let parse_q term =
(
match kind_of_term t with
| Const c ->
- ( match ops_spec (Names.string_of_con c) with
+ ( match assoc_ops t ops_spec with
| Binop f -> combine env f (args.(0),args.(1))
| Opp -> let (expr,env) = parse_expr env args.(0) in
(Mc.PEopp expr, env)
@@ -653,29 +658,29 @@ let parse_q term =
parse_expr env term
-let zop_spec = function
- | "Coq.ZArith.BinInt#<>#Zplus" -> Binop (fun x y -> Mc.PEadd(x,y))
- | "Coq.ZArith.BinInt#<>#Zminus" -> Binop (fun x y -> Mc.PEsub(x,y))
- | "Coq.ZArith.BinInt#<>#Zmult" -> Binop (fun x y -> Mc.PEmul (x,y))
- | "Coq.ZArith.BinInt#<>#Zopp" -> Opp
- | "Coq.ZArith.Zpow_def#<>#Zpower" -> Power
- | s -> Ukn s
+ let zop_spec =
+ [
+ coq_Zplus , Binop (fun x y -> Mc.PEadd(x,y)) ;
+ coq_Zminus , Binop (fun x y -> Mc.PEsub(x,y)) ;
+ coq_Zmult , Binop (fun x y -> Mc.PEmul (x,y)) ;
+ coq_Zopp , Opp ;
+ coq_Zpower , Power]
-let qop_spec = function
- | "Coq.QArith.QArith_base#<>#Qplus" -> Binop (fun x y -> Mc.PEadd(x,y))
- | "Coq.QArith.QArith_base#<>#Qminus" -> Binop (fun x y -> Mc.PEsub(x,y))
- | "Coq.QArith.QArith_base#<>#Qmult" -> Binop (fun x y -> Mc.PEmul (x,y))
- | "Coq.QArith.QArith_base#<>#Qopp" -> Opp
- | "Coq.QArith.QArith_base#<>#Qpower" -> Power
- | s -> Ukn s
+let qop_spec =
+ [
+ coq_Qplus , Binop (fun x y -> Mc.PEadd(x,y)) ;
+ coq_Qminus , Binop (fun x y -> Mc.PEsub(x,y)) ;
+ coq_Qmult , Binop (fun x y -> Mc.PEmul (x,y)) ;
+ coq_Qopp , Opp ;
+ coq_Qpower , Power]
-let rop_spec = function
- | "Coq.Reals.Rdefinitions#<>#Rplus" -> Binop (fun x y -> Mc.PEadd(x,y))
- | "Coq.Reals.Rdefinitions#<>#Rminus" -> Binop (fun x y -> Mc.PEsub(x,y))
- | "Coq.Reals.Rdefinitions#<>#Rmult" -> Binop (fun x y -> Mc.PEmul (x,y))
- | "Coq.Reals.Rdefinitions#<>#Ropp" -> Opp
- | "Coq.Reals.Rpow_def#<>#pow" -> Power
- | s -> Ukn s
+let rop_spec =
+ [
+ coq_Rplus , Binop (fun x y -> Mc.PEadd(x,y)) ;
+ coq_Rminus , Binop (fun x y -> Mc.PEsub(x,y)) ;
+ coq_Rmult , Binop (fun x y -> Mc.PEmul (x,y)) ;
+ coq_Ropp , Opp ;
+ coq_Rpower , Power]
@@ -691,12 +696,12 @@ let rconstant term =
Pp.pp (Pp.str "rconstant: ");
Pp.pp (Printer.prterm term); Pp.pp_flush ());
match Term.kind_of_term term with
- | Const x ->
- (match Names.string_of_con x with
- | "Coq.Reals.Rdefinitions#<>#R0" -> Mc.Z0
- | "Coq.Reals.Rdefinitions#<>#R1" -> Mc.Zpos Mc.XH
- | _ -> raise ParseError
- )
+ | Const x ->
+ if term = Lazy.force coq_R0
+ then Mc.Z0
+ else if term = Lazy.force coq_R1
+ then Mc.Zpos Mc.XH
+ else raise ParseError
| _ -> raise ParseError
@@ -731,23 +736,6 @@ let parse_rexpr =
(* generic parsing of arithmetic expressions *)
- let rec parse_conj parse_arith env term =
- match kind_of_term term with
- | App(l,rst) ->
- (match kind_of_term l with
- | Ind (n,_) ->
- ( match Names.string_of_kn n with
- | "Coq.Init.Logic#<>#and" ->
- let (e1,env) = parse_arith env rst.(0) in
- let (e2,env) = parse_conj parse_arith env rst.(1) in
- (Mc.Cons(e1,e2),env)
- | _ -> (* This might be an equality *)
- let (e,env) = parse_arith env term in
- (Mc.Cons(e,Mc.Nil),env))
- | _ -> (* This is an arithmetic expression *)
- let (e,env) = parse_arith env term in
- (Mc.Cons(e,Mc.Nil),env))
- | _ -> failwith "parse_conj(2)"
@@ -850,46 +838,6 @@ let parse_rexpr =
xdump f
- (* Backward compat *)
-
- let rec parse_concl parse_arith env term =
- match kind_of_term term with
- | Prod(_,expr,rst) -> (* a -> b *)
- let (lhs,rhs,env) = parse_concl parse_arith env rst in
- let (e,env) = parse_arith env expr in
- (Mc.Cons(e,lhs),rhs,env)
- | App(_,_) ->
- let (conj, env) = parse_conj parse_arith env term in
- (Mc.Nil,conj,env)
- | Ind(n,_) ->
- (match (Names.string_of_kn n) with
- | "Coq.Init.Logic#<>#False" -> (Mc.Nil,Mc.Nil,env)
- | s ->
- print_string s ; flush stdout;
- failwith "parse_concl")
- | _ -> failwith "parse_concl"
-
-
- let rec parse_hyps parse_arith env goal_hyps hyps =
- match hyps with
- | [] -> ([],goal_hyps,env)
- | (i,t)::l ->
- let (li,lt,env) = parse_hyps parse_arith env goal_hyps l in
- try
- let (c,env) = parse_arith env t in
- (i::li, Mc.Cons(c,lt), env)
- with x ->
- (*(if debug then Printf.printf "parse_arith : %s\n" x);*)
- (li,lt,env)
-
-
- let parse_goal parse_arith env hyps term =
- try
- let (lhs,rhs,env) = parse_concl parse_arith env term in
- let (li,lt,env) = parse_hyps parse_arith env lhs hyps in
- (li,lt,rhs,env)
- with Failure x -> raise ParseError
- (* backward compat *)
(* ! reverse the list of bindings *)
@@ -1235,8 +1183,8 @@ let lift_ratproof prover l =
| Some c -> Some (Mc.RatProof c)
-type csdpcert = Certificate.Mc.z Certificate.Mc.coneMember option
-type micromega_polys = (Micromega.z Mc.pExpr, Mc.op1) Micromega.prod list
+type csdpcert = Sos.positivstellensatz option
+type micromega_polys = (Micromega.q Mc.pExpr, Mc.op1) Micromega.prod list
type provername = string * int option
let call_csdpcert provername poly =
@@ -1255,36 +1203,84 @@ let call_csdpcert provername poly =
close_in ch_from; Sys.remove tmp_from;
cert
-let omicron gl =
+let rec z_to_q_expr e =
+ match e with
+ | Mc.PEc z -> Mc.PEc {Mc.qnum = z ; Mc.qden = Mc.XH}
+ | Mc.PEX x -> Mc.PEX x
+ | Mc.PEadd(e1,e2) -> Mc.PEadd(z_to_q_expr e1, z_to_q_expr e2)
+ | Mc.PEsub(e1,e2) -> Mc.PEsub(z_to_q_expr e1, z_to_q_expr e2)
+ | Mc.PEmul(e1,e2) -> Mc.PEmul(z_to_q_expr e1, z_to_q_expr e2)
+ | Mc.PEopp(e) -> Mc.PEopp(z_to_q_expr e)
+ | Mc.PEpow(e,n) -> Mc.PEpow(z_to_q_expr e,n)
+
+
+let call_csdpcert_q provername poly =
+ match call_csdpcert provername poly with
+ | None -> None
+ | Some cert ->
+ let cert = Certificate.q_cert_of_pos cert in
+ match Mc.qWeakChecker (CamlToCoq.list (fun x -> x) poly) cert with
+ | Mc.True -> Some cert
+ | Mc.False -> (print_string "buggy certificate" ; flush stdout) ;None
+
+
+let call_csdpcert_z provername poly =
+ let l = List.map (fun (Mc.Pair(e,o)) -> (Mc.Pair(z_to_q_expr e,o))) poly in
+ match call_csdpcert provername l with
+ | None -> None
+ | Some cert ->
+ let cert = Certificate.z_cert_of_pos cert in
+ match Mc.zWeakChecker (CamlToCoq.list (fun x -> x) poly) cert with
+ | Mc.True -> Some cert
+ | Mc.False -> (print_string "buggy certificate" ; flush stdout) ;None
+
+
+
+
+let psatzl_Z gl =
micromega_gen parse_zarith Mc.negate Mc.normalise zz_domain_spec
[lift_ratproof
(Certificate.linear_prover Certificate.z_spec), "fourier refutation" ] gl
-let qomicron gl =
+let psatzl_Q gl =
micromega_gen parse_qarith Mc.cnf_negate Mc.cnf_normalise qq_domain_spec
[ Certificate.linear_prover Certificate.q_spec, "fourier refutation" ] gl
-let romicron gl =
+let psatz_Q i gl =
+ micromega_gen parse_qarith Mc.cnf_negate Mc.cnf_normalise qq_domain_spec
+ [ call_csdpcert_q ("real_nonlinear_prover", Some i), "fourier refutation" ] gl
+
+let psatzl_R gl =
micromega_gen parse_rarith Mc.cnf_negate Mc.cnf_normalise rz_domain_spec
[ Certificate.linear_prover Certificate.z_spec, "fourier refutation" ] gl
-let rmicromega i gl =
- micromega_gen parse_rarith Mc.negate Mc.normalise rz_domain_spec
- [ call_csdpcert ("real_nonlinear_prover", Some i), "fourier refutation" ] gl
+let psatz_R i gl =
+ micromega_gen parse_rarith Mc.cnf_negate Mc.cnf_normalise rz_domain_spec
+ [ call_csdpcert_z ("real_nonlinear_prover", Some i), "fourier refutation" ] gl
-let micromega i gl =
+let psatz_Z i gl =
micromega_gen parse_zarith Mc.negate Mc.normalise zz_domain_spec
- [lift_ratproof (call_csdpcert ("real_nonlinear_prover",Some i)),
+ [lift_ratproof (call_csdpcert_z ("real_nonlinear_prover",Some i)),
"fourier refutation" ] gl
-let sos gl =
+let sos_Z gl =
micromega_gen parse_zarith Mc.negate Mc.normalise zz_domain_spec
- [lift_ratproof (call_csdpcert ("pure_sos", None)), "pure sos refutation"] gl
+ [lift_ratproof (call_csdpcert_z ("pure_sos", None)), "pure sos refutation"] gl
+
+let sos_Q gl =
+ micromega_gen parse_qarith Mc.cnf_negate Mc.cnf_normalise qq_domain_spec
+ [call_csdpcert_q ("pure_sos", None), "pure sos refutation"] gl
+
+let sos_R gl =
+ micromega_gen parse_rarith Mc.cnf_negate Mc.cnf_normalise rz_domain_spec
+ [call_csdpcert_z ("pure_sos", None), "pure sos refutation"] gl
+
+
-let zomicron gl =
+let xlia gl =
micromega_gen parse_zarith Mc.negate Mc.normalise zz_domain_spec
[Certificate.zlinear_prover, "zprover"] gl
diff --git a/contrib/micromega/csdpcert.ml b/contrib/micromega/csdpcert.ml
index cfaf6ae1..e451a38f 100644
--- a/contrib/micromega/csdpcert.ml
+++ b/contrib/micromega/csdpcert.ml
@@ -27,7 +27,7 @@ struct
open Mc
let rec expr_to_term = function
- | PEc z -> Const (Big_int (C2Ml.z_big_int z))
+ | PEc z -> Const (C2Ml.q_to_num z)
| PEX v -> Var ("x"^(string_of_int (C2Ml.index v)))
| PEmul(p1,p2) ->
let p1 = expr_to_term p1 in
@@ -40,25 +40,15 @@ struct
| PEopp p -> Opp (expr_to_term p)
- let rec term_to_expr = function
- | Const n -> PEc (Ml2C.bigint (big_int_of_num n))
- | Zero -> PEc ( Z0)
- | Var s -> PEX (Ml2C.index
- (int_of_string (String.sub s 1 (String.length s - 1))))
- | Mul(p1,p2) -> PEmul(term_to_expr p1, term_to_expr p2)
- | Add(p1,p2) -> PEadd(term_to_expr p1, term_to_expr p2)
- | Opp p -> PEopp (term_to_expr p)
- | Pow(t,n) -> PEpow (term_to_expr t,Ml2C.n n)
- | Sub(t1,t2) -> PEsub (term_to_expr t1, term_to_expr t2)
- | _ -> failwith "term_to_expr: not implemented"
-
- let term_to_expr e =
+
+
+(* let term_to_expr e =
let e' = term_to_expr e in
if debug
then Printf.printf "term_to_expr : %s - %s\n"
(string_of_poly (poly_of_term e))
(string_of_poly (poly_of_term (expr_to_term e')));
- e'
+ e' *)
end
open M
@@ -66,110 +56,8 @@ open M
open List
open Mutils
-let rec scale_term t =
- match t with
- | Zero -> unit_big_int , Zero
- | Const n -> (denominator n) , Const (Big_int (numerator n))
- | Var n -> unit_big_int , Var n
- | Inv _ -> failwith "scale_term : not implemented"
- | Opp t -> let s, t = scale_term t in s, Opp t
- | Add(t1,t2) -> let s1,y1 = scale_term t1 and s2,y2 = scale_term t2 in
- let g = gcd_big_int s1 s2 in
- let s1' = div_big_int s1 g in
- let s2' = div_big_int s2 g in
- let e = mult_big_int g (mult_big_int s1' s2') in
- if (compare_big_int e unit_big_int) = 0
- then (unit_big_int, Add (y1,y2))
- else e, Add (Mul(Const (Big_int s2'), y1),
- Mul (Const (Big_int s1'), y2))
- | Sub _ -> failwith "scale term: not implemented"
- | Mul(y,z) -> let s1,y1 = scale_term y and s2,y2 = scale_term z in
- mult_big_int s1 s2 , Mul (y1, y2)
- | Pow(t,n) -> let s,t = scale_term t in
- power_big_int_positive_int s n , Pow(t,n)
- | _ -> failwith "scale_term : not implemented"
-
-let scale_term t =
- let (s,t') = scale_term t in
- s,t'
-
-
-let rec scale_certificate pos = match pos with
- | Axiom_eq i -> unit_big_int , Axiom_eq i
- | Axiom_le i -> unit_big_int , Axiom_le i
- | Axiom_lt i -> unit_big_int , Axiom_lt i
- | Monoid l -> unit_big_int , Monoid l
- | Rational_eq n -> (denominator n) , Rational_eq (Big_int (numerator n))
- | Rational_le n -> (denominator n) , Rational_le (Big_int (numerator n))
- | Rational_lt n -> (denominator n) , Rational_lt (Big_int (numerator n))
- | Square t -> let s,t' = scale_term t in
- mult_big_int s s , Square t'
- | Eqmul (t, y) -> let s1,y1 = scale_term t and s2,y2 = scale_certificate y in
- mult_big_int s1 s2 , Eqmul (y1,y2)
- | Sum (y, z) -> let s1,y1 = scale_certificate y
- and s2,y2 = scale_certificate z in
- let g = gcd_big_int s1 s2 in
- let s1' = div_big_int s1 g in
- let s2' = div_big_int s2 g in
- mult_big_int g (mult_big_int s1' s2'),
- Sum (Product(Rational_le (Big_int s2'), y1),
- Product (Rational_le (Big_int s1'), y2))
- | Product (y, z) ->
- let s1,y1 = scale_certificate y and s2,y2 = scale_certificate z in
- mult_big_int s1 s2 , Product (y1,y2)
-
-
-let is_eq = function Mc.Equal -> true | _ -> false
-let is_le = function Mc.NonStrict -> true | _ -> false
-let is_lt = function Mc.Strict -> true | _ -> false
-
-let get_index_of_ith_match f i l =
- let rec get j res l =
- match l with
- | [] -> failwith "bad index"
- | e::l -> if f e
- then
- (if j = i then res else get (j+1) (res+1) l )
- else get j (res+1) l in
- get 0 0 l
-
-
-let cert_of_pos eq le lt ll l pos =
- let s,pos = (scale_certificate pos) in
- let rec _cert_of_pos = function
- Axiom_eq i -> let idx = get_index_of_ith_match is_eq i l in
- Mc.S_In (Ml2C.nat idx)
- | Axiom_le i -> let idx = get_index_of_ith_match is_le i l in
- Mc.S_In (Ml2C.nat idx)
- | Axiom_lt i -> let idx = get_index_of_ith_match is_lt i l in
- Mc.S_In (Ml2C.nat idx)
- | Monoid l -> Mc.S_Monoid (Ml2C.list Ml2C.nat l)
- | Rational_eq n | Rational_le n | Rational_lt n ->
- if compare_num n (Int 0) = 0 then Mc.S_Z else
- Mc.S_Pos (Ml2C.bigint (big_int_of_num n))
- | Square t -> Mc.S_Square (term_to_expr t)
- | Eqmul (t, y) -> Mc.S_Ideal(term_to_expr t, _cert_of_pos y)
- | Sum (y, z) -> Mc.S_Add (_cert_of_pos y, _cert_of_pos z)
- | Product (y, z) -> Mc.S_Mult (_cert_of_pos y, _cert_of_pos z) in
- s, Certificate.simplify_cone Certificate.z_spec (_cert_of_pos pos)
-
-
-let term_of_cert l pos =
- let l = List.map fst' l in
- let rec _cert_of_pos = function
- | Mc.S_In i -> expr_to_term (List.nth l (C2Ml.nat i))
- | Mc.S_Pos p -> Const (C2Ml.num p)
- | Mc.S_Z -> Const (Int 0)
- | Mc.S_Square t -> Mul(expr_to_term t, expr_to_term t)
- | Mc.S_Monoid m -> List.fold_right
- (fun x m -> Mul (expr_to_term (List.nth l (C2Ml.nat x)),m))
- (C2Ml.list (fun x -> x) m) (Const (Int 1))
- | Mc.S_Ideal (t, y) -> Mul(expr_to_term t, _cert_of_pos y)
- | Mc.S_Add (y, z) -> Add (_cert_of_pos y, _cert_of_pos z)
- | Mc.S_Mult (y, z) -> Mul (_cert_of_pos y, _cert_of_pos z) in
- (_cert_of_pos pos)
let rec canonical_sum_to_string = function s -> failwith "not implemented"
@@ -208,22 +96,6 @@ let rec sets_of_list l =
| e::l -> let s = sets_of_list l in
s@(List.map (fun s0 -> e::s0) s)
-let cert_of_pos pos =
- let s,pos = (scale_certificate pos) in
- let rec _cert_of_pos = function
- Axiom_eq i -> Mc.S_In (Ml2C.nat i)
- | Axiom_le i -> Mc.S_In (Ml2C.nat i)
- | Axiom_lt i -> Mc.S_In (Ml2C.nat i)
- | Monoid l -> Mc.S_Monoid (Ml2C.list Ml2C.nat l)
- | Rational_eq n | Rational_le n | Rational_lt n ->
- if compare_num n (Int 0) = 0 then Mc.S_Z else
- Mc.S_Pos (Ml2C.bigint (big_int_of_num n))
- | Square t -> Mc.S_Square (term_to_expr t)
- | Eqmul (t, y) -> Mc.S_Ideal(term_to_expr t, _cert_of_pos y)
- | Sum (y, z) -> Mc.S_Add (_cert_of_pos y, _cert_of_pos z)
- | Product (y, z) -> Mc.S_Mult (_cert_of_pos y, _cert_of_pos z) in
- s, Certificate.simplify_cone Certificate.z_spec (_cert_of_pos pos)
-
(* The exploration is probably not complete - for simple cases, it works... *)
let real_nonlinear_prover d l =
try
@@ -272,15 +144,7 @@ let real_nonlinear_prover d l =
let proof = list_fold_right_elements
(fun s t -> Sum(s,t)) (proof_ne :: proofs_ideal @ proofs_cone) in
-
- let s,proof' = scale_certificate proof in
- let cert = snd (cert_of_pos proof') in
- if debug
- then Printf.printf "cert poly : %s\n"
- (string_of_poly (poly_of_term (term_of_cert l cert)));
- match Mc.zWeakChecker (Ml2C.list (fun x -> x) l) cert with
- | Mc.True -> Some cert
- | Mc.False -> (print_string "buggy certificate" ; flush stdout) ;None
+ Some proof
with
| Sos.TooDeep -> None
@@ -300,16 +164,16 @@ let pure_sos l =
(term_of_poly p)), rst))
polys (Rational_lt (Int 0))) in
let proof = Sum(Axiom_lt i, pos) in
- let s,proof' = scale_certificate proof in
- let cert = snd (cert_of_pos proof') in
- Some cert
+(* let s,proof' = scale_certificate proof in
+ let cert = snd (cert_of_pos proof') in *)
+ Some proof
with
| Not_found -> (* This is no strict inequality *) None
| x -> None
-type micromega_polys = (Micromega.z Mc.pExpr, Mc.op1) Micromega.prod list
-type csdp_certificate = Certificate.Mc.z Certificate.Mc.coneMember option
+type micromega_polys = (Micromega.q Mc.pExpr, Mc.op1) Micromega.prod list
+type csdp_certificate = Sos.positivstellensatz option
type provername = string * int option
let main () =
diff --git a/contrib/micromega/g_micromega.ml4 b/contrib/micromega/g_micromega.ml4
index 259b5d4b..50024e78 100644
--- a/contrib/micromega/g_micromega.ml4
+++ b/contrib/micromega/g_micromega.ml4
@@ -14,7 +14,7 @@
(*i camlp4deps: "parsing/grammar.cma" i*)
-(* $Id: g_micromega.ml4 10947 2008-05-19 19:10:40Z herbelin $ *)
+(* $Id: g_micromega.ml4 11306 2008-08-05 16:51:08Z notin $ *)
open Quote
open Ring
@@ -26,34 +26,49 @@ let out_arg = function
| ArgVar _ -> anomaly "Unevaluated or_var variable"
| ArgArg x -> x
-TACTIC EXTEND Micromega
-| [ "micromegap" int_or_var(i) ] -> [ Coq_micromega.micromega (out_arg i) ]
-| [ "micromegap" ] -> [ Coq_micromega.micromega (-1) ]
+TACTIC EXTEND PsatzZ
+| [ "psatz_Z" int_or_var(i) ] -> [ Coq_micromega.psatz_Z (out_arg i) ]
+| [ "psatz_Z" ] -> [ Coq_micromega.psatz_Z (-1) ]
END
-TACTIC EXTEND Sos
-[ "sosp" ] -> [ Coq_micromega.sos]
+TACTIC EXTEND Sos_Z
+| [ "sos_Z" ] -> [ Coq_micromega.sos_Z]
+ END
+
+TACTIC EXTEND Sos_Q
+| [ "sos_Q" ] -> [ Coq_micromega.sos_Q]
+ END
+
+TACTIC EXTEND Sos_R
+| [ "sos_R" ] -> [ Coq_micromega.sos_R]
END
TACTIC EXTEND Omicron
-[ "omicronp" ] -> [ Coq_micromega.omicron]
+[ "psatzl_Z" ] -> [ Coq_micromega.psatzl_Z]
END
TACTIC EXTEND QOmicron
-[ "qomicronp" ] -> [ Coq_micromega.qomicron]
+[ "psatzl_Q" ] -> [ Coq_micromega.psatzl_Q]
END
TACTIC EXTEND ZOmicron
-[ "zomicronp" ] -> [ Coq_micromega.zomicron]
+[ "xlia" ] -> [ Coq_micromega.xlia]
END
TACTIC EXTEND ROmicron
-[ "romicronp" ] -> [ Coq_micromega.romicron]
+[ "psatzl_R" ] -> [ Coq_micromega.psatzl_R]
END
TACTIC EXTEND RMicromega
-| [ "rmicromegap" int_or_var(i) ] -> [ Coq_micromega.rmicromega (out_arg i) ]
-| [ "rmicromegap" ] -> [ Coq_micromega.rmicromega (-1) ]
+| [ "psatz_R" int_or_var(i) ] -> [ Coq_micromega.psatz_R (out_arg i) ]
+| [ "psatz_R" ] -> [ Coq_micromega.psatz_R (-1) ]
+END
+
+
+TACTIC EXTEND QMicromega
+| [ "psatz_Q" int_or_var(i) ] -> [ Coq_micromega.psatz_Q (out_arg i) ]
+| [ "psatz_Q" ] -> [ Coq_micromega.psatz_Q (-1) ]
END
+