diff options
author | Samuel Mimram <smimram@debian.org> | 2008-07-25 15:12:53 +0200 |
---|---|---|
committer | Samuel Mimram <smimram@debian.org> | 2008-07-25 15:12:53 +0200 |
commit | a0cfa4f118023d35b767a999d5a2ac4b082857b4 (patch) | |
tree | dabcac548e299fee1da464c93b3dba98484f45b1 /contrib/dp/zenon.v | |
parent | 2281410e38ef99d025ea77194585a9bc019fdaa9 (diff) |
Imported Upstream version 8.2~beta3+dfsgupstream/8.2.beta3+dfsg
Diffstat (limited to 'contrib/dp/zenon.v')
-rw-r--r-- | contrib/dp/zenon.v | 94 |
1 files changed, 94 insertions, 0 deletions
diff --git a/contrib/dp/zenon.v b/contrib/dp/zenon.v new file mode 100644 index 00000000..4ad00a11 --- /dev/null +++ b/contrib/dp/zenon.v @@ -0,0 +1,94 @@ +(* Copyright 2004 INRIA *) +(* $Id: zenon.v 10739 2008-04-01 14:45:20Z herbelin $ *) + +Require Export Classical. + +Lemma zenon_nottrue : + (~True -> False). +Proof. tauto. Qed. + +Lemma zenon_noteq : forall (T : Type) (t : T), + ((t <> t) -> False). +Proof. tauto. Qed. + +Lemma zenon_and : forall P Q : Prop, + (P -> Q -> False) -> (P /\ Q -> False). +Proof. tauto. Qed. + +Lemma zenon_or : forall P Q : Prop, + (P -> False) -> (Q -> False) -> (P \/ Q -> False). +Proof. tauto. Qed. + +Lemma zenon_imply : forall P Q : Prop, + (~P -> False) -> (Q -> False) -> ((P -> Q) -> False). +Proof. tauto. Qed. + +Lemma zenon_equiv : forall P Q : Prop, + (~P -> ~Q -> False) -> (P -> Q -> False) -> ((P <-> Q) -> False). +Proof. tauto. Qed. + +Lemma zenon_notand : forall P Q : Prop, + (~P -> False) -> (~Q -> False) -> (~(P /\ Q) -> False). +Proof. tauto. Qed. + +Lemma zenon_notor : forall P Q : Prop, + (~P -> ~Q -> False) -> (~(P \/ Q) -> False). +Proof. tauto. Qed. + +Lemma zenon_notimply : forall P Q : Prop, + (P -> ~Q -> False) -> (~(P -> Q) -> False). +Proof. tauto. Qed. + +Lemma zenon_notequiv : forall P Q : Prop, + (~P -> Q -> False) -> (P -> ~Q -> False) -> (~(P <-> Q) -> False). +Proof. tauto. Qed. + +Lemma zenon_ex : forall (T : Type) (P : T -> Prop), + (forall z : T, ((P z) -> False)) -> ((exists x : T, (P x)) -> False). +Proof. firstorder. Qed. + +Lemma zenon_all : forall (T : Type) (P : T -> Prop) (t : T), + ((P t) -> False) -> ((forall x : T, (P x)) -> False). +Proof. firstorder. Qed. + +Lemma zenon_notex : forall (T : Type) (P : T -> Prop) (t : T), + (~(P t) -> False) -> (~(exists x : T, (P x)) -> False). +Proof. firstorder. Qed. + +Lemma zenon_notall : forall (T : Type) (P : T -> Prop), + (forall z : T, (~(P z) -> False)) -> (~(forall x : T, (P x)) -> False). +Proof. intros T P Ha Hb. apply Hb. intro. apply NNPP. exact (Ha x). Qed. + +Lemma zenon_equal_base : forall (T : Type) (f : T), f = f. +Proof. auto. Qed. + +Lemma zenon_equal_step : + forall (S T : Type) (fa fb : S -> T) (a b : S), + (fa = fb) -> (a <> b -> False) -> ((fa a) = (fb b)). +Proof. intros. rewrite (NNPP (a = b)). congruence. auto. Qed. + +Lemma zenon_pnotp : forall P Q : Prop, + (P = Q) -> (P -> ~Q -> False). +Proof. intros P Q Ha. rewrite Ha. auto. Qed. + +Lemma zenon_notequal : forall (T : Type) (a b : T), + (a = b) -> (a <> b -> False). +Proof. auto. Qed. + +Ltac zenon_intro id := + intro id || let nid := fresh in (intro nid; clear nid) +. + +Definition zenon_and_s := fun P Q a b => zenon_and P Q b a. +Definition zenon_or_s := fun P Q a b c => zenon_or P Q b c a. +Definition zenon_imply_s := fun P Q a b c => zenon_imply P Q b c a. +Definition zenon_equiv_s := fun P Q a b c => zenon_equiv P Q b c a. +Definition zenon_notand_s := fun P Q a b c => zenon_notand P Q b c a. +Definition zenon_notor_s := fun P Q a b => zenon_notor P Q b a. +Definition zenon_notimply_s := fun P Q a b => zenon_notimply P Q b a. +Definition zenon_notequiv_s := fun P Q a b c => zenon_notequiv P Q b c a. +Definition zenon_ex_s := fun T P a b => zenon_ex T P b a. +Definition zenon_notall_s := fun T P a b => zenon_notall T P b a. + +Definition zenon_pnotp_s := fun P Q a b c => zenon_pnotp P Q c a b. +Definition zenon_notequal_s := fun T a b x y => zenon_notequal T a b y x. |