summaryrefslogtreecommitdiff
path: root/contrib/extraction/test_extraction.v
diff options
context:
space:
mode:
authorGravatar Samuel Mimram <smimram@debian.org>2007-02-13 13:48:12 +0000
committerGravatar Samuel Mimram <smimram@debian.org>2007-02-13 13:48:12 +0000
commit55ce117e8083477593cf1ff2e51a3641c7973830 (patch)
treea82defb4105f175c71b0d13cae42831ce608c4d6 /contrib/extraction/test_extraction.v
parent208a0f7bfa5249f9795e6e225f309cbe715c0fad (diff)
Imported Upstream version 8.1+dfsgupstream/8.1+dfsg
Diffstat (limited to 'contrib/extraction/test_extraction.v')
-rw-r--r--contrib/extraction/test_extraction.v552
1 files changed, 0 insertions, 552 deletions
diff --git a/contrib/extraction/test_extraction.v b/contrib/extraction/test_extraction.v
deleted file mode 100644
index 0745f62d..00000000
--- a/contrib/extraction/test_extraction.v
+++ /dev/null
@@ -1,552 +0,0 @@
-(************************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(************************************************************************)
-
-Require Import Arith.
-Require Import List.
-
-(*** STANDARD EXAMPLES *)
-
-(** Functions. *)
-
-Definition idnat (x:nat) := x.
-Extraction idnat.
-(* let idnat x = x *)
-
-Definition id (X:Type) (x:X) := x.
-Extraction id. (* let id x = x *)
-Definition id' := id Set nat.
-Extraction id'. (* type id' = nat *)
-
-Definition test2 (f:nat -> nat) (x:nat) := f x.
-Extraction test2.
-(* let test2 f x = f x *)
-
-Definition test3 (f:nat -> Set -> nat) (x:nat) := f x nat.
-Extraction test3.
-(* let test3 f x = f x __ *)
-
-Definition test4 (f:(nat -> nat) -> nat) (x:nat) (g:nat -> nat) := f g.
-Extraction test4.
-(* let test4 f x g = f g *)
-
-Definition test5 := (1, 0).
-Extraction test5.
-(* let test5 = Pair ((S O), O) *)
-
-Definition cf (x:nat) (_:x <= 0) := S x.
-Extraction NoInline cf.
-Definition test6 := cf 0 (le_n 0).
-Extraction test6.
-(* let test6 = cf O *)
-
-Definition test7 := (fun (X:Set) (x:X) => x) nat.
-Extraction test7.
-(* let test7 x = x *)
-
-Definition d (X:Type) := X.
-Extraction d. (* type 'x d = 'x *)
-Definition d2 := d Set.
-Extraction d2. (* type d2 = __ d *)
-Definition d3 (x:d Set) := 0.
-Extraction d3. (* let d3 _ = O *)
-Definition d4 := d nat.
-Extraction d4. (* type d4 = nat d *)
-Definition d5 := (fun x:d Type => 0) Type.
-Extraction d5. (* let d5 = O *)
-Definition d6 (x:d Type) := x.
-Extraction d6. (* type 'x d6 = 'x *)
-
-Definition test8 := (fun (X:Type) (x:X) => x) Set nat.
-Extraction test8. (* type test8 = nat *)
-
-Definition test9 := let t := nat in id Set t.
-Extraction test9. (* type test9 = nat *)
-
-Definition test10 := (fun (X:Type) (x:X) => 0) Type Type.
-Extraction test10. (* let test10 = O *)
-
-Definition test11 := let n := 0 in let p := S n in S p.
-Extraction test11. (* let test11 = S (S O) *)
-
-Definition test12 := forall x:forall X:Type, X -> X, x Type Type.
-Extraction test12.
-(* type test12 = (__ -> __ -> __) -> __ *)
-
-
-Definition test13 := match left True I with
- | left x => 1
- | right x => 0
- end.
-Extraction test13. (* let test13 = S O *)
-
-
-(** example with more arguments that given by the type *)
-
-Definition test19 :=
- nat_rec (fun n:nat => nat -> nat) (fun n:nat => 0)
- (fun (n:nat) (f:nat -> nat) => f) 0 0.
-Extraction test19.
-(* let test19 =
- let rec f = function
- | O -> (fun n0 -> O)
- | S n0 -> f n0
- in f O O
-*)
-
-
-(** casts *)
-
-Definition test20 := True:Type.
-Extraction test20.
-(* type test20 = __ *)
-
-
-(** Simple inductive type and recursor. *)
-
-Extraction nat.
-(*
-type nat =
- | O
- | S of nat
-*)
-
-Extraction sumbool_rect.
-(*
-let sumbool_rect f f0 = function
- | Left -> f __
- | Right -> f0 __
-*)
-
-(** Less simple inductive type. *)
-
-Inductive c (x:nat) : nat -> Set :=
- | refl : c x x
- | trans : forall y z:nat, c x y -> y <= z -> c x z.
-Extraction c.
-(*
-type c =
- | Refl
- | Trans of nat * nat * c
-*)
-
-Definition Ensemble (U:Type) := U -> Prop.
-Definition Empty_set (U:Type) (x:U) := False.
-Definition Add (U:Type) (A:Ensemble U) (x y:U) := A y \/ x = y.
-
-Inductive Finite (U:Type) : Ensemble U -> Set :=
- | Empty_is_finite : Finite U (Empty_set U)
- | Union_is_finite :
- forall A:Ensemble U,
- Finite U A -> forall x:U, ~ A x -> Finite U (Add U A x).
-Extraction Finite.
-(*
-type 'u finite =
- | Empty_is_finite
- | Union_is_finite of 'u finite * 'u
-*)
-
-
-(** Mutual Inductive *)
-
-Inductive tree : Set :=
- Node : nat -> forest -> tree
-with forest : Set :=
- | Leaf : nat -> forest
- | Cons : tree -> forest -> forest.
-
-Extraction tree.
-(*
-type tree =
- | Node of nat * forest
-and forest =
- | Leaf of nat
- | Cons of tree * forest
-*)
-
-Fixpoint tree_size (t:tree) : nat :=
- match t with
- | Node a f => S (forest_size f)
- end
-
- with forest_size (f:forest) : nat :=
- match f with
- | Leaf b => 1
- | Cons t f' => tree_size t + forest_size f'
- end.
-
-Extraction tree_size.
-(*
-let rec tree_size = function
- | Node (a, f) -> S (forest_size f)
-and forest_size = function
- | Leaf b -> S O
- | Cons (t, f') -> plus (tree_size t) (forest_size f')
-*)
-
-
-(** Eta-expansions of inductive constructor *)
-
-Inductive titi : Set :=
- tata : nat -> nat -> nat -> nat -> titi.
-Definition test14 := tata 0.
-Extraction test14.
-(* let test14 x x0 x1 = Tata (O, x, x0, x1) *)
-Definition test15 := tata 0 1.
-Extraction test15.
-(* let test15 x x0 = Tata (O, (S O), x, x0) *)
-
-Inductive eta : Set :=
- eta_c : nat -> Prop -> nat -> Prop -> eta.
-Extraction eta_c.
-(*
-type eta =
- | Eta_c of nat * nat
-*)
-Definition test16 := eta_c 0.
-Extraction test16.
-(* let test16 x = Eta_c (O, x) *)
-Definition test17 := eta_c 0 True.
-Extraction test17.
-(* let test17 x = Eta_c (O, x) *)
-Definition test18 := eta_c 0 True 0.
-Extraction test18.
-(* let test18 _ = Eta_c (O, O) *)
-
-
-(** Example of singleton inductive type *)
-
-Inductive bidon (A:Prop) (B:Type) : Set :=
- tb : forall (x:A) (y:B), bidon A B.
-Definition fbidon (A B:Type) (f:A -> B -> bidon True nat)
- (x:A) (y:B) := f x y.
-Extraction bidon.
-(* type 'b bidon = 'b *)
-Extraction tb.
-(* tb : singleton inductive constructor *)
-Extraction fbidon.
-(* let fbidon f x y =
- f x y
-*)
-
-Definition fbidon2 := fbidon True nat (tb True nat).
-Extraction fbidon2. (* let fbidon2 y = y *)
-Extraction NoInline fbidon.
-Extraction fbidon2.
-(* let fbidon2 y = fbidon (fun _ x -> x) __ y *)
-
-(* NB: first argument of fbidon2 has type [True], so it disappears. *)
-
-(** mutual inductive on many sorts *)
-
-Inductive test_0 : Prop :=
- ctest0 : test_0
-with test_1 : Set :=
- ctest1 : test_0 -> test_1.
-Extraction test_0.
-(* test0 : logical inductive *)
-Extraction test_1.
-(*
-type test1 =
- | Ctest1
-*)
-
-(** logical singleton *)
-
-Extraction eq.
-(* eq : logical inductive *)
-Extraction eq_rect.
-(* let eq_rect x f y =
- f
-*)
-
-(** No more propagation of type parameters. Obj.t instead. *)
-
-Inductive tp1 : Set :=
- T : forall (C:Set) (c:C), tp2 -> tp1
-with tp2 : Set :=
- T' : tp1 -> tp2.
-Extraction tp1.
-(*
-type tp1 =
- | T of __ * tp2
-and tp2 =
- | T' of tp1
-*)
-
-Inductive tp1bis : Set :=
- Tbis : tp2bis -> tp1bis
-with tp2bis : Set :=
- T'bis : forall (C:Set) (c:C), tp1bis -> tp2bis.
-Extraction tp1bis.
-(*
-type tp1bis =
- | Tbis of tp2bis
-and tp2bis =
- | T'bis of __ * tp1bis
-*)
-
-
-(** Strange inductive type. *)
-
-Inductive Truc : Set -> Set :=
- | chose : forall A:Set, Truc A
- | machin : forall A:Set, A -> Truc bool -> Truc A.
-Extraction Truc.
-(*
-type 'x truc =
- | Chose
- | Machin of 'x * bool truc
-*)
-
-
-(** Dependant type over Type *)
-
-Definition test24 := sigT (fun a:Set => option a).
-Extraction test24.
-(* type test24 = (__, __ option) sigT *)
-
-
-(** Coq term non strongly-normalizable after extraction *)
-
-Require Import Gt.
-Definition loop (Ax:Acc gt 0) :=
- (fix F (a:nat) (b:Acc gt a) {struct b} : nat :=
- F (S a) (Acc_inv b (S a) (gt_Sn_n a))) 0 Ax.
-Extraction loop.
-(* let loop _ =
- let rec f a =
- f (S a)
- in f O
-*)
-
-(*** EXAMPLES NEEDING OBJ.MAGIC *)
-
-(** False conversion of type: *)
-
-Lemma oups : forall H:nat = list nat, nat -> nat.
-intros.
-generalize H0; intros.
-rewrite H in H1.
-case H1.
-exact H0.
-intros.
-exact n.
-Qed.
-Extraction oups.
-(*
-let oups h0 =
- match Obj.magic h0 with
- | Nil -> h0
- | Cons0 (n, l) -> n
-*)
-
-
-(** hybrids *)
-
-Definition horibilis (b:bool) :=
- if b as b return (if b then Type else nat) then Set else 0.
-Extraction horibilis.
-(*
-let horibilis = function
- | True -> Obj.magic __
- | False -> Obj.magic O
-*)
-
-Definition PropSet (b:bool) := if b then Prop else Set.
-Extraction PropSet. (* type propSet = __ *)
-
-Definition natbool (b:bool) := if b then nat else bool.
-Extraction natbool. (* type natbool = __ *)
-
-Definition zerotrue (b:bool) := if b as x return natbool x then 0 else true.
-Extraction zerotrue.
-(*
-let zerotrue = function
- | True -> Obj.magic O
- | False -> Obj.magic True
-*)
-
-Definition natProp (b:bool) := if b return Type then nat else Prop.
-
-Definition natTrue (b:bool) := if b return Type then nat else True.
-
-Definition zeroTrue (b:bool) := if b as x return natProp x then 0 else True.
-Extraction zeroTrue.
-(*
-let zeroTrue = function
- | True -> Obj.magic O
- | False -> Obj.magic __
-*)
-
-Definition natTrue2 (b:bool) := if b return Type then nat else True.
-
-Definition zeroprop (b:bool) := if b as x return natTrue x then 0 else I.
-Extraction zeroprop.
-(*
-let zeroprop = function
- | True -> Obj.magic O
- | False -> Obj.magic __
-*)
-
-(** polymorphic f applied several times *)
-
-Definition test21 := (id nat 0, id bool true).
-Extraction test21.
-(* let test21 = Pair ((id O), (id True)) *)
-
-(** ok *)
-
-Definition test22 :=
- (fun f:forall X:Type, X -> X => (f nat 0, f bool true))
- (fun (X:Type) (x:X) => x).
-Extraction test22.
-(* let test22 =
- let f = fun x -> x in Pair ((f O), (f True)) *)
-
-(* still ok via optim beta -> let *)
-
-Definition test23 (f:forall X:Type, X -> X) := (f nat 0, f bool true).
-Extraction test23.
-(* let test23 f = Pair ((Obj.magic f __ O), (Obj.magic f __ True)) *)
-
-(* problem: fun f -> (f 0, f true) not legal in ocaml *)
-(* solution: magic ... *)
-
-
-(** Dummy constant __ can be applied.... *)
-
-Definition f (X:Type) (x:nat -> X) (y:X -> bool) : bool := y (x 0).
-Extraction f.
-(* let f x y =
- y (x O)
-*)
-
-Definition f_prop := f (0 = 0) (fun _ => refl_equal 0) (fun _ => true).
-Extraction NoInline f.
-Extraction f_prop.
-(* let f_prop =
- f (Obj.magic __) (fun _ -> True)
-*)
-
-Definition f_arity := f Set (fun _:nat => nat) (fun _:Set => true).
-Extraction f_arity.
-(* let f_arity =
- f (Obj.magic __) (fun _ -> True)
-*)
-
-Definition f_normal :=
- f nat (fun x => x) (fun x => match x with
- | O => true
- | _ => false
- end).
-Extraction f_normal.
-(* let f_normal =
- f (fun x -> x) (fun x -> match x with
- | O -> True
- | S n -> False)
-*)
-
-
-(* inductive with magic needed *)
-
-Inductive Boite : Set :=
- boite : forall b:bool, (if b then nat else (nat * nat)%type) -> Boite.
-Extraction Boite.
-(*
-type boite =
- | Boite of bool * __
-*)
-
-
-Definition boite1 := boite true 0.
-Extraction boite1.
-(* let boite1 = Boite (True, (Obj.magic O)) *)
-
-Definition boite2 := boite false (0, 0).
-Extraction boite2.
-(* let boite2 = Boite (False, (Obj.magic (Pair (O, O)))) *)
-
-Definition test_boite (B:Boite) :=
- match B return nat with
- | boite true n => n
- | boite false n => fst n + snd n
- end.
-Extraction test_boite.
-(*
-let test_boite = function
- | Boite (b0, n) ->
- (match b0 with
- | True -> Obj.magic n
- | False -> plus (fst (Obj.magic n)) (snd (Obj.magic n)))
-*)
-
-(* singleton inductive with magic needed *)
-
-Inductive Box : Set :=
- box : forall A:Set, A -> Box.
-Extraction Box.
-(* type box = __ *)
-
-Definition box1 := box nat 0.
-Extraction box1. (* let box1 = Obj.magic O *)
-
-(* applied constant, magic needed *)
-
-Definition idzarb (b:bool) (x:if b then nat else bool) := x.
-Definition zarb := idzarb true 0.
-Extraction NoInline idzarb.
-Extraction zarb.
-(* let zarb = Obj.magic idzarb True (Obj.magic O) *)
-
-(** function of variable arity. *)
-(** Fun n = nat -> nat -> ... -> nat *)
-
-Fixpoint Fun (n:nat) : Set :=
- match n with
- | O => nat
- | S n => nat -> Fun n
- end.
-
-Fixpoint Const (k n:nat) {struct n} : Fun n :=
- match n as x return Fun x with
- | O => k
- | S n => fun p:nat => Const k n
- end.
-
-Fixpoint proj (k n:nat) {struct n} : Fun n :=
- match n as x return Fun x with
- | O => 0 (* ou assert false ....*)
- | S n =>
- match k with
- | O => fun x => Const x n
- | S k => fun x => proj k n
- end
- end.
-
-Definition test_proj := proj 2 4 0 1 2 3.
-
-Eval compute in test_proj.
-
-Recursive Extraction test_proj.
-
-
-
-(*** TO SUM UP: ***)
-
-
-Extraction
- "test_extraction.ml" idnat id id' test2 test3 test4 test5 test6 test7 d d2
- d3 d4 d5 d6 test8 id id' test9 test10 test11 test12
- test13 test19 test20 nat sumbool_rect c Finite tree
- tree_size test14 test15 eta_c test16 test17 test18 bidon
- tb fbidon fbidon2 fbidon2 test_0 test_1 eq eq_rect tp1
- tp1bis Truc oups test24 loop horibilis PropSet natbool
- zerotrue zeroTrue zeroprop test21 test22 test23 f f_prop
- f_arity f_normal Boite boite1 boite2 test_boite Box box1
- zarb test_proj.
-