diff options
author | Samuel Mimram <smimram@debian.org> | 2008-07-25 15:12:53 +0200 |
---|---|---|
committer | Samuel Mimram <smimram@debian.org> | 2008-07-25 15:12:53 +0200 |
commit | a0cfa4f118023d35b767a999d5a2ac4b082857b4 (patch) | |
tree | dabcac548e299fee1da464c93b3dba98484f45b1 /contrib/funind/Recdef.v | |
parent | 2281410e38ef99d025ea77194585a9bc019fdaa9 (diff) |
Imported Upstream version 8.2~beta3+dfsgupstream/8.2.beta3+dfsg
Diffstat (limited to 'contrib/funind/Recdef.v')
-rw-r--r-- | contrib/funind/Recdef.v | 48 |
1 files changed, 48 insertions, 0 deletions
diff --git a/contrib/funind/Recdef.v b/contrib/funind/Recdef.v new file mode 100644 index 00000000..2d206220 --- /dev/null +++ b/contrib/funind/Recdef.v @@ -0,0 +1,48 @@ +(************************************************************************) +(* v * The Coq Proof Assistant / The Coq Development Team *) +(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(************************************************************************) +Require Compare_dec. +Require Wf_nat. + +Section Iter. +Variable A : Type. + +Fixpoint iter (n : nat) : (A -> A) -> A -> A := + fun (fl : A -> A) (def : A) => + match n with + | O => def + | S m => fl (iter m fl def) + end. +End Iter. + +Theorem SSplus_lt : forall p p' : nat, p < S (S (p + p')). + intro p; intro p'; change (S p <= S (S (p + p'))); + apply le_S; apply Gt.gt_le_S; change (p < S (p + p')); + apply Lt.le_lt_n_Sm; apply Plus.le_plus_l. +Qed. + + +Theorem Splus_lt : forall p p' : nat, p' < S (p + p'). + intro p; intro p'; change (S p' <= S (p + p')); + apply Gt.gt_le_S; change (p' < S (p + p')); apply Lt.le_lt_n_Sm; + apply Plus.le_plus_r. +Qed. + +Theorem le_lt_SS : forall x y, x <= y -> x < S (S y). +intro x; intro y; intro H; change (S x <= S (S y)); + apply le_S; apply Gt.gt_le_S; change (x < S y); + apply Lt.le_lt_n_Sm; exact H. +Qed. + +Inductive max_type (m n:nat) : Set := + cmt : forall v, m <= v -> n <= v -> max_type m n. + +Definition max : forall m n:nat, max_type m n. +intros m n; case (Compare_dec.le_gt_dec m n). +intros h; exists n; [exact h | apply le_n]. +intros h; exists m; [apply le_n | apply Lt.lt_le_weak; exact h]. +Defined. |