summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorGravatar Benjamin Barenblat <bbaren@debian.org>2018-12-29 14:53:46 -0500
committerGravatar Benjamin Barenblat <bbaren@debian.org>2019-01-03 18:24:34 -0500
commit4181269ff800d58e60b886d0aaa2894444a9cd0d (patch)
treeb8445ebfddc4aa3c845533abf5dc8fcdf7a75ee1
parent8c09d8af35c34798270b484f2dfe6098be2eb0a2 (diff)
Disable ssrmatching
ssrmatching has two files licensed under CeCILL-B, which I believe is a nonfree license. d7d80c5bea564b7cb0eadc33e9ee38c9d9de1cd8 removed those files from the source package; this commit disables the affected plugin in the build system.
-rw-r--r--debian/libcoq-ocaml.install.in2
-rw-r--r--debian/patches/0005-remove-ssrmatching.patch3337
-rw-r--r--debian/patches/series1
3 files changed, 3338 insertions, 2 deletions
diff --git a/debian/libcoq-ocaml.install.in b/debian/libcoq-ocaml.install.in
index 76390511..7edfd660 100644
--- a/debian/libcoq-ocaml.install.in
+++ b/debian/libcoq-ocaml.install.in
@@ -20,7 +20,6 @@ usr/lib/coq/plugins/syntax/nat_syntax_plugin.cmo
usr/lib/coq/plugins/syntax/ascii_syntax_plugin.cmo
usr/lib/coq/plugins/syntax/string_syntax_plugin.cmo
usr/lib/coq/plugins/syntax/z_syntax_plugin.cmo
-usr/lib/coq/plugins/ssrmatching/ssrmatching_plugin.cmo
usr/lib/coq/toploop/proofworkertop.cma
usr/lib/coq/toploop/tacworkertop.cma
usr/lib/coq/toploop/queryworkertop.cma
@@ -48,4 +47,3 @@ DYN: usr/lib/coq/plugins/syntax/r_syntax_plugin.cmxs
DYN: usr/lib/coq/plugins/syntax/numbers_syntax_plugin.cmxs
DYN: usr/lib/coq/plugins/syntax/ascii_syntax_plugin.cmxs
DYN: usr/lib/coq/plugins/syntax/string_syntax_plugin.cmxs
-DYN: usr/lib/coq/plugins/ssrmatching/ssrmatching_plugin.cmxs
diff --git a/debian/patches/0005-remove-ssrmatching.patch b/debian/patches/0005-remove-ssrmatching.patch
new file mode 100644
index 00000000..a4030ec7
--- /dev/null
+++ b/debian/patches/0005-remove-ssrmatching.patch
@@ -0,0 +1,3337 @@
+From: Benjamin Barenblat <bbaren@debian.org>
+Subject: Remove ssrmatching
+Forwarded: not-needed
+Last-Update: 2018-12-29
+
+ssrmatching still has two files licensed under CeCILL-B, which I believe
+is a nonfree license. I’ve removed them from the Debian source package
+(see gbp.conf). This patch disables everything that depends on them.
+
+This patch is fortunately a stopgap: Upstream believes that the files
+should have had the license headers changed to LGPL when importing them
+and has created a pull request to change the headers now
+(https://github.com/coq/coq/pull/9282). Once that is merged, this patch
+should disappear and be replaced with a backport of that PR.
+--- a/Makefile.common
++++ b/Makefile.common
+@@ -84,7 +84,7 @@
+ setoid_ring extraction fourier \
+ cc funind firstorder derive \
+ rtauto nsatz syntax btauto \
+- ssrmatching ltac ssr
++ ltac
+
+ SRCDIRS:=\
+ $(CORESRCDIRS) \
+@@ -149,7 +149,7 @@
+ $(FOURIERCMO) $(EXTRACTIONCMO) \
+ $(CCCMO) $(FOCMO) $(RTAUTOCMO) $(BTAUTOCMO) \
+ $(FUNINDCMO) $(NSATZCMO) $(NATSYNTAXCMO) $(OTHERSYNTAXCMO) \
+- $(DERIVECMO) $(SSRMATCHINGCMO) $(SSRCMO)
++ $(DERIVECMO)
+
+ ifeq ($(HASNATDYNLINK)-$(BEST),false-opt)
+ STATICPLUGINS:=$(PLUGINSCMO)
+--- a/test-suite/success/ssrpattern.v
++++ /dev/null
+@@ -1,22 +0,0 @@
+-Require Import ssrmatching.
+-
+-(*Set Debug SsrMatching.*)
+-
+-Tactic Notation "at" "[" ssrpatternarg(pat) "]" tactic(t) :=
+- let name := fresh in
+- let def_name := fresh in
+- ssrpattern pat;
+- intro name;
+- pose proof (refl_equal name) as def_name;
+- unfold name at 1 in def_name;
+- t def_name;
+- [ rewrite <- def_name | idtac.. ];
+- clear name def_name.
+-
+-Lemma test (H : True -> True -> 3 = 7) : 28 = 3 * 4.
+-Proof.
+-at [ X in X * 4 ] ltac:(fun place => rewrite -> H in place).
+-- reflexivity.
+-- trivial.
+-- trivial.
+-Qed.
+--- a/plugins/ssr/ssreflect.v
++++ /dev/null
+@@ -1,453 +0,0 @@
+-(************************************************************************)
+-(* * The Coq Proof Assistant / The Coq Development Team *)
+-(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *)
+-(* <O___,, * (see CREDITS file for the list of authors) *)
+-(* \VV/ **************************************************************)
+-(* // * This file is distributed under the terms of the *)
+-(* * GNU Lesser General Public License Version 2.1 *)
+-(* * (see LICENSE file for the text of the license) *)
+-(************************************************************************)
+-
+-(* This file is (C) Copyright 2006-2015 Microsoft Corporation and Inria. *)
+-
+-Require Import Bool. (* For bool_scope delimiter 'bool'. *)
+-Require Import ssrmatching.
+-Declare ML Module "ssreflect_plugin".
+-
+-(******************************************************************************)
+-(* This file is the Gallina part of the ssreflect plugin implementation. *)
+-(* Files that use the ssreflect plugin should always Require ssreflect and *)
+-(* either Import ssreflect or Import ssreflect.SsrSyntax. *)
+-(* Part of the contents of this file is technical and will only interest *)
+-(* advanced developers; in addition the following are defined: *)
+-(* [the str of v by f] == the Canonical s : str such that f s = v. *)
+-(* [the str of v] == the Canonical s : str that coerces to v. *)
+-(* argumentType c == the T such that c : forall x : T, P x. *)
+-(* returnType c == the R such that c : T -> R. *)
+-(* {type of c for s} == P s where c : forall x : T, P x. *)
+-(* phantom T v == singleton type with inhabitant Phantom T v. *)
+-(* phant T == singleton type with inhabitant Phant v. *)
+-(* =^~ r == the converse of rewriting rule r (e.g., in a *)
+-(* rewrite multirule). *)
+-(* unkeyed t == t, but treated as an unkeyed matching pattern by *)
+-(* the ssreflect matching algorithm. *)
+-(* nosimpl t == t, but on the right-hand side of Definition C := *)
+-(* nosimpl disables expansion of C by /=. *)
+-(* locked t == t, but locked t is not convertible to t. *)
+-(* locked_with k t == t, but not convertible to t or locked_with k' t *)
+-(* unless k = k' (with k : unit). Coq type-checking *)
+-(* will be much more efficient if locked_with with a *)
+-(* bespoke k is used for sealed definitions. *)
+-(* unlockable v == interface for sealed constant definitions of v. *)
+-(* Unlockable def == the unlockable that registers def : C = v. *)
+-(* [unlockable of C] == a clone for C of the canonical unlockable for the *)
+-(* definition of C (e.g., if it uses locked_with). *)
+-(* [unlockable fun C] == [unlockable of C] with the expansion forced to be *)
+-(* an explicit lambda expression. *)
+-(* -> The usage pattern for ADT operations is: *)
+-(* Definition foo_def x1 .. xn := big_foo_expression. *)
+-(* Fact foo_key : unit. Proof. by []. Qed. *)
+-(* Definition foo := locked_with foo_key foo_def. *)
+-(* Canonical foo_unlockable := [unlockable fun foo]. *)
+-(* This minimizes the comparison overhead for foo, while still allowing *)
+-(* rewrite unlock to expose big_foo_expression. *)
+-(* More information about these definitions and their use can be found in the *)
+-(* ssreflect manual, and in specific comments below. *)
+-(******************************************************************************)
+-
+-
+-Set Implicit Arguments.
+-Unset Strict Implicit.
+-Unset Printing Implicit Defensive.
+-
+-Module SsrSyntax.
+-
+-(* Declare Ssr keywords: 'is' 'of' '//' '/=' and '//='. We also declare the *)
+-(* parsing level 8, as a workaround for a notation grammar factoring problem. *)
+-(* Arguments of application-style notations (at level 10) should be declared *)
+-(* at level 8 rather than 9 or the camlp5 grammar will not factor properly. *)
+-
+-Reserved Notation "(* x 'is' y 'of' z 'isn't' // /= //= *)" (at level 8).
+-Reserved Notation "(* 69 *)" (at level 69).
+-
+-(* Non ambiguous keyword to check if the SsrSyntax module is imported *)
+-Reserved Notation "(* Use to test if 'SsrSyntax_is_Imported' *)" (at level 8).
+-
+-Reserved Notation "<hidden n >" (at level 200).
+-Reserved Notation "T (* n *)" (at level 200, format "T (* n *)").
+-
+-End SsrSyntax.
+-
+-Export SsrMatchingSyntax.
+-Export SsrSyntax.
+-
+-(* Make the general "if" into a notation, so that we can override it below. *)
+-(* The notations are "only parsing" because the Coq decompiler will not *)
+-(* recognize the expansion of the boolean if; using the default printer *)
+-(* avoids a spurrious trailing %GEN_IF. *)
+-
+-Delimit Scope general_if_scope with GEN_IF.
+-
+-Notation "'if' c 'then' v1 'else' v2" :=
+- (if c then v1 else v2)
+- (at level 200, c, v1, v2 at level 200, only parsing) : general_if_scope.
+-
+-Notation "'if' c 'return' t 'then' v1 'else' v2" :=
+- (if c return t then v1 else v2)
+- (at level 200, c, t, v1, v2 at level 200, only parsing) : general_if_scope.
+-
+-Notation "'if' c 'as' x 'return' t 'then' v1 'else' v2" :=
+- (if c as x return t then v1 else v2)
+- (at level 200, c, t, v1, v2 at level 200, x ident, only parsing)
+- : general_if_scope.
+-
+-(* Force boolean interpretation of simple if expressions. *)
+-
+-Delimit Scope boolean_if_scope with BOOL_IF.
+-
+-Notation "'if' c 'return' t 'then' v1 'else' v2" :=
+- (if c%bool is true in bool return t then v1 else v2) : boolean_if_scope.
+-
+-Notation "'if' c 'then' v1 'else' v2" :=
+- (if c%bool is true in bool return _ then v1 else v2) : boolean_if_scope.
+-
+-Notation "'if' c 'as' x 'return' t 'then' v1 'else' v2" :=
+- (if c%bool is true as x in bool return t then v1 else v2) : boolean_if_scope.
+-
+-Open Scope boolean_if_scope.
+-
+-(* To allow a wider variety of notations without reserving a large number of *)
+-(* of identifiers, the ssreflect library systematically uses "forms" to *)
+-(* enclose complex mixfix syntax. A "form" is simply a mixfix expression *)
+-(* enclosed in square brackets and introduced by a keyword: *)
+-(* [keyword ... ] *)
+-(* Because the keyword follows a bracket it does not need to be reserved. *)
+-(* Non-ssreflect libraries that do not respect the form syntax (e.g., the Coq *)
+-(* Lists library) should be loaded before ssreflect so that their notations *)
+-(* do not mask all ssreflect forms. *)
+-Delimit Scope form_scope with FORM.
+-Open Scope form_scope.
+-
+-(* Allow overloading of the cast (x : T) syntax, put whitespace around the *)
+-(* ":" symbol to avoid lexical clashes (and for consistency with the parsing *)
+-(* precedence of the notation, which binds less tightly than application), *)
+-(* and put printing boxes that print the type of a long definition on a *)
+-(* separate line rather than force-fit it at the right margin. *)
+-Notation "x : T" := (x : T)
+- (at level 100, right associativity,
+- format "'[hv' x '/ ' : T ']'") : core_scope.
+-
+-(* Allow the casual use of notations like nat * nat for explicit Type *)
+-(* declarations. Note that (nat * nat : Type) is NOT equivalent to *)
+-(* (nat * nat)%type, whose inferred type is legacy type "Set". *)
+-Notation "T : 'Type'" := (T%type : Type)
+- (at level 100, only parsing) : core_scope.
+-(* Allow similarly Prop annotation for, e.g., rewrite multirules. *)
+-Notation "P : 'Prop'" := (P%type : Prop)
+- (at level 100, only parsing) : core_scope.
+-
+-(* Constants for abstract: and [: name ] intro pattern *)
+-Definition abstract_lock := unit.
+-Definition abstract_key := tt.
+-
+-Definition abstract (statement : Type) (id : nat) (lock : abstract_lock) :=
+- let: tt := lock in statement.
+-
+-Notation "<hidden n >" := (abstract _ n _).
+-Notation "T (* n *)" := (abstract T n abstract_key).
+-
+-(* Constants for tactic-views *)
+-Inductive external_view : Type := tactic_view of Type.
+-
+-(* Syntax for referring to canonical structures: *)
+-(* [the struct_type of proj_val by proj_fun] *)
+-(* This form denotes the Canonical instance s of the Structure type *)
+-(* struct_type whose proj_fun projection is proj_val, i.e., such that *)
+-(* proj_fun s = proj_val. *)
+-(* Typically proj_fun will be A record field accessors of struct_type, but *)
+-(* this need not be the case; it can be, for instance, a field of a record *)
+-(* type to which struct_type coerces; proj_val will likewise be coerced to *)
+-(* the return type of proj_fun. In all but the simplest cases, proj_fun *)
+-(* should be eta-expanded to allow for the insertion of implicit arguments. *)
+-(* In the common case where proj_fun itself is a coercion, the "by" part *)
+-(* can be omitted entirely; in this case it is inferred by casting s to the *)
+-(* inferred type of proj_val. Obviously the latter can be fixed by using an *)
+-(* explicit cast on proj_val, and it is highly recommended to do so when the *)
+-(* return type intended for proj_fun is "Type", as the type inferred for *)
+-(* proj_val may vary because of sort polymorphism (it could be Set or Prop). *)
+-(* Note when using the [the _ of _] form to generate a substructure from a *)
+-(* telescopes-style canonical hierarchy (implementing inheritance with *)
+-(* coercions), one should always project or coerce the value to the BASE *)
+-(* structure, because Coq will only find a Canonical derived structure for *)
+-(* the Canonical base structure -- not for a base structure that is specific *)
+-(* to proj_value. *)
+-
+-Module TheCanonical.
+-
+-CoInductive put vT sT (v1 v2 : vT) (s : sT) := Put.
+-
+-Definition get vT sT v s (p : @put vT sT v v s) := let: Put _ _ _ := p in s.
+-
+-Definition get_by vT sT of sT -> vT := @get vT sT.
+-
+-End TheCanonical.
+-
+-Import TheCanonical. (* Note: no export. *)
+-
+-Local Arguments get_by _%type_scope _%type_scope _ _ _ _.
+-
+-Notation "[ 'the' sT 'of' v 'by' f ]" :=
+- (@get_by _ sT f _ _ ((fun v' (s : sT) => Put v' (f s) s) v _))
+- (at level 0, only parsing) : form_scope.
+-
+-Notation "[ 'the' sT 'of' v ]" := (get ((fun s : sT => Put v (*coerce*)s s) _))
+- (at level 0, only parsing) : form_scope.
+-
+-(* The following are "format only" versions of the above notations. Since Coq *)
+-(* doesn't provide this facility, we fake it by splitting the "the" keyword. *)
+-(* We need to do this to prevent the formatter from being be thrown off by *)
+-(* application collapsing, coercion insertion and beta reduction in the right *)
+-(* hand side of the notations above. *)
+-
+-Notation "[ 'th' 'e' sT 'of' v 'by' f ]" := (@get_by _ sT f v _ _)
+- (at level 0, format "[ 'th' 'e' sT 'of' v 'by' f ]") : form_scope.
+-
+-Notation "[ 'th' 'e' sT 'of' v ]" := (@get _ sT v _ _)
+- (at level 0, format "[ 'th' 'e' sT 'of' v ]") : form_scope.
+-
+-(* We would like to recognize
+-Notation "[ 'th' 'e' sT 'of' v : 'Type' ]" := (@get Type sT v _ _)
+- (at level 0, format "[ 'th' 'e' sT 'of' v : 'Type' ]") : form_scope.
+-*)
+-
+-(* Helper notation for canonical structure inheritance support. *)
+-(* This is a workaround for the poor interaction between delta reduction and *)
+-(* canonical projections in Coq's unification algorithm, by which transparent *)
+-(* definitions hide canonical instances, i.e., in *)
+-(* Canonical a_type_struct := @Struct a_type ... *)
+-(* Definition my_type := a_type. *)
+-(* my_type doesn't effectively inherit the struct structure from a_type. Our *)
+-(* solution is to redeclare the instance as follows *)
+-(* Canonical my_type_struct := Eval hnf in [struct of my_type]. *)
+-(* The special notation [str of _] must be defined for each Strucure "str" *)
+-(* with constructor "Str", typically as follows *)
+-(* Definition clone_str s := *)
+-(* let: Str _ x y ... z := s return {type of Str for s} -> str in *)
+-(* fun k => k _ x y ... z. *)
+-(* Notation "[ 'str' 'of' T 'for' s ]" := (@clone_str s (@Str T)) *)
+-(* (at level 0, format "[ 'str' 'of' T 'for' s ]") : form_scope. *)
+-(* Notation "[ 'str' 'of' T ]" := (repack_str (fun x => @Str T x)) *)
+-(* (at level 0, format "[ 'str' 'of' T ]") : form_scope. *)
+-(* The notation for the match return predicate is defined below; the eta *)
+-(* expansion in the second form serves both to distinguish it from the first *)
+-(* and to avoid the delta reduction problem. *)
+-(* There are several variations on the notation and the definition of the *)
+-(* the "clone" function, for telescopes, mixin classes, and join (multiple *)
+-(* inheritance) classes. We describe a different idiom for clones in ssrfun; *)
+-(* it uses phantom types (see below) and static unification; see fintype and *)
+-(* ssralg for examples. *)
+-
+-Definition argumentType T P & forall x : T, P x := T.
+-Definition dependentReturnType T P & forall x : T, P x := P.
+-Definition returnType aT rT & aT -> rT := rT.
+-
+-Notation "{ 'type' 'of' c 'for' s }" := (dependentReturnType c s)
+- (at level 0, format "{ 'type' 'of' c 'for' s }") : type_scope.
+-
+-(* A generic "phantom" type (actually, a unit type with a phantom parameter). *)
+-(* This type can be used for type definitions that require some Structure *)
+-(* on one of their parameters, to allow Coq to infer said structure so it *)
+-(* does not have to be supplied explicitly or via the "[the _ of _]" notation *)
+-(* (the latter interacts poorly with other Notation). *)
+-(* The definition of a (co)inductive type with a parameter p : p_type, that *)
+-(* needs to use the operations of a structure *)
+-(* Structure p_str : Type := p_Str {p_repr :> p_type; p_op : p_repr -> ...} *)
+-(* should be given as *)
+-(* Inductive indt_type (p : p_str) := Indt ... . *)
+-(* Definition indt_of (p : p_str) & phantom p_type p := indt_type p. *)
+-(* Notation "{ 'indt' p }" := (indt_of (Phantom p)). *)
+-(* Definition indt p x y ... z : {indt p} := @Indt p x y ... z. *)
+-(* Notation "[ 'indt' x y ... z ]" := (indt x y ... z). *)
+-(* That is, the concrete type and its constructor should be shadowed by *)
+-(* definitions that use a phantom argument to infer and display the true *)
+-(* value of p (in practice, the "indt" constructor often performs additional *)
+-(* functions, like "locking" the representation -- see below). *)
+-(* We also define a simpler version ("phant" / "Phant") of phantom for the *)
+-(* common case where p_type is Type. *)
+-
+-CoInductive phantom T (p : T) := Phantom.
+-Arguments phantom : clear implicits.
+-Arguments Phantom : clear implicits.
+-CoInductive phant (p : Type) := Phant.
+-
+-(* Internal tagging used by the implementation of the ssreflect elim. *)
+-
+-Definition protect_term (A : Type) (x : A) : A := x.
+-
+-(* The ssreflect idiom for a non-keyed pattern: *)
+-(* - unkeyed t wiil match any subterm that unifies with t, regardless of *)
+-(* whether it displays the same head symbol as t. *)
+-(* - unkeyed t a b will match any application of a term f unifying with t, *)
+-(* to two arguments unifying with with a and b, repectively, regardless of *)
+-(* apparent head symbols. *)
+-(* - unkeyed x where x is a variable will match any subterm with the same *)
+-(* type as x (when x would raise the 'indeterminate pattern' error). *)
+-
+-Notation unkeyed x := (let flex := x in flex).
+-
+-(* Ssreflect converse rewrite rule rule idiom. *)
+-Definition ssr_converse R (r : R) := (Logic.I, r).
+-Notation "=^~ r" := (ssr_converse r) (at level 100) : form_scope.
+-
+-(* Term tagging (user-level). *)
+-(* The ssreflect library uses four strengths of term tagging to restrict *)
+-(* convertibility during type checking: *)
+-(* nosimpl t simplifies to t EXCEPT in a definition; more precisely, given *)
+-(* Definition foo := nosimpl bar, foo (or foo t') will NOT be expanded by *)
+-(* the /= and //= switches unless it is in a forcing context (e.g., in *)
+-(* match foo t' with ... end, foo t' will be reduced if this allows the *)
+-(* match to be reduced). Note that nosimpl bar is simply notation for a *)
+-(* a term that beta-iota reduces to bar; hence rewrite /foo will replace *)
+-(* foo by bar, and rewrite -/foo will replace bar by foo. *)
+-(* CAVEAT: nosimpl should not be used inside a Section, because the end of *)
+-(* section "cooking" removes the iota redex. *)
+-(* locked t is provably equal to t, but is not convertible to t; 'locked' *)
+-(* provides support for selective rewriting, via the lock t : t = locked t *)
+-(* Lemma, and the ssreflect unlock tactic. *)
+-(* locked_with k t is equal but not convertible to t, much like locked t, *)
+-(* but supports explicit tagging with a value k : unit. This is used to *)
+-(* mitigate a flaw in the term comparison heuristic of the Coq kernel, *)
+-(* which treats all terms of the form locked t as equal and conpares their *)
+-(* arguments recursively, leading to an exponential blowup of comparison. *)
+-(* For this reason locked_with should be used rather than locked when *)
+-(* defining ADT operations. The unlock tactic does not support locked_with *)
+-(* but the unlock rewrite rule does, via the unlockable interface. *)
+-(* we also use Module Type ascription to create truly opaque constants, *)
+-(* because simple expansion of constants to reveal an unreducible term *)
+-(* doubles the time complexity of a negative comparison. Such opaque *)
+-(* constants can be expanded generically with the unlock rewrite rule. *)
+-(* See the definition of card and subset in fintype for examples of this. *)
+-
+-Notation nosimpl t := (let: tt := tt in t).
+-
+-Lemma master_key : unit. Proof. exact tt. Qed.
+-Definition locked A := let: tt := master_key in fun x : A => x.
+-
+-Lemma lock A x : x = locked x :> A. Proof. unlock; reflexivity. Qed.
+-
+-(* Needed for locked predicates, in particular for eqType's. *)
+-Lemma not_locked_false_eq_true : locked false <> true.
+-Proof. unlock; discriminate. Qed.
+-
+-(* The basic closing tactic "done". *)
+-Ltac done :=
+- trivial; hnf; intros; solve
+- [ do ![solve [trivial | apply: sym_equal; trivial]
+- | discriminate | contradiction | split]
+- | case not_locked_false_eq_true; assumption
+- | match goal with H : ~ _ |- _ => solve [case H; trivial] end ].
+-
+-(* Quicker done tactic not including split, syntax: /0/ *)
+-Ltac ssrdone0 :=
+- trivial; hnf; intros; solve
+- [ do ![solve [trivial | apply: sym_equal; trivial]
+- | discriminate | contradiction ]
+- | case not_locked_false_eq_true; assumption
+- | match goal with H : ~ _ |- _ => solve [case H; trivial] end ].
+-
+-(* To unlock opaque constants. *)
+-Structure unlockable T v := Unlockable {unlocked : T; _ : unlocked = v}.
+-Lemma unlock T x C : @unlocked T x C = x. Proof. by case: C. Qed.
+-
+-Notation "[ 'unlockable' 'of' C ]" := (@Unlockable _ _ C (unlock _))
+- (at level 0, format "[ 'unlockable' 'of' C ]") : form_scope.
+-
+-Notation "[ 'unlockable' 'fun' C ]" := (@Unlockable _ (fun _ => _) C (unlock _))
+- (at level 0, format "[ 'unlockable' 'fun' C ]") : form_scope.
+-
+-(* Generic keyed constant locking. *)
+-
+-(* The argument order ensures that k is always compared before T. *)
+-Definition locked_with k := let: tt := k in fun T x => x : T.
+-
+-(* This can be used as a cheap alternative to cloning the unlockable instance *)
+-(* below, but with caution as unkeyed matching can be expensive. *)
+-Lemma locked_withE T k x : unkeyed (locked_with k x) = x :> T.
+-Proof. by case: k. Qed.
+-
+-(* Intensionaly, this instance will not apply to locked u. *)
+-Canonical locked_with_unlockable T k x :=
+- @Unlockable T x (locked_with k x) (locked_withE k x).
+-
+-(* More accurate variant of unlock, and safer alternative to locked_withE. *)
+-Lemma unlock_with T k x : unlocked (locked_with_unlockable k x) = x :> T.
+-Proof. exact: unlock. Qed.
+-
+-(* The internal lemmas for the have tactics. *)
+-
+-Definition ssr_have Plemma Pgoal (step : Plemma) rest : Pgoal := rest step.
+-Arguments ssr_have Plemma [Pgoal].
+-
+-Definition ssr_have_let Pgoal Plemma step
+- (rest : let x : Plemma := step in Pgoal) : Pgoal := rest.
+-Arguments ssr_have_let [Pgoal].
+-
+-Definition ssr_suff Plemma Pgoal step (rest : Plemma) : Pgoal := step rest.
+-Arguments ssr_suff Plemma [Pgoal].
+-
+-Definition ssr_wlog := ssr_suff.
+-Arguments ssr_wlog Plemma [Pgoal].
+-
+-(* Internal N-ary congruence lemmas for the congr tactic. *)
+-
+-Fixpoint nary_congruence_statement (n : nat)
+- : (forall B, (B -> B -> Prop) -> Prop) -> Prop :=
+- match n with
+- | O => fun k => forall B, k B (fun x1 x2 : B => x1 = x2)
+- | S n' =>
+- let k' A B e (f1 f2 : A -> B) :=
+- forall x1 x2, x1 = x2 -> (e (f1 x1) (f2 x2) : Prop) in
+- fun k => forall A, nary_congruence_statement n' (fun B e => k _ (k' A B e))
+- end.
+-
+-Lemma nary_congruence n (k := fun B e => forall y : B, (e y y : Prop)) :
+- nary_congruence_statement n k.
+-Proof.
+-have: k _ _ := _; rewrite {1}/k.
+-elim: n k => [|n IHn] k k_P /= A; first exact: k_P.
+-by apply: IHn => B e He; apply: k_P => f x1 x2 <-.
+-Qed.
+-
+-Lemma ssr_congr_arrow Plemma Pgoal : Plemma = Pgoal -> Plemma -> Pgoal.
+-Proof. by move->. Qed.
+-Arguments ssr_congr_arrow : clear implicits.
+-
+-(* View lemmas that don't use reflection. *)
+-
+-Section ApplyIff.
+-
+-Variables P Q : Prop.
+-Hypothesis eqPQ : P <-> Q.
+-
+-Lemma iffLR : P -> Q. Proof. by case: eqPQ. Qed.
+-Lemma iffRL : Q -> P. Proof. by case: eqPQ. Qed.
+-
+-Lemma iffLRn : ~P -> ~Q. Proof. by move=> nP tQ; case: nP; case: eqPQ tQ. Qed.
+-Lemma iffRLn : ~Q -> ~P. Proof. by move=> nQ tP; case: nQ; case: eqPQ tP. Qed.
+-
+-End ApplyIff.
+-
+-Hint View for move/ iffLRn|2 iffRLn|2 iffLR|2 iffRL|2.
+-Hint View for apply/ iffRLn|2 iffLRn|2 iffRL|2 iffLR|2.
+-
+-(* To focus non-ssreflect tactics on a subterm, eg vm_compute. *)
+-(* Usage: *)
+-(* elim/abstract_context: (pattern) => G defG. *)
+-(* vm_compute; rewrite {}defG {G}. *)
+-(* Note that vm_cast are not stored in the proof term *)
+-(* for reductions occuring in the context, hence *)
+-(* set here := pattern; vm_compute in (value of here) *)
+-(* blows up at Qed time. *)
+-Lemma abstract_context T (P : T -> Type) x :
+- (forall Q, Q = P -> Q x) -> P x.
+-Proof. by move=> /(_ P); apply. Qed.
+--- a/plugins/ssr/ssrbool.v
++++ /dev/null
+@@ -1,1873 +0,0 @@
+-(************************************************************************)
+-(* * The Coq Proof Assistant / The Coq Development Team *)
+-(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *)
+-(* <O___,, * (see CREDITS file for the list of authors) *)
+-(* \VV/ **************************************************************)
+-(* // * This file is distributed under the terms of the *)
+-(* * GNU Lesser General Public License Version 2.1 *)
+-(* * (see LICENSE file for the text of the license) *)
+-(************************************************************************)
+-
+-(* This file is (C) Copyright 2006-2015 Microsoft Corporation and Inria. *)
+-
+-Require Bool.
+-Require Import ssreflect ssrfun.
+-
+-(******************************************************************************)
+-(* A theory of boolean predicates and operators. A large part of this file is *)
+-(* concerned with boolean reflection. *)
+-(* Definitions and notations: *)
+-(* is_true b == the coercion of b : bool to Prop (:= b = true). *)
+-(* This is just input and displayed as `b''. *)
+-(* reflect P b == the reflection inductive predicate, asserting *)
+-(* that the logical proposition P : prop with the *)
+-(* formula b : bool. Lemmas asserting reflect P b *)
+-(* are often referred to as "views". *)
+-(* iffP, appP, sameP, rwP :: lemmas for direct manipulation of reflection *)
+-(* views: iffP is used to prove reflection from *)
+-(* logical equivalence, appP to compose views, and *)
+-(* sameP and rwP to perform boolean and setoid *)
+-(* rewriting. *)
+-(* elimT :: coercion reflect >-> Funclass, which allows the *)
+-(* direct application of `reflect' views to *)
+-(* boolean assertions. *)
+-(* decidable P <-> P is effectively decidable (:= {P} + {~ P}. *)
+-(* contra, contraL, ... :: contraposition lemmas. *)
+-(* altP my_viewP :: natural alternative for reflection; given *)
+-(* lemma myviewP: reflect my_Prop my_formula, *)
+-(* have [myP | not_myP] := altP my_viewP. *)
+-(* generates two subgoals, in which my_formula has *)
+-(* been replaced by true and false, resp., with *)
+-(* new assumptions myP : my_Prop and *)
+-(* not_myP: ~~ my_formula. *)
+-(* Caveat: my_formula must be an APPLICATION, not *)
+-(* a variable, constant, let-in, etc. (due to the *)
+-(* poor behaviour of dependent index matching). *)
+-(* boolP my_formula :: boolean disjunction, equivalent to *)
+-(* altP (idP my_formula) but circumventing the *)
+-(* dependent index capture issue; destructing *)
+-(* boolP my_formula generates two subgoals with *)
+-(* assumtions my_formula and ~~ myformula. As *)
+-(* with altP, my_formula must be an application. *)
+-(* \unless C, P <-> we can assume property P when a something that *)
+-(* holds under condition C (such as C itself). *)
+-(* := forall G : Prop, (C -> G) -> (P -> G) -> G. *)
+-(* This is just C \/ P or rather its impredicative *)
+-(* encoding, whose usage better fits the above *)
+-(* description: given a lemma UCP whose conclusion *)
+-(* is \unless C, P we can assume P by writing: *)
+-(* wlog hP: / P by apply/UCP; (prove C -> goal). *)
+-(* or even apply: UCP id _ => hP if the goal is C. *)
+-(* classically P <-> we can assume P when proving is_true b. *)
+-(* := forall b : bool, (P -> b) -> b. *)
+-(* This is equivalent to ~ (~ P) when P : Prop. *)
+-(* implies P Q == wrapper coinductive type that coerces to P -> Q *)
+-(* and can be used as a P -> Q view unambigously. *)
+-(* Useful to avoid spurious insertion of <-> views *)
+-(* when Q is a conjunction of foralls, as in Lemma *)
+-(* all_and2 below; conversely, avoids confusion in *)
+-(* apply views for impredicative properties, such *)
+-(* as \unless C, P. Also supports contrapositives. *)
+-(* a && b == the boolean conjunction of a and b. *)
+-(* a || b == the boolean disjunction of a and b. *)
+-(* a ==> b == the boolean implication of b by a. *)
+-(* ~~ a == the boolean negation of a. *)
+-(* a (+) b == the boolean exclusive or (or sum) of a and b. *)
+-(* [ /\ P1 , P2 & P3 ] == multiway logical conjunction, up to 5 terms. *)
+-(* [ \/ P1 , P2 | P3 ] == multiway logical disjunction, up to 4 terms. *)
+-(* [&& a, b, c & d] == iterated, right associative boolean conjunction *)
+-(* with arbitrary arity. *)
+-(* [|| a, b, c | d] == iterated, right associative boolean disjunction *)
+-(* with arbitrary arity. *)
+-(* [==> a, b, c => d] == iterated, right associative boolean implication *)
+-(* with arbitrary arity. *)
+-(* and3P, ... == specific reflection lemmas for iterated *)
+-(* connectives. *)
+-(* andTb, orbAC, ... == systematic names for boolean connective *)
+-(* properties (see suffix conventions below). *)
+-(* prop_congr == a tactic to move a boolean equality from *)
+-(* its coerced form in Prop to the equality *)
+-(* in bool. *)
+-(* bool_congr == resolution tactic for blindly weeding out *)
+-(* like terms from boolean equalities (can fail). *)
+-(* This file provides a theory of boolean predicates and relations: *)
+-(* pred T == the type of bool predicates (:= T -> bool). *)
+-(* simpl_pred T == the type of simplifying bool predicates, using *)
+-(* the simpl_fun from ssrfun.v. *)
+-(* rel T == the type of bool relations. *)
+-(* := T -> pred T or T -> T -> bool. *)
+-(* simpl_rel T == type of simplifying relations. *)
+-(* predType == the generic predicate interface, supported for *)
+-(* for lists and sets. *)
+-(* pred_class == a coercion class for the predType projection to *)
+-(* pred; declaring a coercion to pred_class is an *)
+-(* alternative way of equipping a type with a *)
+-(* predType structure, which interoperates better *)
+-(* with coercion subtyping. This is used, e.g., *)
+-(* for finite sets, so that finite groups inherit *)
+-(* the membership operation by coercing to sets. *)
+-(* If P is a predicate the proposition "x satisfies P" can be written *)
+-(* applicatively as (P x), or using an explicit connective as (x \in P); in *)
+-(* the latter case we say that P is a "collective" predicate. We use A, B *)
+-(* rather than P, Q for collective predicates: *)
+-(* x \in A == x satisfies the (collective) predicate A. *)
+-(* x \notin A == x doesn't satisfy the (collective) predicate A. *)
+-(* The pred T type can be used as a generic predicate type for either kind, *)
+-(* but the two kinds of predicates should not be confused. When a "generic" *)
+-(* pred T value of one type needs to be passed as the other the following *)
+-(* conversions should be used explicitly: *)
+-(* SimplPred P == a (simplifying) applicative equivalent of P. *)
+-(* mem A == an applicative equivalent of A: *)
+-(* mem A x simplifies to x \in A. *)
+-(* Alternatively one can use the syntax for explicit simplifying predicates *)
+-(* and relations (in the following x is bound in E): *)
+-(* [pred x | E] == simplifying (see ssrfun) predicate x => E. *)
+-(* [pred x : T | E] == predicate x => E, with a cast on the argument. *)
+-(* [pred : T | P] == constant predicate P on type T. *)
+-(* [pred x | E1 & E2] == [pred x | E1 && E2]; an x : T cast is allowed. *)
+-(* [pred x in A] == [pred x | x in A]. *)
+-(* [pred x in A | E] == [pred x | x in A & E]. *)
+-(* [pred x in A | E1 & E2] == [pred x in A | E1 && E2]. *)
+-(* [predU A & B] == union of two collective predicates A and B. *)
+-(* [predI A & B] == intersection of collective predicates A and B. *)
+-(* [predD A & B] == difference of collective predicates A and B. *)
+-(* [predC A] == complement of the collective predicate A. *)
+-(* [preim f of A] == preimage under f of the collective predicate A. *)
+-(* predU P Q, ... == union, etc of applicative predicates. *)
+-(* pred0 == the empty predicate. *)
+-(* predT == the total (always true) predicate. *)
+-(* if T : predArgType, then T coerces to predT. *)
+-(* {: T} == T cast to predArgType (e.g., {: bool * nat}) *)
+-(* In the following, x and y are bound in E: *)
+-(* [rel x y | E] == simplifying relation x, y => E. *)
+-(* [rel x y : T | E] == simplifying relation with arguments cast. *)
+-(* [rel x y in A & B | E] == [rel x y | [&& x \in A, y \in B & E]]. *)
+-(* [rel x y in A & B] == [rel x y | (x \in A) && (y \in B)]. *)
+-(* [rel x y in A | E] == [rel x y in A & A | E]. *)
+-(* [rel x y in A] == [rel x y in A & A]. *)
+-(* relU R S == union of relations R and S. *)
+-(* Explicit values of type pred T (i.e., lamdba terms) should always be used *)
+-(* applicatively, while values of collection types implementing the predType *)
+-(* interface, such as sequences or sets should always be used as collective *)
+-(* predicates. Defined constants and functions of type pred T or simpl_pred T *)
+-(* as well as the explicit simpl_pred T values described below, can generally *)
+-(* be used either way. Note however that x \in A will not auto-simplify when *)
+-(* A is an explicit simpl_pred T value; the generic simplification rule inE *)
+-(* must be used (when A : pred T, the unfold_in rule can be used). Constants *)
+-(* of type pred T with an explicit simpl_pred value do not auto-simplify when *)
+-(* used applicatively, but can still be expanded with inE. This behavior can *)
+-(* be controlled as follows: *)
+-(* Let A : collective_pred T := [pred x | ... ]. *)
+-(* The collective_pred T type is just an alias for pred T, but this cast *)
+-(* stops rewrite inE from expanding the definition of A, thus treating A *)
+-(* into an abstract collection (unfold_in or in_collective can be used to *)
+-(* expand manually). *)
+-(* Let A : applicative_pred T := [pred x | ...]. *)
+-(* This cast causes inE to turn x \in A into the applicative A x form; *)
+-(* A will then have to unfolded explicitly with the /A rule. This will *)
+-(* also apply to any definition that reduces to A (e.g., Let B := A). *)
+-(* Canonical A_app_pred := ApplicativePred A. *)
+-(* This declaration, given after definition of A, similarly causes inE to *)
+-(* turn x \in A into A x, but in addition allows the app_predE rule to *)
+-(* turn A x back into x \in A; it can be used for any definition of type *)
+-(* pred T, which makes it especially useful for ambivalent predicates *)
+-(* as the relational transitive closure connect, that are used in both *)
+-(* applicative and collective styles. *)
+-(* Purely for aesthetics, we provide a subtype of collective predicates: *)
+-(* qualifier q T == a pred T pretty-printing wrapper. An A : qualifier q T *)
+-(* coerces to pred_class and thus behaves as a collective *)
+-(* predicate, but x \in A and x \notin A are displayed as: *)
+-(* x \is A and x \isn't A when q = 0, *)
+-(* x \is a A and x \isn't a A when q = 1, *)
+-(* x \is an A and x \isn't an A when q = 2, respectively. *)
+-(* [qualify x | P] := Qualifier 0 (fun x => P), constructor for the above. *)
+-(* [qualify x : T | P], [qualify a x | P], [qualify an X | P], etc. *)
+-(* variants of the above with type constraints and different *)
+-(* values of q. *)
+-(* We provide an internal interface to support attaching properties (such as *)
+-(* being multiplicative) to predicates: *)
+-(* pred_key p == phantom type that will serve as a support for properties *)
+-(* to be attached to p : pred_class; instances should be *)
+-(* created with Fact/Qed so as to be opaque. *)
+-(* KeyedPred k_p == an instance of the interface structure that attaches *)
+-(* (k_p : pred_key P) to P; the structure projection is a *)
+-(* coercion to pred_class. *)
+-(* KeyedQualifier k_q == an instance of the interface structure that attaches *)
+-(* (k_q : pred_key q) to (q : qualifier n T). *)
+-(* DefaultPredKey p == a default value for pred_key p; the vernacular command *)
+-(* Import DefaultKeying attaches this key to all predicates *)
+-(* that are not explicitly keyed. *)
+-(* Keys can be used to attach properties to predicates, qualifiers and *)
+-(* generic nouns in a way that allows them to be used transparently. The key *)
+-(* projection of a predicate property structure such as unsignedPred should *)
+-(* be a pred_key, not a pred, and corresponding lemmas will have the form *)
+-(* Lemma rpredN R S (oppS : @opprPred R S) (kS : keyed_pred oppS) : *)
+-(* {mono -%R: x / x \in kS}. *)
+-(* Because x \in kS will be displayed as x \in S (or x \is S, etc), the *)
+-(* canonical instance of opprPred will not normally be exposed (it will also *)
+-(* be erased by /= simplification). In addition each predicate structure *)
+-(* should have a DefaultPredKey Canonical instance that simply issues the *)
+-(* property as a proof obligation (which can be caught by the Prop-irrelevant *)
+-(* feature of the ssreflect plugin). *)
+-(* Some properties of predicates and relations: *)
+-(* A =i B <-> A and B are extensionally equivalent. *)
+-(* {subset A <= B} <-> A is a (collective) subpredicate of B. *)
+-(* subpred P Q <-> P is an (applicative) subpredicate or Q. *)
+-(* subrel R S <-> R is a subrelation of S. *)
+-(* In the following R is in rel T: *)
+-(* reflexive R <-> R is reflexive. *)
+-(* irreflexive R <-> R is irreflexive. *)
+-(* symmetric R <-> R (in rel T) is symmetric (equation). *)
+-(* pre_symmetric R <-> R is symmetric (implication). *)
+-(* antisymmetric R <-> R is antisymmetric. *)
+-(* total R <-> R is total. *)
+-(* transitive R <-> R is transitive. *)
+-(* left_transitive R <-> R is a congruence on its left hand side. *)
+-(* right_transitive R <-> R is a congruence on its right hand side. *)
+-(* equivalence_rel R <-> R is an equivalence relation. *)
+-(* Localization of (Prop) predicates; if P1 is convertible to forall x, Qx, *)
+-(* P2 to forall x y, Qxy and P3 to forall x y z, Qxyz : *)
+-(* {for y, P1} <-> Qx{y / x}. *)
+-(* {in A, P1} <-> forall x, x \in A -> Qx. *)
+-(* {in A1 & A2, P2} <-> forall x y, x \in A1 -> y \in A2 -> Qxy. *)
+-(* {in A &, P2} <-> forall x y, x \in A -> y \in A -> Qxy. *)
+-(* {in A1 & A2 & A3, Q3} <-> forall x y z, *)
+-(* x \in A1 -> y \in A2 -> z \in A3 -> Qxyz. *)
+-(* {in A1 & A2 &, Q3} == {in A1 & A2 & A2, Q3}. *)
+-(* {in A1 && A3, Q3} == {in A1 & A1 & A3, Q3}. *)
+-(* {in A &&, Q3} == {in A & A & A, Q3}. *)
+-(* {in A, bijective f} == f has a right inverse in A. *)
+-(* {on C, P1} == forall x, (f x) \in C -> Qx *)
+-(* when P1 is also convertible to Pf f. *)
+-(* {on C &, P2} == forall x y, f x \in C -> f y \in C -> Qxy *)
+-(* when P2 is also convertible to Pf f. *)
+-(* {on C, P1' & g} == forall x, (f x) \in cd -> Qx *)
+-(* when P1' is convertible to Pf f *)
+-(* and P1' g is convertible to forall x, Qx. *)
+-(* {on C, bijective f} == f has a right inverse on C. *)
+-(* This file extends the lemma name suffix conventions of ssrfun as follows: *)
+-(* A -- associativity, as in andbA : associative andb. *)
+-(* AC -- right commutativity. *)
+-(* ACA -- self-interchange (inner commutativity), e.g., *)
+-(* orbACA : (a || b) || (c || d) = (a || c) || (b || d). *)
+-(* b -- a boolean argument, as in andbb : idempotent andb. *)
+-(* C -- commutativity, as in andbC : commutative andb, *)
+-(* or predicate complement, as in predC. *)
+-(* CA -- left commutativity. *)
+-(* D -- predicate difference, as in predD. *)
+-(* E -- elimination, as in negbFE : ~~ b = false -> b. *)
+-(* F or f -- boolean false, as in andbF : b && false = false. *)
+-(* I -- left/right injectivity, as in addbI : right_injective addb, *)
+-(* or predicate intersection, as in predI. *)
+-(* l -- a left-hand operation, as andb_orl : left_distributive andb orb. *)
+-(* N or n -- boolean negation, as in andbN : a && (~~ a) = false. *)
+-(* P -- a characteristic property, often a reflection lemma, as in *)
+-(* andP : reflect (a /\ b) (a && b). *)
+-(* r -- a right-hand operation, as orb_andr : rightt_distributive orb andb. *)
+-(* T or t -- boolean truth, as in andbT: right_id true andb. *)
+-(* U -- predicate union, as in predU. *)
+-(* W -- weakening, as in in1W : {in D, forall x, P} -> forall x, P. *)
+-(******************************************************************************)
+-
+-Set Implicit Arguments.
+-Unset Strict Implicit.
+-Unset Printing Implicit Defensive.
+-Set Warnings "-projection-no-head-constant".
+-
+-Notation reflect := Bool.reflect.
+-Notation ReflectT := Bool.ReflectT.
+-Notation ReflectF := Bool.ReflectF.
+-
+-Reserved Notation "~~ b" (at level 35, right associativity).
+-Reserved Notation "b ==> c" (at level 55, right associativity).
+-Reserved Notation "b1 (+) b2" (at level 50, left associativity).
+-Reserved Notation "x \in A"
+- (at level 70, format "'[hv' x '/ ' \in A ']'", no associativity).
+-Reserved Notation "x \notin A"
+- (at level 70, format "'[hv' x '/ ' \notin A ']'", no associativity).
+-Reserved Notation "p1 =i p2"
+- (at level 70, format "'[hv' p1 '/ ' =i p2 ']'", no associativity).
+-
+-(* We introduce a number of n-ary "list-style" notations that share a common *)
+-(* format, namely *)
+-(* [op arg1, arg2, ... last_separator last_arg] *)
+-(* This usually denotes a right-associative applications of op, e.g., *)
+-(* [&& a, b, c & d] denotes a && (b && (c && d)) *)
+-(* The last_separator must be a non-operator token. Here we use &, | or =>; *)
+-(* our default is &, but we try to match the intended meaning of op. The *)
+-(* separator is a workaround for limitations of the parsing engine; the same *)
+-(* limitations mean the separator cannot be omitted even when last_arg can. *)
+-(* The Notation declarations are complicated by the separate treatment for *)
+-(* some fixed arities (binary for bool operators, and all arities for Prop *)
+-(* operators). *)
+-(* We also use the square brackets in comprehension-style notations *)
+-(* [type var separator expr] *)
+-(* where "type" is the type of the comprehension (e.g., pred) and "separator" *)
+-(* is | or => . It is important that in other notations a leading square *)
+-(* bracket [ is always followed by an operator symbol or a fixed identifier. *)
+-
+-Reserved Notation "[ /\ P1 & P2 ]" (at level 0, only parsing).
+-Reserved Notation "[ /\ P1 , P2 & P3 ]" (at level 0, format
+- "'[hv' [ /\ '[' P1 , '/' P2 ']' '/ ' & P3 ] ']'").
+-Reserved Notation "[ /\ P1 , P2 , P3 & P4 ]" (at level 0, format
+- "'[hv' [ /\ '[' P1 , '/' P2 , '/' P3 ']' '/ ' & P4 ] ']'").
+-Reserved Notation "[ /\ P1 , P2 , P3 , P4 & P5 ]" (at level 0, format
+- "'[hv' [ /\ '[' P1 , '/' P2 , '/' P3 , '/' P4 ']' '/ ' & P5 ] ']'").
+-
+-Reserved Notation "[ \/ P1 | P2 ]" (at level 0, only parsing).
+-Reserved Notation "[ \/ P1 , P2 | P3 ]" (at level 0, format
+- "'[hv' [ \/ '[' P1 , '/' P2 ']' '/ ' | P3 ] ']'").
+-Reserved Notation "[ \/ P1 , P2 , P3 | P4 ]" (at level 0, format
+- "'[hv' [ \/ '[' P1 , '/' P2 , '/' P3 ']' '/ ' | P4 ] ']'").
+-
+-Reserved Notation "[ && b1 & c ]" (at level 0, only parsing).
+-Reserved Notation "[ && b1 , b2 , .. , bn & c ]" (at level 0, format
+- "'[hv' [ && '[' b1 , '/' b2 , '/' .. , '/' bn ']' '/ ' & c ] ']'").
+-
+-Reserved Notation "[ || b1 | c ]" (at level 0, only parsing).
+-Reserved Notation "[ || b1 , b2 , .. , bn | c ]" (at level 0, format
+- "'[hv' [ || '[' b1 , '/' b2 , '/' .. , '/' bn ']' '/ ' | c ] ']'").
+-
+-Reserved Notation "[ ==> b1 => c ]" (at level 0, only parsing).
+-Reserved Notation "[ ==> b1 , b2 , .. , bn => c ]" (at level 0, format
+- "'[hv' [ ==> '[' b1 , '/' b2 , '/' .. , '/' bn ']' '/' => c ] ']'").
+-
+-Reserved Notation "[ 'pred' : T => E ]" (at level 0, format
+- "'[hv' [ 'pred' : T => '/ ' E ] ']'").
+-Reserved Notation "[ 'pred' x => E ]" (at level 0, x at level 8, format
+- "'[hv' [ 'pred' x => '/ ' E ] ']'").
+-Reserved Notation "[ 'pred' x : T => E ]" (at level 0, x at level 8, format
+- "'[hv' [ 'pred' x : T => '/ ' E ] ']'").
+-
+-Reserved Notation "[ 'rel' x y => E ]" (at level 0, x, y at level 8, format
+- "'[hv' [ 'rel' x y => '/ ' E ] ']'").
+-Reserved Notation "[ 'rel' x y : T => E ]" (at level 0, x, y at level 8, format
+- "'[hv' [ 'rel' x y : T => '/ ' E ] ']'").
+-
+-(* Shorter delimiter *)
+-Delimit Scope bool_scope with B.
+-Open Scope bool_scope.
+-
+-(* An alternative to xorb that behaves somewhat better wrt simplification. *)
+-Definition addb b := if b then negb else id.
+-
+-(* Notation for && and || is declared in Init.Datatypes. *)
+-Notation "~~ b" := (negb b) : bool_scope.
+-Notation "b ==> c" := (implb b c) : bool_scope.
+-Notation "b1 (+) b2" := (addb b1 b2) : bool_scope.
+-
+-(* Constant is_true b := b = true is defined in Init.Datatypes. *)
+-Coercion is_true : bool >-> Sortclass. (* Prop *)
+-
+-Lemma prop_congr : forall b b' : bool, b = b' -> b = b' :> Prop.
+-Proof. by move=> b b' ->. Qed.
+-
+-Ltac prop_congr := apply: prop_congr.
+-
+-(* Lemmas for trivial. *)
+-Lemma is_true_true : true. Proof. by []. Qed.
+-Lemma not_false_is_true : ~ false. Proof. by []. Qed.
+-Lemma is_true_locked_true : locked true. Proof. by unlock. Qed.
+-Hint Resolve is_true_true not_false_is_true is_true_locked_true.
+-
+-(* Shorter names. *)
+-Definition isT := is_true_true.
+-Definition notF := not_false_is_true.
+-
+-(* Negation lemmas. *)
+-
+-(* We generally take NEGATION as the standard form of a false condition: *)
+-(* negative boolean hypotheses should be of the form ~~ b, rather than ~ b or *)
+-(* b = false, as much as possible. *)
+-
+-Lemma negbT b : b = false -> ~~ b. Proof. by case: b. Qed.
+-Lemma negbTE b : ~~ b -> b = false. Proof. by case: b. Qed.
+-Lemma negbF b : (b : bool) -> ~~ b = false. Proof. by case: b. Qed.
+-Lemma negbFE b : ~~ b = false -> b. Proof. by case: b. Qed.
+-Lemma negbK : involutive negb. Proof. by case. Qed.
+-Lemma negbNE b : ~~ ~~ b -> b. Proof. by case: b. Qed.
+-
+-Lemma negb_inj : injective negb. Proof. exact: can_inj negbK. Qed.
+-Lemma negbLR b c : b = ~~ c -> ~~ b = c. Proof. exact: canLR negbK. Qed.
+-Lemma negbRL b c : ~~ b = c -> b = ~~ c. Proof. exact: canRL negbK. Qed.
+-
+-Lemma contra (c b : bool) : (c -> b) -> ~~ b -> ~~ c.
+-Proof. by case: b => //; case: c. Qed.
+-Definition contraNN := contra.
+-
+-Lemma contraL (c b : bool) : (c -> ~~ b) -> b -> ~~ c.
+-Proof. by case: b => //; case: c. Qed.
+-Definition contraTN := contraL.
+-
+-Lemma contraR (c b : bool) : (~~ c -> b) -> ~~ b -> c.
+-Proof. by case: b => //; case: c. Qed.
+-Definition contraNT := contraR.
+-
+-Lemma contraLR (c b : bool) : (~~ c -> ~~ b) -> b -> c.
+-Proof. by case: b => //; case: c. Qed.
+-Definition contraTT := contraLR.
+-
+-Lemma contraT b : (~~ b -> false) -> b. Proof. by case: b => // ->. Qed.
+-
+-Lemma wlog_neg b : (~~ b -> b) -> b. Proof. by case: b => // ->. Qed.
+-
+-Lemma contraFT (c b : bool) : (~~ c -> b) -> b = false -> c.
+-Proof. by move/contraR=> notb_c /negbT. Qed.
+-
+-Lemma contraFN (c b : bool) : (c -> b) -> b = false -> ~~ c.
+-Proof. by move/contra=> notb_notc /negbT. Qed.
+-
+-Lemma contraTF (c b : bool) : (c -> ~~ b) -> b -> c = false.
+-Proof. by move/contraL=> b_notc /b_notc/negbTE. Qed.
+-
+-Lemma contraNF (c b : bool) : (c -> b) -> ~~ b -> c = false.
+-Proof. by move/contra=> notb_notc /notb_notc/negbTE. Qed.
+-
+-Lemma contraFF (c b : bool) : (c -> b) -> b = false -> c = false.
+-Proof. by move/contraFN=> bF_notc /bF_notc/negbTE. Qed.
+-
+-(* Coercion of sum-style datatypes into bool, which makes it possible *)
+-(* to use ssr's boolean if rather than Coq's "generic" if. *)
+-
+-Coercion isSome T (u : option T) := if u is Some _ then true else false.
+-
+-Coercion is_inl A B (u : A + B) := if u is inl _ then true else false.
+-
+-Coercion is_left A B (u : {A} + {B}) := if u is left _ then true else false.
+-
+-Coercion is_inleft A B (u : A + {B}) := if u is inleft _ then true else false.
+-
+-Prenex Implicits isSome is_inl is_left is_inleft.
+-
+-Definition decidable P := {P} + {~ P}.
+-
+-(* Lemmas for ifs with large conditions, which allow reasoning about the *)
+-(* condition without repeating it inside the proof (the latter IS *)
+-(* preferable when the condition is short). *)
+-(* Usage : *)
+-(* if the goal contains (if cond then ...) = ... *)
+-(* case: ifP => Hcond. *)
+-(* generates two subgoal, with the assumption Hcond : cond = true/false *)
+-(* Rewrite if_same eliminates redundant ifs *)
+-(* Rewrite (fun_if f) moves a function f inside an if *)
+-(* Rewrite if_arg moves an argument inside a function-valued if *)
+-
+-Section BoolIf.
+-
+-Variables (A B : Type) (x : A) (f : A -> B) (b : bool) (vT vF : A).
+-
+-CoInductive if_spec (not_b : Prop) : bool -> A -> Set :=
+- | IfSpecTrue of b : if_spec not_b true vT
+- | IfSpecFalse of not_b : if_spec not_b false vF.
+-
+-Lemma ifP : if_spec (b = false) b (if b then vT else vF).
+-Proof. by case def_b: b; constructor. Qed.
+-
+-Lemma ifPn : if_spec (~~ b) b (if b then vT else vF).
+-Proof. by case def_b: b; constructor; rewrite ?def_b. Qed.
+-
+-Lemma ifT : b -> (if b then vT else vF) = vT. Proof. by move->. Qed.
+-Lemma ifF : b = false -> (if b then vT else vF) = vF. Proof. by move->. Qed.
+-Lemma ifN : ~~ b -> (if b then vT else vF) = vF. Proof. by move/negbTE->. Qed.
+-
+-Lemma if_same : (if b then vT else vT) = vT.
+-Proof. by case b. Qed.
+-
+-Lemma if_neg : (if ~~ b then vT else vF) = if b then vF else vT.
+-Proof. by case b. Qed.
+-
+-Lemma fun_if : f (if b then vT else vF) = if b then f vT else f vF.
+-Proof. by case b. Qed.
+-
+-Lemma if_arg (fT fF : A -> B) :
+- (if b then fT else fF) x = if b then fT x else fF x.
+-Proof. by case b. Qed.
+-
+-(* Turning a boolean "if" form into an application. *)
+-Definition if_expr := if b then vT else vF.
+-Lemma ifE : (if b then vT else vF) = if_expr. Proof. by []. Qed.
+-
+-End BoolIf.
+-
+-(* Core (internal) reflection lemmas, used for the three kinds of views. *)
+-
+-Section ReflectCore.
+-
+-Variables (P Q : Prop) (b c : bool).
+-
+-Hypothesis Hb : reflect P b.
+-
+-Lemma introNTF : (if c then ~ P else P) -> ~~ b = c.
+-Proof. by case c; case Hb. Qed.
+-
+-Lemma introTF : (if c then P else ~ P) -> b = c.
+-Proof. by case c; case Hb. Qed.
+-
+-Lemma elimNTF : ~~ b = c -> if c then ~ P else P.
+-Proof. by move <-; case Hb. Qed.
+-
+-Lemma elimTF : b = c -> if c then P else ~ P.
+-Proof. by move <-; case Hb. Qed.
+-
+-Lemma equivPif : (Q -> P) -> (P -> Q) -> if b then Q else ~ Q.
+-Proof. by case Hb; auto. Qed.
+-
+-Lemma xorPif : Q \/ P -> ~ (Q /\ P) -> if b then ~ Q else Q.
+-Proof. by case Hb => [? _ H ? | ? H _]; case: H. Qed.
+-
+-End ReflectCore.
+-
+-(* Internal negated reflection lemmas *)
+-Section ReflectNegCore.
+-
+-Variables (P Q : Prop) (b c : bool).
+-Hypothesis Hb : reflect P (~~ b).
+-
+-Lemma introTFn : (if c then ~ P else P) -> b = c.
+-Proof. by move/(introNTF Hb) <-; case b. Qed.
+-
+-Lemma elimTFn : b = c -> if c then ~ P else P.
+-Proof. by move <-; apply: (elimNTF Hb); case b. Qed.
+-
+-Lemma equivPifn : (Q -> P) -> (P -> Q) -> if b then ~ Q else Q.
+-Proof. by rewrite -if_neg; apply: equivPif. Qed.
+-
+-Lemma xorPifn : Q \/ P -> ~ (Q /\ P) -> if b then Q else ~ Q.
+-Proof. by rewrite -if_neg; apply: xorPif. Qed.
+-
+-End ReflectNegCore.
+-
+-(* User-oriented reflection lemmas *)
+-Section Reflect.
+-
+-Variables (P Q : Prop) (b b' c : bool).
+-Hypotheses (Pb : reflect P b) (Pb' : reflect P (~~ b')).
+-
+-Lemma introT : P -> b. Proof. exact: introTF true _. Qed.
+-Lemma introF : ~ P -> b = false. Proof. exact: introTF false _. Qed.
+-Lemma introN : ~ P -> ~~ b. Proof. exact: introNTF true _. Qed.
+-Lemma introNf : P -> ~~ b = false. Proof. exact: introNTF false _. Qed.
+-Lemma introTn : ~ P -> b'. Proof. exact: introTFn true _. Qed.
+-Lemma introFn : P -> b' = false. Proof. exact: introTFn false _. Qed.
+-
+-Lemma elimT : b -> P. Proof. exact: elimTF true _. Qed.
+-Lemma elimF : b = false -> ~ P. Proof. exact: elimTF false _. Qed.
+-Lemma elimN : ~~ b -> ~P. Proof. exact: elimNTF true _. Qed.
+-Lemma elimNf : ~~ b = false -> P. Proof. exact: elimNTF false _. Qed.
+-Lemma elimTn : b' -> ~ P. Proof. exact: elimTFn true _. Qed.
+-Lemma elimFn : b' = false -> P. Proof. exact: elimTFn false _. Qed.
+-
+-Lemma introP : (b -> Q) -> (~~ b -> ~ Q) -> reflect Q b.
+-Proof. by case b; constructor; auto. Qed.
+-
+-Lemma iffP : (P -> Q) -> (Q -> P) -> reflect Q b.
+-Proof. by case: Pb; constructor; auto. Qed.
+-
+-Lemma equivP : (P <-> Q) -> reflect Q b.
+-Proof. by case; apply: iffP. Qed.
+-
+-Lemma sumboolP (decQ : decidable Q) : reflect Q decQ.
+-Proof. by case: decQ; constructor. Qed.
+-
+-Lemma appP : reflect Q b -> P -> Q.
+-Proof. by move=> Qb; move/introT; case: Qb. Qed.
+-
+-Lemma sameP : reflect P c -> b = c.
+-Proof. by case; [apply: introT | apply: introF]. Qed.
+-
+-Lemma decPcases : if b then P else ~ P. Proof. by case Pb. Qed.
+-
+-Definition decP : decidable P. by case: b decPcases; [left | right]. Defined.
+-
+-Lemma rwP : P <-> b. Proof. by split; [apply: introT | apply: elimT]. Qed.
+-
+-Lemma rwP2 : reflect Q b -> (P <-> Q).
+-Proof. by move=> Qb; split=> ?; [apply: appP | apply: elimT; case: Qb]. Qed.
+-
+-(* Predicate family to reflect excluded middle in bool. *)
+-CoInductive alt_spec : bool -> Type :=
+- | AltTrue of P : alt_spec true
+- | AltFalse of ~~ b : alt_spec false.
+-
+-Lemma altP : alt_spec b.
+-Proof. by case def_b: b / Pb; constructor; rewrite ?def_b. Qed.
+-
+-End Reflect.
+-
+-Hint View for move/ elimTF|3 elimNTF|3 elimTFn|3 introT|2 introTn|2 introN|2.
+-
+-Hint View for apply/ introTF|3 introNTF|3 introTFn|3 elimT|2 elimTn|2 elimN|2.
+-
+-Hint View for apply// equivPif|3 xorPif|3 equivPifn|3 xorPifn|3.
+-
+-(* Allow the direct application of a reflection lemma to a boolean assertion. *)
+-Coercion elimT : reflect >-> Funclass.
+-
+-CoInductive implies P Q := Implies of P -> Q.
+-Lemma impliesP P Q : implies P Q -> P -> Q. Proof. by case. Qed.
+-Lemma impliesPn (P Q : Prop) : implies P Q -> ~ Q -> ~ P.
+-Proof. by case=> iP ? /iP. Qed.
+-Coercion impliesP : implies >-> Funclass.
+-Hint View for move/ impliesPn|2 impliesP|2.
+-Hint View for apply/ impliesPn|2 impliesP|2.
+-
+-(* Impredicative or, which can emulate a classical not-implies. *)
+-Definition unless condition property : Prop :=
+- forall goal : Prop, (condition -> goal) -> (property -> goal) -> goal.
+-
+-Notation "\unless C , P" := (unless C P)
+- (at level 200, C at level 100,
+- format "'[' \unless C , '/ ' P ']'") : type_scope.
+-
+-Lemma unlessL C P : implies C (\unless C, P).
+-Proof. by split=> hC G /(_ hC). Qed.
+-
+-Lemma unlessR C P : implies P (\unless C, P).
+-Proof. by split=> hP G _ /(_ hP). Qed.
+-
+-Lemma unless_sym C P : implies (\unless C, P) (\unless P, C).
+-Proof. by split; apply; [apply/unlessR | apply/unlessL]. Qed.
+-
+-Lemma unlessP (C P : Prop) : (\unless C, P) <-> C \/ P.
+-Proof. by split=> [|[/unlessL | /unlessR]]; apply; [left | right]. Qed.
+-
+-Lemma bind_unless C P {Q} : implies (\unless C, P) (\unless (\unless C, Q), P).
+-Proof. by split; apply=> [hC|hP]; [apply/unlessL/unlessL | apply/unlessR]. Qed.
+-
+-Lemma unless_contra b C : implies (~~ b -> C) (\unless C, b).
+-Proof. by split; case: b => [_ | hC]; [apply/unlessR | apply/unlessL/hC]. Qed.
+-
+-(* Classical reasoning becomes directly accessible for any bool subgoal. *)
+-(* Note that we cannot use "unless" here for lack of universe polymorphism. *)
+-Definition classically P : Prop := forall b : bool, (P -> b) -> b.
+-
+-Lemma classicP (P : Prop) : classically P <-> ~ ~ P.
+-Proof.
+-split=> [cP nP | nnP [] // nP]; last by case nnP; move/nP.
+-by have: P -> false; [move/nP | move/cP].
+-Qed.
+-
+-Lemma classicW P : P -> classically P. Proof. by move=> hP _ ->. Qed.
+-
+-Lemma classic_bind P Q : (P -> classically Q) -> classically P -> classically Q.
+-Proof. by move=> iPQ cP b /iPQ-/cP. Qed.
+-
+-Lemma classic_EM P : classically (decidable P).
+-Proof.
+-by case=> // undecP; apply/undecP; right=> notP; apply/notF/undecP; left.
+-Qed.
+-
+-Lemma classic_pick T P : classically ({x : T | P x} + (forall x, ~ P x)).
+-Proof.
+-case=> // undecP; apply/undecP; right=> x Px.
+-by apply/notF/undecP; left; exists x.
+-Qed.
+-
+-Lemma classic_imply P Q : (P -> classically Q) -> classically (P -> Q).
+-Proof.
+-move=> iPQ []// notPQ; apply/notPQ=> /iPQ-cQ.
+-by case: notF; apply: cQ => hQ; apply: notPQ.
+-Qed.
+-
+-(* List notations for wider connectives; the Prop connectives have a fixed *)
+-(* width so as to avoid iterated destruction (we go up to width 5 for /\, and *)
+-(* width 4 for or). The bool connectives have arbitrary widths, but denote *)
+-(* expressions that associate to the RIGHT. This is consistent with the right *)
+-(* associativity of list expressions and thus more convenient in most proofs. *)
+-
+-Inductive and3 (P1 P2 P3 : Prop) : Prop := And3 of P1 & P2 & P3.
+-
+-Inductive and4 (P1 P2 P3 P4 : Prop) : Prop := And4 of P1 & P2 & P3 & P4.
+-
+-Inductive and5 (P1 P2 P3 P4 P5 : Prop) : Prop :=
+- And5 of P1 & P2 & P3 & P4 & P5.
+-
+-Inductive or3 (P1 P2 P3 : Prop) : Prop := Or31 of P1 | Or32 of P2 | Or33 of P3.
+-
+-Inductive or4 (P1 P2 P3 P4 : Prop) : Prop :=
+- Or41 of P1 | Or42 of P2 | Or43 of P3 | Or44 of P4.
+-
+-Notation "[ /\ P1 & P2 ]" := (and P1 P2) (only parsing) : type_scope.
+-Notation "[ /\ P1 , P2 & P3 ]" := (and3 P1 P2 P3) : type_scope.
+-Notation "[ /\ P1 , P2 , P3 & P4 ]" := (and4 P1 P2 P3 P4) : type_scope.
+-Notation "[ /\ P1 , P2 , P3 , P4 & P5 ]" := (and5 P1 P2 P3 P4 P5) : type_scope.
+-
+-Notation "[ \/ P1 | P2 ]" := (or P1 P2) (only parsing) : type_scope.
+-Notation "[ \/ P1 , P2 | P3 ]" := (or3 P1 P2 P3) : type_scope.
+-Notation "[ \/ P1 , P2 , P3 | P4 ]" := (or4 P1 P2 P3 P4) : type_scope.
+-
+-Notation "[ && b1 & c ]" := (b1 && c) (only parsing) : bool_scope.
+-Notation "[ && b1 , b2 , .. , bn & c ]" := (b1 && (b2 && .. (bn && c) .. ))
+- : bool_scope.
+-
+-Notation "[ || b1 | c ]" := (b1 || c) (only parsing) : bool_scope.
+-Notation "[ || b1 , b2 , .. , bn | c ]" := (b1 || (b2 || .. (bn || c) .. ))
+- : bool_scope.
+-
+-Notation "[ ==> b1 , b2 , .. , bn => c ]" :=
+- (b1 ==> (b2 ==> .. (bn ==> c) .. )) : bool_scope.
+-Notation "[ ==> b1 => c ]" := (b1 ==> c) (only parsing) : bool_scope.
+-
+-Section AllAnd.
+-
+-Variables (T : Type) (P1 P2 P3 P4 P5 : T -> Prop).
+-Local Notation a P := (forall x, P x).
+-
+-Lemma all_and2 : implies (forall x, [/\ P1 x & P2 x]) [/\ a P1 & a P2].
+-Proof. by split=> haveP; split=> x; case: (haveP x). Qed.
+-
+-Lemma all_and3 : implies (forall x, [/\ P1 x, P2 x & P3 x])
+- [/\ a P1, a P2 & a P3].
+-Proof. by split=> haveP; split=> x; case: (haveP x). Qed.
+-
+-Lemma all_and4 : implies (forall x, [/\ P1 x, P2 x, P3 x & P4 x])
+- [/\ a P1, a P2, a P3 & a P4].
+-Proof. by split=> haveP; split=> x; case: (haveP x). Qed.
+-
+-Lemma all_and5 : implies (forall x, [/\ P1 x, P2 x, P3 x, P4 x & P5 x])
+- [/\ a P1, a P2, a P3, a P4 & a P5].
+-Proof. by split=> haveP; split=> x; case: (haveP x). Qed.
+-
+-End AllAnd.
+-
+-Arguments all_and2 {T P1 P2}.
+-Arguments all_and3 {T P1 P2 P3}.
+-Arguments all_and4 {T P1 P2 P3 P4}.
+-Arguments all_and5 {T P1 P2 P3 P4 P5}.
+-
+-Lemma pair_andP P Q : P /\ Q <-> P * Q. Proof. by split; case. Qed.
+-
+-Section ReflectConnectives.
+-
+-Variable b1 b2 b3 b4 b5 : bool.
+-
+-Lemma idP : reflect b1 b1.
+-Proof. by case b1; constructor. Qed.
+-
+-Lemma boolP : alt_spec b1 b1 b1.
+-Proof. exact: (altP idP). Qed.
+-
+-Lemma idPn : reflect (~~ b1) (~~ b1).
+-Proof. by case b1; constructor. Qed.
+-
+-Lemma negP : reflect (~ b1) (~~ b1).
+-Proof. by case b1; constructor; auto. Qed.
+-
+-Lemma negPn : reflect b1 (~~ ~~ b1).
+-Proof. by case b1; constructor. Qed.
+-
+-Lemma negPf : reflect (b1 = false) (~~ b1).
+-Proof. by case b1; constructor. Qed.
+-
+-Lemma andP : reflect (b1 /\ b2) (b1 && b2).
+-Proof. by case b1; case b2; constructor=> //; case. Qed.
+-
+-Lemma and3P : reflect [/\ b1, b2 & b3] [&& b1, b2 & b3].
+-Proof. by case b1; case b2; case b3; constructor; try by case. Qed.
+-
+-Lemma and4P : reflect [/\ b1, b2, b3 & b4] [&& b1, b2, b3 & b4].
+-Proof. by case b1; case b2; case b3; case b4; constructor; try by case. Qed.
+-
+-Lemma and5P : reflect [/\ b1, b2, b3, b4 & b5] [&& b1, b2, b3, b4 & b5].
+-Proof.
+-by case b1; case b2; case b3; case b4; case b5; constructor; try by case.
+-Qed.
+-
+-Lemma orP : reflect (b1 \/ b2) (b1 || b2).
+-Proof. by case b1; case b2; constructor; auto; case. Qed.
+-
+-Lemma or3P : reflect [\/ b1, b2 | b3] [|| b1, b2 | b3].
+-Proof.
+-case b1; first by constructor; constructor 1.
+-case b2; first by constructor; constructor 2.
+-case b3; first by constructor; constructor 3.
+-by constructor; case.
+-Qed.
+-
+-Lemma or4P : reflect [\/ b1, b2, b3 | b4] [|| b1, b2, b3 | b4].
+-Proof.
+-case b1; first by constructor; constructor 1.
+-case b2; first by constructor; constructor 2.
+-case b3; first by constructor; constructor 3.
+-case b4; first by constructor; constructor 4.
+-by constructor; case.
+-Qed.
+-
+-Lemma nandP : reflect (~~ b1 \/ ~~ b2) (~~ (b1 && b2)).
+-Proof. by case b1; case b2; constructor; auto; case; auto. Qed.
+-
+-Lemma norP : reflect (~~ b1 /\ ~~ b2) (~~ (b1 || b2)).
+-Proof. by case b1; case b2; constructor; auto; case; auto. Qed.
+-
+-Lemma implyP : reflect (b1 -> b2) (b1 ==> b2).
+-Proof. by case b1; case b2; constructor; auto. Qed.
+-
+-End ReflectConnectives.
+-
+-Arguments idP [b1].
+-Arguments idPn [b1].
+-Arguments negP [b1].
+-Arguments negPn [b1].
+-Arguments negPf [b1].
+-Arguments andP [b1 b2].
+-Arguments and3P [b1 b2 b3].
+-Arguments and4P [b1 b2 b3 b4].
+-Arguments and5P [b1 b2 b3 b4 b5].
+-Arguments orP [b1 b2].
+-Arguments or3P [b1 b2 b3].
+-Arguments or4P [b1 b2 b3 b4].
+-Arguments nandP [b1 b2].
+-Arguments norP [b1 b2].
+-Arguments implyP [b1 b2].
+-Prenex Implicits idP idPn negP negPn negPf.
+-Prenex Implicits andP and3P and4P and5P orP or3P or4P nandP norP implyP.
+-
+-(* Shorter, more systematic names for the boolean connectives laws. *)
+-
+-Lemma andTb : left_id true andb. Proof. by []. Qed.
+-Lemma andFb : left_zero false andb. Proof. by []. Qed.
+-Lemma andbT : right_id true andb. Proof. by case. Qed.
+-Lemma andbF : right_zero false andb. Proof. by case. Qed.
+-Lemma andbb : idempotent andb. Proof. by case. Qed.
+-Lemma andbC : commutative andb. Proof. by do 2!case. Qed.
+-Lemma andbA : associative andb. Proof. by do 3!case. Qed.
+-Lemma andbCA : left_commutative andb. Proof. by do 3!case. Qed.
+-Lemma andbAC : right_commutative andb. Proof. by do 3!case. Qed.
+-Lemma andbACA : interchange andb andb. Proof. by do 4!case. Qed.
+-
+-Lemma orTb : forall b, true || b. Proof. by []. Qed.
+-Lemma orFb : left_id false orb. Proof. by []. Qed.
+-Lemma orbT : forall b, b || true. Proof. by case. Qed.
+-Lemma orbF : right_id false orb. Proof. by case. Qed.
+-Lemma orbb : idempotent orb. Proof. by case. Qed.
+-Lemma orbC : commutative orb. Proof. by do 2!case. Qed.
+-Lemma orbA : associative orb. Proof. by do 3!case. Qed.
+-Lemma orbCA : left_commutative orb. Proof. by do 3!case. Qed.
+-Lemma orbAC : right_commutative orb. Proof. by do 3!case. Qed.
+-Lemma orbACA : interchange orb orb. Proof. by do 4!case. Qed.
+-
+-Lemma andbN b : b && ~~ b = false. Proof. by case: b. Qed.
+-Lemma andNb b : ~~ b && b = false. Proof. by case: b. Qed.
+-Lemma orbN b : b || ~~ b = true. Proof. by case: b. Qed.
+-Lemma orNb b : ~~ b || b = true. Proof. by case: b. Qed.
+-
+-Lemma andb_orl : left_distributive andb orb. Proof. by do 3!case. Qed.
+-Lemma andb_orr : right_distributive andb orb. Proof. by do 3!case. Qed.
+-Lemma orb_andl : left_distributive orb andb. Proof. by do 3!case. Qed.
+-Lemma orb_andr : right_distributive orb andb. Proof. by do 3!case. Qed.
+-
+-Lemma andb_idl (a b : bool) : (b -> a) -> a && b = b.
+-Proof. by case: a; case: b => // ->. Qed.
+-Lemma andb_idr (a b : bool) : (a -> b) -> a && b = a.
+-Proof. by case: a; case: b => // ->. Qed.
+-Lemma andb_id2l (a b c : bool) : (a -> b = c) -> a && b = a && c.
+-Proof. by case: a; case: b; case: c => // ->. Qed.
+-Lemma andb_id2r (a b c : bool) : (b -> a = c) -> a && b = c && b.
+-Proof. by case: a; case: b; case: c => // ->. Qed.
+-
+-Lemma orb_idl (a b : bool) : (a -> b) -> a || b = b.
+-Proof. by case: a; case: b => // ->. Qed.
+-Lemma orb_idr (a b : bool) : (b -> a) -> a || b = a.
+-Proof. by case: a; case: b => // ->. Qed.
+-Lemma orb_id2l (a b c : bool) : (~~ a -> b = c) -> a || b = a || c.
+-Proof. by case: a; case: b; case: c => // ->. Qed.
+-Lemma orb_id2r (a b c : bool) : (~~ b -> a = c) -> a || b = c || b.
+-Proof. by case: a; case: b; case: c => // ->. Qed.
+-
+-Lemma negb_and (a b : bool) : ~~ (a && b) = ~~ a || ~~ b.
+-Proof. by case: a; case: b. Qed.
+-
+-Lemma negb_or (a b : bool) : ~~ (a || b) = ~~ a && ~~ b.
+-Proof. by case: a; case: b. Qed.
+-
+-(* Pseudo-cancellation -- i.e, absorbtion *)
+-
+-Lemma andbK a b : a && b || a = a. Proof. by case: a; case: b. Qed.
+-Lemma andKb a b : a || b && a = a. Proof. by case: a; case: b. Qed.
+-Lemma orbK a b : (a || b) && a = a. Proof. by case: a; case: b. Qed.
+-Lemma orKb a b : a && (b || a) = a. Proof. by case: a; case: b. Qed.
+-
+-(* Imply *)
+-
+-Lemma implybT b : b ==> true. Proof. by case: b. Qed.
+-Lemma implybF b : (b ==> false) = ~~ b. Proof. by case: b. Qed.
+-Lemma implyFb b : false ==> b. Proof. by []. Qed.
+-Lemma implyTb b : (true ==> b) = b. Proof. by []. Qed.
+-Lemma implybb b : b ==> b. Proof. by case: b. Qed.
+-
+-Lemma negb_imply a b : ~~ (a ==> b) = a && ~~ b.
+-Proof. by case: a; case: b. Qed.
+-
+-Lemma implybE a b : (a ==> b) = ~~ a || b.
+-Proof. by case: a; case: b. Qed.
+-
+-Lemma implyNb a b : (~~ a ==> b) = a || b.
+-Proof. by case: a; case: b. Qed.
+-
+-Lemma implybN a b : (a ==> ~~ b) = (b ==> ~~ a).
+-Proof. by case: a; case: b. Qed.
+-
+-Lemma implybNN a b : (~~ a ==> ~~ b) = b ==> a.
+-Proof. by case: a; case: b. Qed.
+-
+-Lemma implyb_idl (a b : bool) : (~~ a -> b) -> (a ==> b) = b.
+-Proof. by case: a; case: b => // ->. Qed.
+-Lemma implyb_idr (a b : bool) : (b -> ~~ a) -> (a ==> b) = ~~ a.
+-Proof. by case: a; case: b => // ->. Qed.
+-Lemma implyb_id2l (a b c : bool) : (a -> b = c) -> (a ==> b) = (a ==> c).
+-Proof. by case: a; case: b; case: c => // ->. Qed.
+-
+-(* Addition (xor) *)
+-
+-Lemma addFb : left_id false addb. Proof. by []. Qed.
+-Lemma addbF : right_id false addb. Proof. by case. Qed.
+-Lemma addbb : self_inverse false addb. Proof. by case. Qed.
+-Lemma addbC : commutative addb. Proof. by do 2!case. Qed.
+-Lemma addbA : associative addb. Proof. by do 3!case. Qed.
+-Lemma addbCA : left_commutative addb. Proof. by do 3!case. Qed.
+-Lemma addbAC : right_commutative addb. Proof. by do 3!case. Qed.
+-Lemma addbACA : interchange addb addb. Proof. by do 4!case. Qed.
+-Lemma andb_addl : left_distributive andb addb. Proof. by do 3!case. Qed.
+-Lemma andb_addr : right_distributive andb addb. Proof. by do 3!case. Qed.
+-Lemma addKb : left_loop id addb. Proof. by do 2!case. Qed.
+-Lemma addbK : right_loop id addb. Proof. by do 2!case. Qed.
+-Lemma addIb : left_injective addb. Proof. by do 3!case. Qed.
+-Lemma addbI : right_injective addb. Proof. by do 3!case. Qed.
+-
+-Lemma addTb b : true (+) b = ~~ b. Proof. by []. Qed.
+-Lemma addbT b : b (+) true = ~~ b. Proof. by case: b. Qed.
+-
+-Lemma addbN a b : a (+) ~~ b = ~~ (a (+) b).
+-Proof. by case: a; case: b. Qed.
+-Lemma addNb a b : ~~ a (+) b = ~~ (a (+) b).
+-Proof. by case: a; case: b. Qed.
+-
+-Lemma addbP a b : reflect (~~ a = b) (a (+) b).
+-Proof. by case: a; case: b; constructor. Qed.
+-Arguments addbP [a b].
+-
+-(* Resolution tactic for blindly weeding out common terms from boolean *)
+-(* equalities. When faced with a goal of the form (andb/orb/addb b1 b2) = b3 *)
+-(* they will try to locate b1 in b3 and remove it. This can fail! *)
+-
+-Ltac bool_congr :=
+- match goal with
+- | |- (?X1 && ?X2 = ?X3) => first
+- [ symmetry; rewrite -1?(andbC X1) -?(andbCA X1); congr 1 (andb X1); symmetry
+- | case: (X1); [ rewrite ?andTb ?andbT // | by rewrite ?andbF /= ] ]
+- | |- (?X1 || ?X2 = ?X3) => first
+- [ symmetry; rewrite -1?(orbC X1) -?(orbCA X1); congr 1 (orb X1); symmetry
+- | case: (X1); [ by rewrite ?orbT //= | rewrite ?orFb ?orbF ] ]
+- | |- (?X1 (+) ?X2 = ?X3) =>
+- symmetry; rewrite -1?(addbC X1) -?(addbCA X1); congr 1 (addb X1); symmetry
+- | |- (~~ ?X1 = ?X2) => congr 1 negb
+- end.
+-
+-(******************************************************************************)
+-(* Predicates, i.e., packaged functions to bool. *)
+-(* - pred T, the basic type for predicates over a type T, is simply an alias *)
+-(* for T -> bool. *)
+-(* We actually distinguish two kinds of predicates, which we call applicative *)
+-(* and collective, based on the syntax used to test them at some x in T: *)
+-(* - For an applicative predicate P, one uses prefix syntax: *)
+-(* P x *)
+-(* Also, most operations on applicative predicates use prefix syntax as *)
+-(* well (e.g., predI P Q). *)
+-(* - For a collective predicate A, one uses infix syntax: *)
+-(* x \in A *)
+-(* and all operations on collective predicates use infix syntax as well *)
+-(* (e.g., [predI A & B]). *)
+-(* There are only two kinds of applicative predicates: *)
+-(* - pred T, the alias for T -> bool mentioned above *)
+-(* - simpl_pred T, an alias for simpl_fun T bool with a coercion to pred T *)
+-(* that auto-simplifies on application (see ssrfun). *)
+-(* On the other hand, the set of collective predicate types is open-ended via *)
+-(* - predType T, a Structure that can be used to put Canonical collective *)
+-(* predicate interpretation on other types, such as lists, tuples, *)
+-(* finite sets, etc. *)
+-(* Indeed, we define such interpretations for applicative predicate types, *)
+-(* which can therefore also be used with the infix syntax, e.g., *)
+-(* x \in predI P Q *)
+-(* Moreover these infix forms are convertible to their prefix counterpart *)
+-(* (e.g., predI P Q x which in turn simplifies to P x && Q x). The converse *)
+-(* is not true, however; collective predicate types cannot, in general, be *)
+-(* general, be used applicatively, because of the "uniform inheritance" *)
+-(* restriction on implicit coercions. *)
+-(* However, we do define an explicit generic coercion *)
+-(* - mem : forall (pT : predType), pT -> mem_pred T *)
+-(* where mem_pred T is a variant of simpl_pred T that preserves the infix *)
+-(* syntax, i.e., mem A x auto-simplifies to x \in A. *)
+-(* Indeed, the infix "collective" operators are notation for a prefix *)
+-(* operator with arguments of type mem_pred T or pred T, applied to coerced *)
+-(* collective predicates, e.g., *)
+-(* Notation "x \in A" := (in_mem x (mem A)). *)
+-(* This prevents the variability in the predicate type from interfering with *)
+-(* the application of generic lemmas. Moreover this also makes it much easier *)
+-(* to define generic lemmas, because the simplest type -- pred T -- can be *)
+-(* used as the type of generic collective predicates, provided one takes care *)
+-(* not to use it applicatively; this avoids the burden of having to declare a *)
+-(* different predicate type for each predicate parameter of each section or *)
+-(* lemma. *)
+-(* This trick is made possible by the fact that the constructor of the *)
+-(* mem_pred T type aligns the unification process, forcing a generic *)
+-(* "collective" predicate A : pred T to unify with the actual collective B, *)
+-(* which mem has coerced to pred T via an internal, hidden implicit coercion, *)
+-(* supplied by the predType structure for B. Users should take care not to *)
+-(* inadvertently "strip" (mem B) down to the coerced B, since this will *)
+-(* expose the internal coercion: Coq will display a term B x that cannot be *)
+-(* typed as such. The topredE lemma can be used to restore the x \in B *)
+-(* syntax in this case. While -topredE can conversely be used to change *)
+-(* x \in P into P x, it is safer to use the inE and memE lemmas instead, as *)
+-(* they do not run the risk of exposing internal coercions. As a consequence *)
+-(* it is better to explicitly cast a generic applicative pred T to simpl_pred *)
+-(* using the SimplPred constructor, when it is used as a collective predicate *)
+-(* (see, e.g., Lemma eq_big in bigop). *)
+-(* We also sometimes "instantiate" the predType structure by defining a *)
+-(* coercion to the sort of the predPredType structure. This works better for *)
+-(* types such as {set T} that have subtypes that coerce to them, since the *)
+-(* same coercion will be inserted by the application of mem. It also lets us *)
+-(* turn any Type aT : predArgType into the total predicate over that type, *)
+-(* i.e., fun _: aT => true. This allows us to write, e.g., #|'I_n| for the *)
+-(* cardinal of the (finite) type of integers less than n. *)
+-(* Collective predicates have a specific extensional equality, *)
+-(* - A =i B, *)
+-(* while applicative predicates use the extensional equality of functions, *)
+-(* - P =1 Q *)
+-(* The two forms are convertible, however. *)
+-(* We lift boolean operations to predicates, defining: *)
+-(* - predU (union), predI (intersection), predC (complement), *)
+-(* predD (difference), and preim (preimage, i.e., composition) *)
+-(* For each operation we define three forms, typically: *)
+-(* - predU : pred T -> pred T -> simpl_pred T *)
+-(* - [predU A & B], a Notation for predU (mem A) (mem B) *)
+-(* - xpredU, a Notation for the lambda-expression inside predU, *)
+-(* which is mostly useful as an argument of =1, since it exposes the head *)
+-(* head constant of the expression to the ssreflect matching algorithm. *)
+-(* The syntax for the preimage of a collective predicate A is *)
+-(* - [preim f of A] *)
+-(* Finally, the generic syntax for defining a simpl_pred T is *)
+-(* - [pred x : T | P(x)], [pred x | P(x)], [pred x in A | P(x)], etc. *)
+-(* We also support boolean relations, but only the applicative form, with *)
+-(* types *)
+-(* - rel T, an alias for T -> pred T *)
+-(* - simpl_rel T, an auto-simplifying version, and syntax *)
+-(* [rel x y | P(x,y)], [rel x y in A & B | P(x,y)], etc. *)
+-(* The notation [rel of fA] can be used to coerce a function returning a *)
+-(* collective predicate to one returning pred T. *)
+-(* Finally, note that there is specific support for ambivalent predicates *)
+-(* that can work in either style, as per this file's head descriptor. *)
+-(******************************************************************************)
+-
+-Definition pred T := T -> bool.
+-
+-Identity Coercion fun_of_pred : pred >-> Funclass.
+-
+-Definition rel T := T -> pred T.
+-
+-Identity Coercion fun_of_rel : rel >-> Funclass.
+-
+-Notation xpred0 := (fun _ => false).
+-Notation xpredT := (fun _ => true).
+-Notation xpredI := (fun (p1 p2 : pred _) x => p1 x && p2 x).
+-Notation xpredU := (fun (p1 p2 : pred _) x => p1 x || p2 x).
+-Notation xpredC := (fun (p : pred _) x => ~~ p x).
+-Notation xpredD := (fun (p1 p2 : pred _) x => ~~ p2 x && p1 x).
+-Notation xpreim := (fun f (p : pred _) x => p (f x)).
+-Notation xrelU := (fun (r1 r2 : rel _) x y => r1 x y || r2 x y).
+-
+-Section Predicates.
+-
+-Variables T : Type.
+-
+-Definition subpred (p1 p2 : pred T) := forall x, p1 x -> p2 x.
+-
+-Definition subrel (r1 r2 : rel T) := forall x y, r1 x y -> r2 x y.
+-
+-Definition simpl_pred := simpl_fun T bool.
+-Definition applicative_pred := pred T.
+-Definition collective_pred := pred T.
+-
+-Definition SimplPred (p : pred T) : simpl_pred := SimplFun p.
+-
+-Coercion pred_of_simpl (p : simpl_pred) : pred T := fun_of_simpl p.
+-Coercion applicative_pred_of_simpl (p : simpl_pred) : applicative_pred :=
+- fun_of_simpl p.
+-Coercion collective_pred_of_simpl (p : simpl_pred) : collective_pred :=
+- fun x => (let: SimplFun f := p in fun _ => f x) x.
+-(* Note: applicative_of_simpl is convertible to pred_of_simpl, while *)
+-(* collective_of_simpl is not. *)
+-
+-Definition pred0 := SimplPred xpred0.
+-Definition predT := SimplPred xpredT.
+-Definition predI p1 p2 := SimplPred (xpredI p1 p2).
+-Definition predU p1 p2 := SimplPred (xpredU p1 p2).
+-Definition predC p := SimplPred (xpredC p).
+-Definition predD p1 p2 := SimplPred (xpredD p1 p2).
+-Definition preim rT f (d : pred rT) := SimplPred (xpreim f d).
+-
+-Definition simpl_rel := simpl_fun T (pred T).
+-
+-Definition SimplRel (r : rel T) : simpl_rel := [fun x => r x].
+-
+-Coercion rel_of_simpl_rel (r : simpl_rel) : rel T := fun x y => r x y.
+-
+-Definition relU r1 r2 := SimplRel (xrelU r1 r2).
+-
+-Lemma subrelUl r1 r2 : subrel r1 (relU r1 r2).
+-Proof. by move=> *; apply/orP; left. Qed.
+-
+-Lemma subrelUr r1 r2 : subrel r2 (relU r1 r2).
+-Proof. by move=> *; apply/orP; right. Qed.
+-
+-CoInductive mem_pred := Mem of pred T.
+-
+-Definition isMem pT topred mem := mem = (fun p : pT => Mem [eta topred p]).
+-
+-Structure predType := PredType {
+- pred_sort :> Type;
+- topred : pred_sort -> pred T;
+- _ : {mem | isMem topred mem}
+-}.
+-
+-Definition mkPredType pT toP := PredType (exist (@isMem pT toP) _ (erefl _)).
+-
+-Canonical predPredType := Eval hnf in @mkPredType (pred T) id.
+-Canonical simplPredType := Eval hnf in mkPredType pred_of_simpl.
+-Canonical boolfunPredType := Eval hnf in @mkPredType (T -> bool) id.
+-
+-Coercion pred_of_mem mp : pred_sort predPredType := let: Mem p := mp in [eta p].
+-Canonical memPredType := Eval hnf in mkPredType pred_of_mem.
+-
+-Definition clone_pred U :=
+- fun pT & pred_sort pT -> U =>
+- fun a mP (pT' := @PredType U a mP) & phant_id pT' pT => pT'.
+-
+-End Predicates.
+-
+-Arguments pred0 [T].
+-Arguments predT [T].
+-Prenex Implicits pred0 predT predI predU predC predD preim relU.
+-
+-Notation "[ 'pred' : T | E ]" := (SimplPred (fun _ : T => E%B))
+- (at level 0, format "[ 'pred' : T | E ]") : fun_scope.
+-Notation "[ 'pred' x | E ]" := (SimplPred (fun x => E%B))
+- (at level 0, x ident, format "[ 'pred' x | E ]") : fun_scope.
+-Notation "[ 'pred' x | E1 & E2 ]" := [pred x | E1 && E2 ]
+- (at level 0, x ident, format "[ 'pred' x | E1 & E2 ]") : fun_scope.
+-Notation "[ 'pred' x : T | E ]" := (SimplPred (fun x : T => E%B))
+- (at level 0, x ident, only parsing) : fun_scope.
+-Notation "[ 'pred' x : T | E1 & E2 ]" := [pred x : T | E1 && E2 ]
+- (at level 0, x ident, only parsing) : fun_scope.
+-Notation "[ 'rel' x y | E ]" := (SimplRel (fun x y => E%B))
+- (at level 0, x ident, y ident, format "[ 'rel' x y | E ]") : fun_scope.
+-Notation "[ 'rel' x y : T | E ]" := (SimplRel (fun x y : T => E%B))
+- (at level 0, x ident, y ident, only parsing) : fun_scope.
+-
+-Notation "[ 'predType' 'of' T ]" := (@clone_pred _ T _ id _ _ id)
+- (at level 0, format "[ 'predType' 'of' T ]") : form_scope.
+-
+-(* This redundant coercion lets us "inherit" the simpl_predType canonical *)
+-(* instance by declaring a coercion to simpl_pred. This hack is the only way *)
+-(* to put a predType structure on a predArgType. We use simpl_pred rather *)
+-(* than pred to ensure that /= removes the identity coercion. Note that the *)
+-(* coercion will never be used directly for simpl_pred, since the canonical *)
+-(* instance should always be resolved. *)
+-
+-Notation pred_class := (pred_sort (predPredType _)).
+-Coercion sort_of_simpl_pred T (p : simpl_pred T) : pred_class := p : pred T.
+-
+-(* This lets us use some types as a synonym for their universal predicate. *)
+-(* Unfortunately, this won't work for existing types like bool, unless we *)
+-(* redefine bool, true, false and all bool ops. *)
+-Definition predArgType := Type.
+-Bind Scope type_scope with predArgType.
+-Identity Coercion sort_of_predArgType : predArgType >-> Sortclass.
+-Coercion pred_of_argType (T : predArgType) : simpl_pred T := predT.
+-
+-Notation "{ : T }" := (T%type : predArgType)
+- (at level 0, format "{ : T }") : type_scope.
+-
+-(* These must be defined outside a Section because "cooking" kills the *)
+-(* nosimpl tag. *)
+-
+-Definition mem T (pT : predType T) : pT -> mem_pred T :=
+- nosimpl (let: @PredType _ _ _ (exist _ mem _) := pT return pT -> _ in mem).
+-Definition in_mem T x mp := nosimpl pred_of_mem T mp x.
+-
+-Prenex Implicits mem.
+-
+-Coercion pred_of_mem_pred T mp := [pred x : T | in_mem x mp].
+-
+-Definition eq_mem T p1 p2 := forall x : T, in_mem x p1 = in_mem x p2.
+-Definition sub_mem T p1 p2 := forall x : T, in_mem x p1 -> in_mem x p2.
+-
+-Typeclasses Opaque eq_mem.
+-
+-Lemma sub_refl T (p : mem_pred T) : sub_mem p p. Proof. by []. Qed.
+-Arguments sub_refl {T p}.
+-
+-Notation "x \in A" := (in_mem x (mem A)) : bool_scope.
+-Notation "x \in A" := (in_mem x (mem A)) : bool_scope.
+-Notation "x \notin A" := (~~ (x \in A)) : bool_scope.
+-Notation "A =i B" := (eq_mem (mem A) (mem B)) : type_scope.
+-Notation "{ 'subset' A <= B }" := (sub_mem (mem A) (mem B))
+- (at level 0, A, B at level 69,
+- format "{ '[hv' 'subset' A '/ ' <= B ']' }") : type_scope.
+-Notation "[ 'mem' A ]" := (pred_of_simpl (pred_of_mem_pred (mem A)))
+- (at level 0, only parsing) : fun_scope.
+-Notation "[ 'rel' 'of' fA ]" := (fun x => [mem (fA x)])
+- (at level 0, format "[ 'rel' 'of' fA ]") : fun_scope.
+-Notation "[ 'predI' A & B ]" := (predI [mem A] [mem B])
+- (at level 0, format "[ 'predI' A & B ]") : fun_scope.
+-Notation "[ 'predU' A & B ]" := (predU [mem A] [mem B])
+- (at level 0, format "[ 'predU' A & B ]") : fun_scope.
+-Notation "[ 'predD' A & B ]" := (predD [mem A] [mem B])
+- (at level 0, format "[ 'predD' A & B ]") : fun_scope.
+-Notation "[ 'predC' A ]" := (predC [mem A])
+- (at level 0, format "[ 'predC' A ]") : fun_scope.
+-Notation "[ 'preim' f 'of' A ]" := (preim f [mem A])
+- (at level 0, format "[ 'preim' f 'of' A ]") : fun_scope.
+-
+-Notation "[ 'pred' x 'in' A ]" := [pred x | x \in A]
+- (at level 0, x ident, format "[ 'pred' x 'in' A ]") : fun_scope.
+-Notation "[ 'pred' x 'in' A | E ]" := [pred x | x \in A & E]
+- (at level 0, x ident, format "[ 'pred' x 'in' A | E ]") : fun_scope.
+-Notation "[ 'pred' x 'in' A | E1 & E2 ]" := [pred x | x \in A & E1 && E2 ]
+- (at level 0, x ident,
+- format "[ 'pred' x 'in' A | E1 & E2 ]") : fun_scope.
+-Notation "[ 'rel' x y 'in' A & B | E ]" :=
+- [rel x y | (x \in A) && (y \in B) && E]
+- (at level 0, x ident, y ident,
+- format "[ 'rel' x y 'in' A & B | E ]") : fun_scope.
+-Notation "[ 'rel' x y 'in' A & B ]" := [rel x y | (x \in A) && (y \in B)]
+- (at level 0, x ident, y ident,
+- format "[ 'rel' x y 'in' A & B ]") : fun_scope.
+-Notation "[ 'rel' x y 'in' A | E ]" := [rel x y in A & A | E]
+- (at level 0, x ident, y ident,
+- format "[ 'rel' x y 'in' A | E ]") : fun_scope.
+-Notation "[ 'rel' x y 'in' A ]" := [rel x y in A & A]
+- (at level 0, x ident, y ident,
+- format "[ 'rel' x y 'in' A ]") : fun_scope.
+-
+-Section simpl_mem.
+-
+-Variables (T : Type) (pT : predType T).
+-Implicit Types (x : T) (p : pred T) (sp : simpl_pred T) (pp : pT).
+-
+-(* Bespoke structures that provide fine-grained control over matching the *)
+-(* various forms of the \in predicate; note in particular the different forms *)
+-(* of hoisting that are used. We had to work around several bugs in the *)
+-(* implementation of unification, notably improper expansion of telescope *)
+-(* projections and overwriting of a variable assignment by a later *)
+-(* unification (probably due to conversion cache cross-talk). *)
+-Structure manifest_applicative_pred p := ManifestApplicativePred {
+- manifest_applicative_pred_value :> pred T;
+- _ : manifest_applicative_pred_value = p
+-}.
+-Definition ApplicativePred p := ManifestApplicativePred (erefl p).
+-Canonical applicative_pred_applicative sp :=
+- ApplicativePred (applicative_pred_of_simpl sp).
+-
+-Structure manifest_simpl_pred p := ManifestSimplPred {
+- manifest_simpl_pred_value :> simpl_pred T;
+- _ : manifest_simpl_pred_value = SimplPred p
+-}.
+-Canonical expose_simpl_pred p := ManifestSimplPred (erefl (SimplPred p)).
+-
+-Structure manifest_mem_pred p := ManifestMemPred {
+- manifest_mem_pred_value :> mem_pred T;
+- _ : manifest_mem_pred_value= Mem [eta p]
+-}.
+-Canonical expose_mem_pred p := @ManifestMemPred p _ (erefl _).
+-
+-Structure applicative_mem_pred p :=
+- ApplicativeMemPred {applicative_mem_pred_value :> manifest_mem_pred p}.
+-Canonical check_applicative_mem_pred p (ap : manifest_applicative_pred p) mp :=
+- @ApplicativeMemPred ap mp.
+-
+-Lemma mem_topred (pp : pT) : mem (topred pp) = mem pp.
+-Proof. by rewrite /mem; case: pT pp => T1 app1 [mem1 /= ->]. Qed.
+-
+-Lemma topredE x (pp : pT) : topred pp x = (x \in pp).
+-Proof. by rewrite -mem_topred. Qed.
+-
+-Lemma app_predE x p (ap : manifest_applicative_pred p) : ap x = (x \in p).
+-Proof. by case: ap => _ /= ->. Qed.
+-
+-Lemma in_applicative x p (amp : applicative_mem_pred p) : in_mem x amp = p x.
+-Proof. by case: amp => [[_ /= ->]]. Qed.
+-
+-Lemma in_collective x p (msp : manifest_simpl_pred p) :
+- (x \in collective_pred_of_simpl msp) = p x.
+-Proof. by case: msp => _ /= ->. Qed.
+-
+-Lemma in_simpl x p (msp : manifest_simpl_pred p) :
+- in_mem x (Mem [eta fun_of_simpl (msp : simpl_pred T)]) = p x.
+-Proof. by case: msp => _ /= ->. Qed.
+-
+-(* Because of the explicit eta expansion in the left-hand side, this lemma *)
+-(* should only be used in a right-to-left direction. The 8.3 hack allowing *)
+-(* partial right-to-left use does not work with the improved expansion *)
+-(* heuristics in 8.4. *)
+-Lemma unfold_in x p : (x \in ([eta p] : pred T)) = p x.
+-Proof. by []. Qed.
+-
+-Lemma simpl_predE p : SimplPred p =1 p.
+-Proof. by []. Qed.
+-
+-Definition inE := (in_applicative, in_simpl, simpl_predE). (* to be extended *)
+-
+-Lemma mem_simpl sp : mem sp = sp :> pred T.
+-Proof. by []. Qed.
+-
+-Definition memE := mem_simpl. (* could be extended *)
+-
+-Lemma mem_mem (pp : pT) : (mem (mem pp) = mem pp) * (mem [mem pp] = mem pp).
+-Proof. by rewrite -mem_topred. Qed.
+-
+-End simpl_mem.
+-
+-(* Qualifiers and keyed predicates. *)
+-
+-CoInductive qualifier (q : nat) T := Qualifier of predPredType T.
+-
+-Coercion has_quality n T (q : qualifier n T) : pred_class :=
+- fun x => let: Qualifier _ p := q in p x.
+-Arguments has_quality n [T].
+-
+-Lemma qualifE n T p x : (x \in @Qualifier n T p) = p x. Proof. by []. Qed.
+-
+-Notation "x \is A" := (x \in has_quality 0 A)
+- (at level 70, no associativity,
+- format "'[hv' x '/ ' \is A ']'") : bool_scope.
+-Notation "x \is 'a' A" := (x \in has_quality 1 A)
+- (at level 70, no associativity,
+- format "'[hv' x '/ ' \is 'a' A ']'") : bool_scope.
+-Notation "x \is 'an' A" := (x \in has_quality 2 A)
+- (at level 70, no associativity,
+- format "'[hv' x '/ ' \is 'an' A ']'") : bool_scope.
+-Notation "x \isn't A" := (x \notin has_quality 0 A)
+- (at level 70, no associativity,
+- format "'[hv' x '/ ' \isn't A ']'") : bool_scope.
+-Notation "x \isn't 'a' A" := (x \notin has_quality 1 A)
+- (at level 70, no associativity,
+- format "'[hv' x '/ ' \isn't 'a' A ']'") : bool_scope.
+-Notation "x \isn't 'an' A" := (x \notin has_quality 2 A)
+- (at level 70, no associativity,
+- format "'[hv' x '/ ' \isn't 'an' A ']'") : bool_scope.
+-Notation "[ 'qualify' x | P ]" := (Qualifier 0 (fun x => P%B))
+- (at level 0, x at level 99,
+- format "'[hv' [ 'qualify' x | '/ ' P ] ']'") : form_scope.
+-Notation "[ 'qualify' x : T | P ]" := (Qualifier 0 (fun x : T => P%B))
+- (at level 0, x at level 99, only parsing) : form_scope.
+-Notation "[ 'qualify' 'a' x | P ]" := (Qualifier 1 (fun x => P%B))
+- (at level 0, x at level 99,
+- format "'[hv' [ 'qualify' 'a' x | '/ ' P ] ']'") : form_scope.
+-Notation "[ 'qualify' 'a' x : T | P ]" := (Qualifier 1 (fun x : T => P%B))
+- (at level 0, x at level 99, only parsing) : form_scope.
+-Notation "[ 'qualify' 'an' x | P ]" := (Qualifier 2 (fun x => P%B))
+- (at level 0, x at level 99,
+- format "'[hv' [ 'qualify' 'an' x | '/ ' P ] ']'") : form_scope.
+-Notation "[ 'qualify' 'an' x : T | P ]" := (Qualifier 2 (fun x : T => P%B))
+- (at level 0, x at level 99, only parsing) : form_scope.
+-
+-(* Keyed predicates: support for property-bearing predicate interfaces. *)
+-
+-Section KeyPred.
+-
+-Variable T : Type.
+-CoInductive pred_key (p : predPredType T) := DefaultPredKey.
+-
+-Variable p : predPredType T.
+-Structure keyed_pred (k : pred_key p) :=
+- PackKeyedPred {unkey_pred :> pred_class; _ : unkey_pred =i p}.
+-
+-Variable k : pred_key p.
+-Definition KeyedPred := @PackKeyedPred k p (frefl _).
+-
+-Variable k_p : keyed_pred k.
+-Lemma keyed_predE : k_p =i p. Proof. by case: k_p. Qed.
+-
+-(* Instances that strip the mem cast; the first one has "pred_of_mem" as its *)
+-(* projection head value, while the second has "pred_of_simpl". The latter *)
+-(* has the side benefit of preempting accidental misdeclarations. *)
+-(* Note: pred_of_mem is the registered mem >-> pred_class coercion, while *)
+-(* simpl_of_mem; pred_of_simpl is the mem >-> pred >=> Funclass coercion. We *)
+-(* must write down the coercions explicitly as the Canonical head constant *)
+-(* computation does not strip casts !! *)
+-Canonical keyed_mem :=
+- @PackKeyedPred k (pred_of_mem (mem k_p)) keyed_predE.
+-Canonical keyed_mem_simpl :=
+- @PackKeyedPred k (pred_of_simpl (mem k_p)) keyed_predE.
+-
+-End KeyPred.
+-
+-Notation "x \i 'n' S" := (x \in @unkey_pred _ S _ _)
+- (at level 70, format "'[hv' x '/ ' \i 'n' S ']'") : bool_scope.
+-
+-Section KeyedQualifier.
+-
+-Variables (T : Type) (n : nat) (q : qualifier n T).
+-
+-Structure keyed_qualifier (k : pred_key q) :=
+- PackKeyedQualifier {unkey_qualifier; _ : unkey_qualifier = q}.
+-Definition KeyedQualifier k := PackKeyedQualifier k (erefl q).
+-Variables (k : pred_key q) (k_q : keyed_qualifier k).
+-Fact keyed_qualifier_suproof : unkey_qualifier k_q =i q.
+-Proof. by case: k_q => /= _ ->. Qed.
+-Canonical keyed_qualifier_keyed := PackKeyedPred k keyed_qualifier_suproof.
+-
+-End KeyedQualifier.
+-
+-Notation "x \i 's' A" := (x \i n has_quality 0 A)
+- (at level 70, format "'[hv' x '/ ' \i 's' A ']'") : bool_scope.
+-Notation "x \i 's' 'a' A" := (x \i n has_quality 1 A)
+- (at level 70, format "'[hv' x '/ ' \i 's' 'a' A ']'") : bool_scope.
+-Notation "x \i 's' 'an' A" := (x \i n has_quality 2 A)
+- (at level 70, format "'[hv' x '/ ' \i 's' 'an' A ']'") : bool_scope.
+-
+-Module DefaultKeying.
+-
+-Canonical default_keyed_pred T p := KeyedPred (@DefaultPredKey T p).
+-Canonical default_keyed_qualifier T n (q : qualifier n T) :=
+- KeyedQualifier (DefaultPredKey q).
+-
+-End DefaultKeying.
+-
+-(* Skolemizing with conditions. *)
+-
+-Lemma all_tag_cond_dep I T (C : pred I) U :
+- (forall x, T x) -> (forall x, C x -> {y : T x & U x y}) ->
+- {f : forall x, T x & forall x, C x -> U x (f x)}.
+-Proof.
+-move=> f0 fP; apply: all_tag (fun x y => C x -> U x y) _ => x.
+-by case Cx: (C x); [case/fP: Cx => y; exists y | exists (f0 x)].
+-Qed.
+-
+-Lemma all_tag_cond I T (C : pred I) U :
+- T -> (forall x, C x -> {y : T & U x y}) ->
+- {f : I -> T & forall x, C x -> U x (f x)}.
+-Proof. by move=> y0; apply: all_tag_cond_dep. Qed.
+-
+-Lemma all_sig_cond_dep I T (C : pred I) P :
+- (forall x, T x) -> (forall x, C x -> {y : T x | P x y}) ->
+- {f : forall x, T x | forall x, C x -> P x (f x)}.
+-Proof. by move=> f0 /(all_tag_cond_dep f0)[f]; exists f. Qed.
+-
+-Lemma all_sig_cond I T (C : pred I) P :
+- T -> (forall x, C x -> {y : T | P x y}) ->
+- {f : I -> T | forall x, C x -> P x (f x)}.
+-Proof. by move=> y0; apply: all_sig_cond_dep. Qed.
+-
+-Section RelationProperties.
+-
+-(* Caveat: reflexive should not be used to state lemmas, as auto and trivial *)
+-(* will not expand the constant. *)
+-
+-Variable T : Type.
+-
+-Variable R : rel T.
+-
+-Definition total := forall x y, R x y || R y x.
+-Definition transitive := forall y x z, R x y -> R y z -> R x z.
+-
+-Definition symmetric := forall x y, R x y = R y x.
+-Definition antisymmetric := forall x y, R x y && R y x -> x = y.
+-Definition pre_symmetric := forall x y, R x y -> R y x.
+-
+-Lemma symmetric_from_pre : pre_symmetric -> symmetric.
+-Proof. by move=> symR x y; apply/idP/idP; apply: symR. Qed.
+-
+-Definition reflexive := forall x, R x x.
+-Definition irreflexive := forall x, R x x = false.
+-
+-Definition left_transitive := forall x y, R x y -> R x =1 R y.
+-Definition right_transitive := forall x y, R x y -> R^~ x =1 R^~ y.
+-
+-Section PER.
+-
+-Hypotheses (symR : symmetric) (trR : transitive).
+-
+-Lemma sym_left_transitive : left_transitive.
+-Proof. by move=> x y Rxy z; apply/idP/idP; apply: trR; rewrite // symR. Qed.
+-
+-Lemma sym_right_transitive : right_transitive.
+-Proof. by move=> x y /sym_left_transitive Rxy z; rewrite !(symR z) Rxy. Qed.
+-
+-End PER.
+-
+-(* We define the equivalence property with prenex quantification so that it *)
+-(* can be localized using the {in ..., ..} form defined below. *)
+-
+-Definition equivalence_rel := forall x y z, R z z * (R x y -> R x z = R y z).
+-
+-Lemma equivalence_relP : equivalence_rel <-> reflexive /\ left_transitive.
+-Proof.
+-split=> [eqiR | [Rxx trR] x y z]; last by split=> [|/trR->].
+-by split=> [x | x y Rxy z]; [rewrite (eqiR x x x) | rewrite (eqiR x y z)].
+-Qed.
+-
+-End RelationProperties.
+-
+-Lemma rev_trans T (R : rel T) : transitive R -> transitive (fun x y => R y x).
+-Proof. by move=> trR x y z Ryx Rzy; apply: trR Rzy Ryx. Qed.
+-
+-(* Property localization *)
+-
+-Local Notation "{ 'all1' P }" := (forall x, P x : Prop) (at level 0).
+-Local Notation "{ 'all2' P }" := (forall x y, P x y : Prop) (at level 0).
+-Local Notation "{ 'all3' P }" := (forall x y z, P x y z: Prop) (at level 0).
+-Local Notation ph := (phantom _).
+-
+-Section LocalProperties.
+-
+-Variables T1 T2 T3 : Type.
+-
+-Variables (d1 : mem_pred T1) (d2 : mem_pred T2) (d3 : mem_pred T3).
+-Local Notation ph := (phantom Prop).
+-
+-Definition prop_for (x : T1) P & ph {all1 P} := P x.
+-
+-Lemma forE x P phP : @prop_for x P phP = P x. Proof. by []. Qed.
+-
+-Definition prop_in1 P & ph {all1 P} :=
+- forall x, in_mem x d1 -> P x.
+-
+-Definition prop_in11 P & ph {all2 P} :=
+- forall x y, in_mem x d1 -> in_mem y d2 -> P x y.
+-
+-Definition prop_in2 P & ph {all2 P} :=
+- forall x y, in_mem x d1 -> in_mem y d1 -> P x y.
+-
+-Definition prop_in111 P & ph {all3 P} :=
+- forall x y z, in_mem x d1 -> in_mem y d2 -> in_mem z d3 -> P x y z.
+-
+-Definition prop_in12 P & ph {all3 P} :=
+- forall x y z, in_mem x d1 -> in_mem y d2 -> in_mem z d2 -> P x y z.
+-
+-Definition prop_in21 P & ph {all3 P} :=
+- forall x y z, in_mem x d1 -> in_mem y d1 -> in_mem z d2 -> P x y z.
+-
+-Definition prop_in3 P & ph {all3 P} :=
+- forall x y z, in_mem x d1 -> in_mem y d1 -> in_mem z d1 -> P x y z.
+-
+-Variable f : T1 -> T2.
+-
+-Definition prop_on1 Pf P & phantom T3 (Pf f) & ph {all1 P} :=
+- forall x, in_mem (f x) d2 -> P x.
+-
+-Definition prop_on2 Pf P & phantom T3 (Pf f) & ph {all2 P} :=
+- forall x y, in_mem (f x) d2 -> in_mem (f y) d2 -> P x y.
+-
+-End LocalProperties.
+-
+-Definition inPhantom := Phantom Prop.
+-Definition onPhantom T P (x : T) := Phantom Prop (P x).
+-
+-Definition bijective_in aT rT (d : mem_pred aT) (f : aT -> rT) :=
+- exists2 g, prop_in1 d (inPhantom (cancel f g))
+- & prop_on1 d (Phantom _ (cancel g)) (onPhantom (cancel g) f).
+-
+-Definition bijective_on aT rT (cd : mem_pred rT) (f : aT -> rT) :=
+- exists2 g, prop_on1 cd (Phantom _ (cancel f)) (onPhantom (cancel f) g)
+- & prop_in1 cd (inPhantom (cancel g f)).
+-
+-Notation "{ 'for' x , P }" :=
+- (prop_for x (inPhantom P))
+- (at level 0, format "{ 'for' x , P }") : type_scope.
+-
+-Notation "{ 'in' d , P }" :=
+- (prop_in1 (mem d) (inPhantom P))
+- (at level 0, format "{ 'in' d , P }") : type_scope.
+-
+-Notation "{ 'in' d1 & d2 , P }" :=
+- (prop_in11 (mem d1) (mem d2) (inPhantom P))
+- (at level 0, format "{ 'in' d1 & d2 , P }") : type_scope.
+-
+-Notation "{ 'in' d & , P }" :=
+- (prop_in2 (mem d) (inPhantom P))
+- (at level 0, format "{ 'in' d & , P }") : type_scope.
+-
+-Notation "{ 'in' d1 & d2 & d3 , P }" :=
+- (prop_in111 (mem d1) (mem d2) (mem d3) (inPhantom P))
+- (at level 0, format "{ 'in' d1 & d2 & d3 , P }") : type_scope.
+-
+-Notation "{ 'in' d1 & & d3 , P }" :=
+- (prop_in21 (mem d1) (mem d3) (inPhantom P))
+- (at level 0, format "{ 'in' d1 & & d3 , P }") : type_scope.
+-
+-Notation "{ 'in' d1 & d2 & , P }" :=
+- (prop_in12 (mem d1) (mem d2) (inPhantom P))
+- (at level 0, format "{ 'in' d1 & d2 & , P }") : type_scope.
+-
+-Notation "{ 'in' d & & , P }" :=
+- (prop_in3 (mem d) (inPhantom P))
+- (at level 0, format "{ 'in' d & & , P }") : type_scope.
+-
+-Notation "{ 'on' cd , P }" :=
+- (prop_on1 (mem cd) (inPhantom P) (inPhantom P))
+- (at level 0, format "{ 'on' cd , P }") : type_scope.
+-
+-Notation "{ 'on' cd & , P }" :=
+- (prop_on2 (mem cd) (inPhantom P) (inPhantom P))
+- (at level 0, format "{ 'on' cd & , P }") : type_scope.
+-
+-Local Arguments onPhantom {_%type_scope} _ _.
+-
+-Notation "{ 'on' cd , P & g }" :=
+- (prop_on1 (mem cd) (Phantom (_ -> Prop) P) (onPhantom P g))
+- (at level 0, format "{ 'on' cd , P & g }") : type_scope.
+-
+-Notation "{ 'in' d , 'bijective' f }" := (bijective_in (mem d) f)
+- (at level 0, f at level 8,
+- format "{ 'in' d , 'bijective' f }") : type_scope.
+-
+-Notation "{ 'on' cd , 'bijective' f }" := (bijective_on (mem cd) f)
+- (at level 0, f at level 8,
+- format "{ 'on' cd , 'bijective' f }") : type_scope.
+-
+-(* Weakening and monotonicity lemmas for localized predicates. *)
+-(* Note that using these lemmas in backward reasoning will force expansion of *)
+-(* the predicate definition, as Coq needs to expose the quantifier to apply *)
+-(* these lemmas. We define a few specialized variants to avoid this for some *)
+-(* of the ssrfun predicates. *)
+-
+-Section LocalGlobal.
+-
+-Variables T1 T2 T3 : predArgType.
+-Variables (D1 : pred T1) (D2 : pred T2) (D3 : pred T3).
+-Variables (d1 d1' : mem_pred T1) (d2 d2' : mem_pred T2) (d3 d3' : mem_pred T3).
+-Variables (f f' : T1 -> T2) (g : T2 -> T1) (h : T3).
+-Variables (P1 : T1 -> Prop) (P2 : T1 -> T2 -> Prop).
+-Variable P3 : T1 -> T2 -> T3 -> Prop.
+-Variable Q1 : (T1 -> T2) -> T1 -> Prop.
+-Variable Q1l : (T1 -> T2) -> T3 -> T1 -> Prop.
+-Variable Q2 : (T1 -> T2) -> T1 -> T1 -> Prop.
+-
+-Hypothesis sub1 : sub_mem d1 d1'.
+-Hypothesis sub2 : sub_mem d2 d2'.
+-Hypothesis sub3 : sub_mem d3 d3'.
+-
+-Lemma in1W : {all1 P1} -> {in D1, {all1 P1}}.
+-Proof. by move=> ? ?. Qed.
+-Lemma in2W : {all2 P2} -> {in D1 & D2, {all2 P2}}.
+-Proof. by move=> ? ?. Qed.
+-Lemma in3W : {all3 P3} -> {in D1 & D2 & D3, {all3 P3}}.
+-Proof. by move=> ? ?. Qed.
+-
+-Lemma in1T : {in T1, {all1 P1}} -> {all1 P1}.
+-Proof. by move=> ? ?; auto. Qed.
+-Lemma in2T : {in T1 & T2, {all2 P2}} -> {all2 P2}.
+-Proof. by move=> ? ?; auto. Qed.
+-Lemma in3T : {in T1 & T2 & T3, {all3 P3}} -> {all3 P3}.
+-Proof. by move=> ? ?; auto. Qed.
+-
+-Lemma sub_in1 (Ph : ph {all1 P1}) : prop_in1 d1' Ph -> prop_in1 d1 Ph.
+-Proof. by move=> allP x /sub1; apply: allP. Qed.
+-
+-Lemma sub_in11 (Ph : ph {all2 P2}) : prop_in11 d1' d2' Ph -> prop_in11 d1 d2 Ph.
+-Proof. by move=> allP x1 x2 /sub1 d1x1 /sub2; apply: allP. Qed.
+-
+-Lemma sub_in111 (Ph : ph {all3 P3}) :
+- prop_in111 d1' d2' d3' Ph -> prop_in111 d1 d2 d3 Ph.
+-Proof. by move=> allP x1 x2 x3 /sub1 d1x1 /sub2 d2x2 /sub3; apply: allP. Qed.
+-
+-Let allQ1 f'' := {all1 Q1 f''}.
+-Let allQ1l f'' h' := {all1 Q1l f'' h'}.
+-Let allQ2 f'' := {all2 Q2 f''}.
+-
+-Lemma on1W : allQ1 f -> {on D2, allQ1 f}. Proof. by move=> ? ?. Qed.
+-
+-Lemma on1lW : allQ1l f h -> {on D2, allQ1l f & h}. Proof. by move=> ? ?. Qed.
+-
+-Lemma on2W : allQ2 f -> {on D2 &, allQ2 f}. Proof. by move=> ? ?. Qed.
+-
+-Lemma on1T : {on T2, allQ1 f} -> allQ1 f. Proof. by move=> ? ?; auto. Qed.
+-
+-Lemma on1lT : {on T2, allQ1l f & h} -> allQ1l f h.
+-Proof. by move=> ? ?; auto. Qed.
+-
+-Lemma on2T : {on T2 &, allQ2 f} -> allQ2 f.
+-Proof. by move=> ? ?; auto. Qed.
+-
+-Lemma subon1 (Phf : ph (allQ1 f)) (Ph : ph (allQ1 f)) :
+- prop_on1 d2' Phf Ph -> prop_on1 d2 Phf Ph.
+-Proof. by move=> allQ x /sub2; apply: allQ. Qed.
+-
+-Lemma subon1l (Phf : ph (allQ1l f)) (Ph : ph (allQ1l f h)) :
+- prop_on1 d2' Phf Ph -> prop_on1 d2 Phf Ph.
+-Proof. by move=> allQ x /sub2; apply: allQ. Qed.
+-
+-Lemma subon2 (Phf : ph (allQ2 f)) (Ph : ph (allQ2 f)) :
+- prop_on2 d2' Phf Ph -> prop_on2 d2 Phf Ph.
+-Proof. by move=> allQ x y /sub2=> d2fx /sub2; apply: allQ. Qed.
+-
+-Lemma can_in_inj : {in D1, cancel f g} -> {in D1 &, injective f}.
+-Proof. by move=> fK x y /fK{2}<- /fK{2}<- ->. Qed.
+-
+-Lemma canLR_in x y : {in D1, cancel f g} -> y \in D1 -> x = f y -> g x = y.
+-Proof. by move=> fK D1y ->; rewrite fK. Qed.
+-
+-Lemma canRL_in x y : {in D1, cancel f g} -> x \in D1 -> f x = y -> x = g y.
+-Proof. by move=> fK D1x <-; rewrite fK. Qed.
+-
+-Lemma on_can_inj : {on D2, cancel f & g} -> {on D2 &, injective f}.
+-Proof. by move=> fK x y /fK{2}<- /fK{2}<- ->. Qed.
+-
+-Lemma canLR_on x y : {on D2, cancel f & g} -> f y \in D2 -> x = f y -> g x = y.
+-Proof. by move=> fK D2fy ->; rewrite fK. Qed.
+-
+-Lemma canRL_on x y : {on D2, cancel f & g} -> f x \in D2 -> f x = y -> x = g y.
+-Proof. by move=> fK D2fx <-; rewrite fK. Qed.
+-
+-Lemma inW_bij : bijective f -> {in D1, bijective f}.
+-Proof. by case=> g' fK g'K; exists g' => * ? *; auto. Qed.
+-
+-Lemma onW_bij : bijective f -> {on D2, bijective f}.
+-Proof. by case=> g' fK g'K; exists g' => * ? *; auto. Qed.
+-
+-Lemma inT_bij : {in T1, bijective f} -> bijective f.
+-Proof. by case=> g' fK g'K; exists g' => * ? *; auto. Qed.
+-
+-Lemma onT_bij : {on T2, bijective f} -> bijective f.
+-Proof. by case=> g' fK g'K; exists g' => * ? *; auto. Qed.
+-
+-Lemma sub_in_bij (D1' : pred T1) :
+- {subset D1 <= D1'} -> {in D1', bijective f} -> {in D1, bijective f}.
+-Proof.
+-by move=> subD [g' fK g'K]; exists g' => x; move/subD; [apply: fK | apply: g'K].
+-Qed.
+-
+-Lemma subon_bij (D2' : pred T2) :
+- {subset D2 <= D2'} -> {on D2', bijective f} -> {on D2, bijective f}.
+-Proof.
+-by move=> subD [g' fK g'K]; exists g' => x; move/subD; [apply: fK | apply: g'K].
+-Qed.
+-
+-End LocalGlobal.
+-
+-Lemma sub_in2 T d d' (P : T -> T -> Prop) :
+- sub_mem d d' -> forall Ph : ph {all2 P}, prop_in2 d' Ph -> prop_in2 d Ph.
+-Proof. by move=> /= sub_dd'; apply: sub_in11. Qed.
+-
+-Lemma sub_in3 T d d' (P : T -> T -> T -> Prop) :
+- sub_mem d d' -> forall Ph : ph {all3 P}, prop_in3 d' Ph -> prop_in3 d Ph.
+-Proof. by move=> /= sub_dd'; apply: sub_in111. Qed.
+-
+-Lemma sub_in12 T1 T d1 d1' d d' (P : T1 -> T -> T -> Prop) :
+- sub_mem d1 d1' -> sub_mem d d' ->
+- forall Ph : ph {all3 P}, prop_in12 d1' d' Ph -> prop_in12 d1 d Ph.
+-Proof. by move=> /= sub1 sub; apply: sub_in111. Qed.
+-
+-Lemma sub_in21 T T3 d d' d3 d3' (P : T -> T -> T3 -> Prop) :
+- sub_mem d d' -> sub_mem d3 d3' ->
+- forall Ph : ph {all3 P}, prop_in21 d' d3' Ph -> prop_in21 d d3 Ph.
+-Proof. by move=> /= sub sub3; apply: sub_in111. Qed.
+-
+-Lemma equivalence_relP_in T (R : rel T) (A : pred T) :
+- {in A & &, equivalence_rel R}
+- <-> {in A, reflexive R} /\ {in A &, forall x y, R x y -> {in A, R x =1 R y}}.
+-Proof.
+-split=> [eqiR | [Rxx trR] x y z *]; last by split=> [|/trR-> //]; apply: Rxx.
+-by split=> [x Ax|x y Ax Ay Rxy z Az]; [rewrite (eqiR x x) | rewrite (eqiR x y)].
+-Qed.
+-
+-Section MonoHomoMorphismTheory.
+-
+-Variables (aT rT sT : Type) (f : aT -> rT) (g : rT -> aT).
+-Variables (aP : pred aT) (rP : pred rT) (aR : rel aT) (rR : rel rT).
+-
+-Lemma monoW : {mono f : x / aP x >-> rP x} -> {homo f : x / aP x >-> rP x}.
+-Proof. by move=> hf x ax; rewrite hf. Qed.
+-
+-Lemma mono2W :
+- {mono f : x y / aR x y >-> rR x y} -> {homo f : x y / aR x y >-> rR x y}.
+-Proof. by move=> hf x y axy; rewrite hf. Qed.
+-
+-Hypothesis fgK : cancel g f.
+-
+-Lemma homoRL :
+- {homo f : x y / aR x y >-> rR x y} -> forall x y, aR (g x) y -> rR x (f y).
+-Proof. by move=> Hf x y /Hf; rewrite fgK. Qed.
+-
+-Lemma homoLR :
+- {homo f : x y / aR x y >-> rR x y} -> forall x y, aR x (g y) -> rR (f x) y.
+-Proof. by move=> Hf x y /Hf; rewrite fgK. Qed.
+-
+-Lemma homo_mono :
+- {homo f : x y / aR x y >-> rR x y} -> {homo g : x y / rR x y >-> aR x y} ->
+- {mono g : x y / rR x y >-> aR x y}.
+-Proof.
+-move=> mf mg x y; case: (boolP (rR _ _))=> [/mg //|].
+-by apply: contraNF=> /mf; rewrite !fgK.
+-Qed.
+-
+-Lemma monoLR :
+- {mono f : x y / aR x y >-> rR x y} -> forall x y, rR (f x) y = aR x (g y).
+-Proof. by move=> mf x y; rewrite -{1}[y]fgK mf. Qed.
+-
+-Lemma monoRL :
+- {mono f : x y / aR x y >-> rR x y} -> forall x y, rR x (f y) = aR (g x) y.
+-Proof. by move=> mf x y; rewrite -{1}[x]fgK mf. Qed.
+-
+-Lemma can_mono :
+- {mono f : x y / aR x y >-> rR x y} -> {mono g : x y / rR x y >-> aR x y}.
+-Proof. by move=> mf x y /=; rewrite -mf !fgK. Qed.
+-
+-End MonoHomoMorphismTheory.
+-
+-Section MonoHomoMorphismTheory_in.
+-
+-Variables (aT rT sT : predArgType) (f : aT -> rT) (g : rT -> aT).
+-Variable (aD : pred aT).
+-Variable (aP : pred aT) (rP : pred rT) (aR : rel aT) (rR : rel rT).
+-
+-Notation rD := [pred x | g x \in aD].
+-
+-Lemma monoW_in :
+- {in aD &, {mono f : x y / aR x y >-> rR x y}} ->
+- {in aD &, {homo f : x y / aR x y >-> rR x y}}.
+-Proof. by move=> hf x y hx hy axy; rewrite hf. Qed.
+-
+-Lemma mono2W_in :
+- {in aD, {mono f : x / aP x >-> rP x}} ->
+- {in aD, {homo f : x / aP x >-> rP x}}.
+-Proof. by move=> hf x hx ax; rewrite hf. Qed.
+-
+-Hypothesis fgK_on : {on aD, cancel g & f}.
+-
+-Lemma homoRL_in :
+- {in aD &, {homo f : x y / aR x y >-> rR x y}} ->
+- {in rD & aD, forall x y, aR (g x) y -> rR x (f y)}.
+-Proof. by move=> Hf x y hx hy /Hf; rewrite fgK_on //; apply. Qed.
+-
+-Lemma homoLR_in :
+- {in aD &, {homo f : x y / aR x y >-> rR x y}} ->
+- {in aD & rD, forall x y, aR x (g y) -> rR (f x) y}.
+-Proof. by move=> Hf x y hx hy /Hf; rewrite fgK_on //; apply. Qed.
+-
+-Lemma homo_mono_in :
+- {in aD &, {homo f : x y / aR x y >-> rR x y}} ->
+- {in rD &, {homo g : x y / rR x y >-> aR x y}} ->
+- {in rD &, {mono g : x y / rR x y >-> aR x y}}.
+-Proof.
+-move=> mf mg x y hx hy; case: (boolP (rR _ _))=> [/mg //|]; first exact.
+-by apply: contraNF=> /mf; rewrite !fgK_on //; apply.
+-Qed.
+-
+-Lemma monoLR_in :
+- {in aD &, {mono f : x y / aR x y >-> rR x y}} ->
+- {in aD & rD, forall x y, rR (f x) y = aR x (g y)}.
+-Proof. by move=> mf x y hx hy; rewrite -{1}[y]fgK_on // mf. Qed.
+-
+-Lemma monoRL_in :
+- {in aD &, {mono f : x y / aR x y >-> rR x y}} ->
+- {in rD & aD, forall x y, rR x (f y) = aR (g x) y}.
+-Proof. by move=> mf x y hx hy; rewrite -{1}[x]fgK_on // mf. Qed.
+-
+-Lemma can_mono_in :
+- {in aD &, {mono f : x y / aR x y >-> rR x y}} ->
+- {in rD &, {mono g : x y / rR x y >-> aR x y}}.
+-Proof. by move=> mf x y hx hy /=; rewrite -mf // !fgK_on. Qed.
+-
+-End MonoHomoMorphismTheory_in.
+--- a/plugins/ssr/ssrfun.v
++++ /dev/null
+@@ -1,796 +0,0 @@
+-(************************************************************************)
+-(* * The Coq Proof Assistant / The Coq Development Team *)
+-(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *)
+-(* <O___,, * (see CREDITS file for the list of authors) *)
+-(* \VV/ **************************************************************)
+-(* // * This file is distributed under the terms of the *)
+-(* * GNU Lesser General Public License Version 2.1 *)
+-(* * (see LICENSE file for the text of the license) *)
+-(************************************************************************)
+-
+-(* This file is (C) Copyright 2006-2015 Microsoft Corporation and Inria. *)
+-
+-Require Import ssreflect.
+-
+-(******************************************************************************)
+-(* This file contains the basic definitions and notations for working with *)
+-(* functions. The definitions provide for: *)
+-(* *)
+-(* - Pair projections: *)
+-(* p.1 == first element of a pair *)
+-(* p.2 == second element of a pair *)
+-(* These notations also apply to p : P /\ Q, via an and >-> pair coercion. *)
+-(* *)
+-(* - Simplifying functions, beta-reduced by /= and simpl: *)
+-(* [fun : T => E] == constant function from type T that returns E *)
+-(* [fun x => E] == unary function *)
+-(* [fun x : T => E] == unary function with explicit domain type *)
+-(* [fun x y => E] == binary function *)
+-(* [fun x y : T => E] == binary function with common domain type *)
+-(* [fun (x : T) y => E] \ *)
+-(* [fun (x : xT) (y : yT) => E] | == binary function with (some) explicit, *)
+-(* [fun x (y : T) => E] / independent domain types for each argument *)
+-(* *)
+-(* - Partial functions using option type: *)
+-(* oapp f d ox == if ox is Some x returns f x, d otherwise *)
+-(* odflt d ox == if ox is Some x returns x, d otherwise *)
+-(* obind f ox == if ox is Some x returns f x, None otherwise *)
+-(* omap f ox == if ox is Some x returns Some (f x), None otherwise *)
+-(* *)
+-(* - Singleton types: *)
+-(* all_equal_to x0 == x0 is the only value in its type, so any such value *)
+-(* can be rewritten to x0. *)
+-(* *)
+-(* - A generic wrapper type: *)
+-(* wrapped T == the inductive type with values Wrap x for x : T. *)
+-(* unwrap w == the projection of w : wrapped T on T. *)
+-(* wrap x == the canonical injection of x : T into wrapped T; it is *)
+-(* equivalent to Wrap x, but is declared as a (default) *)
+-(* Canonical Structure, which lets the Coq HO unification *)
+-(* automatically expand x into unwrap (wrap x). The delta *)
+-(* reduction of wrap x to Wrap can be exploited to *)
+-(* introduce controlled nondeterminism in Canonical *)
+-(* Structure inference, as in the implementation of *)
+-(* the mxdirect predicate in matrix.v. *)
+-(* *)
+-(* - Sigma types: *)
+-(* tag w == the i of w : {i : I & T i}. *)
+-(* tagged w == the T i component of w : {i : I & T i}. *)
+-(* Tagged T x == the {i : I & T i} with component x : T i. *)
+-(* tag2 w == the i of w : {i : I & T i & U i}. *)
+-(* tagged2 w == the T i component of w : {i : I & T i & U i}. *)
+-(* tagged2' w == the U i component of w : {i : I & T i & U i}. *)
+-(* Tagged2 T U x y == the {i : I & T i} with components x : T i and y : U i. *)
+-(* sval u == the x of u : {x : T | P x}. *)
+-(* s2val u == the x of u : {x : T | P x & Q x}. *)
+-(* The properties of sval u, s2val u are given by lemmas svalP, s2valP, and *)
+-(* s2valP'. We provide coercions sigT2 >-> sigT and sig2 >-> sig >-> sigT. *)
+-(* A suite of lemmas (all_sig, ...) let us skolemize sig, sig2, sigT, sigT2 *)
+-(* and pair, e.g., *)
+-(* have /all_sig[f fP] (x : T): {y : U | P y} by ... *)
+-(* yields an f : T -> U such that fP : forall x, P (f x). *)
+-(* - Identity functions: *)
+-(* id == NOTATION for the explicit identity function fun x => x. *)
+-(* @id T == notation for the explicit identity at type T. *)
+-(* idfun == an expression with a head constant, convertible to id; *)
+-(* idfun x simplifies to x. *)
+-(* @idfun T == the expression above, specialized to type T. *)
+-(* phant_id x y == the function type phantom _ x -> phantom _ y. *)
+-(* *** In addition to their casual use in functional programming, identity *)
+-(* functions are often used to trigger static unification as part of the *)
+-(* construction of dependent Records and Structures. For example, if we need *)
+-(* a structure sT over a type T, we take as arguments T, sT, and a "dummy" *)
+-(* function T -> sort sT: *)
+-(* Definition foo T sT & T -> sort sT := ... *)
+-(* We can avoid specifying sT directly by calling foo (@id T), or specify *)
+-(* the call completely while still ensuring the consistency of T and sT, by *)
+-(* calling @foo T sT idfun. The phant_id type allows us to extend this trick *)
+-(* to non-Type canonical projections. It also allows us to sidestep *)
+-(* dependent type constraints when building explicit records, e.g., given *)
+-(* Record r := R {x; y : T(x)}. *)
+-(* if we need to build an r from a given y0 while inferring some x0, such *)
+-(* that y0 : T(x0), we pose *)
+-(* Definition mk_r .. y .. (x := ...) y' & phant_id y y' := R x y'. *)
+-(* Calling @mk_r .. y0 .. id will cause Coq to use y' := y0, while checking *)
+-(* the dependent type constraint y0 : T(x0). *)
+-(* *)
+-(* - Extensional equality for functions and relations (i.e. functions of two *)
+-(* arguments): *)
+-(* f1 =1 f2 == f1 x is equal to f2 x for all x. *)
+-(* f1 =1 f2 :> A == ... and f2 is explicitly typed. *)
+-(* f1 =2 f2 == f1 x y is equal to f2 x y for all x y. *)
+-(* f1 =2 f2 :> A == ... and f2 is explicitly typed. *)
+-(* *)
+-(* - Composition for total and partial functions: *)
+-(* f^~ y == function f with second argument specialised to y, *)
+-(* i.e., fun x => f x y *)
+-(* CAVEAT: conditional (non-maximal) implicit arguments *)
+-(* of f are NOT inserted in this context *)
+-(* @^~ x == application at x, i.e., fun f => f x *)
+-(* [eta f] == the explicit eta-expansion of f, i.e., fun x => f x *)
+-(* CAVEAT: conditional (non-maximal) implicit arguments *)
+-(* of f are NOT inserted in this context. *)
+-(* fun=> v := the constant function fun _ => v. *)
+-(* f1 \o f2 == composition of f1 and f2. *)
+-(* Note: (f1 \o f2) x simplifies to f1 (f2 x). *)
+-(* f1 \; f2 == categorical composition of f1 and f2. This expands to *)
+-(* to f2 \o f1 and (f1 \; f2) x simplifies to f2 (f1 x). *)
+-(* pcomp f1 f2 == composition of partial functions f1 and f2. *)
+-(* *)
+-(* *)
+-(* - Properties of functions: *)
+-(* injective f <-> f is injective. *)
+-(* cancel f g <-> g is a left inverse of f / f is a right inverse of g. *)
+-(* pcancel f g <-> g is a left inverse of f where g is partial. *)
+-(* ocancel f g <-> g is a left inverse of f where f is partial. *)
+-(* bijective f <-> f is bijective (has a left and right inverse). *)
+-(* involutive f <-> f is involutive. *)
+-(* *)
+-(* - Properties for operations. *)
+-(* left_id e op <-> e is a left identity for op (e op x = x). *)
+-(* right_id e op <-> e is a right identity for op (x op e = x). *)
+-(* left_inverse e inv op <-> inv is a left inverse for op wrt identity e, *)
+-(* i.e., (inv x) op x = e. *)
+-(* right_inverse e inv op <-> inv is a right inverse for op wrt identity e *)
+-(* i.e., x op (i x) = e. *)
+-(* self_inverse e op <-> each x is its own op-inverse (x op x = e). *)
+-(* idempotent op <-> op is idempotent for op (x op x = x). *)
+-(* associative op <-> op is associative, i.e., *)
+-(* x op (y op z) = (x op y) op z. *)
+-(* commutative op <-> op is commutative (x op y = y op x). *)
+-(* left_commutative op <-> op is left commutative, i.e., *)
+-(* x op (y op z) = y op (x op z). *)
+-(* right_commutative op <-> op is right commutative, i.e., *)
+-(* (x op y) op z = (x op z) op y. *)
+-(* left_zero z op <-> z is a left zero for op (z op x = z). *)
+-(* right_zero z op <-> z is a right zero for op (x op z = z). *)
+-(* left_distributive op1 op2 <-> op1 distributes over op2 to the left: *)
+-(* (x op2 y) op1 z = (x op1 z) op2 (y op1 z). *)
+-(* right_distributive op1 op2 <-> op distributes over add to the right: *)
+-(* x op1 (y op2 z) = (x op1 z) op2 (x op1 z). *)
+-(* interchange op1 op2 <-> op1 and op2 satisfy an interchange law: *)
+-(* (x op2 y) op1 (z op2 t) = (x op1 z) op2 (y op1 t). *)
+-(* Note that interchange op op is a commutativity property. *)
+-(* left_injective op <-> op is injective in its left argument: *)
+-(* x op y = z op y -> x = z. *)
+-(* right_injective op <-> op is injective in its right argument: *)
+-(* x op y = x op z -> y = z. *)
+-(* left_loop inv op <-> op, inv obey the inverse loop left axiom: *)
+-(* (inv x) op (x op y) = y for all x, y, i.e., *)
+-(* op (inv x) is always a left inverse of op x *)
+-(* rev_left_loop inv op <-> op, inv obey the inverse loop reverse left *)
+-(* axiom: x op ((inv x) op y) = y, for all x, y. *)
+-(* right_loop inv op <-> op, inv obey the inverse loop right axiom: *)
+-(* (x op y) op (inv y) = x for all x, y. *)
+-(* rev_right_loop inv op <-> op, inv obey the inverse loop reverse right *)
+-(* axiom: (x op y) op (inv y) = x for all x, y. *)
+-(* Note that familiar "cancellation" identities like x + y - y = x or *)
+-(* x - y + y = x are respectively instances of right_loop and rev_right_loop *)
+-(* The corresponding lemmas will use the K and NK/VK suffixes, respectively. *)
+-(* *)
+-(* - Morphisms for functions and relations: *)
+-(* {morph f : x / a >-> r} <-> f is a morphism with respect to functions *)
+-(* (fun x => a) and (fun x => r); if r == R[x], *)
+-(* this states that f a = R[f x] for all x. *)
+-(* {morph f : x / a} <-> f is a morphism with respect to the *)
+-(* function expression (fun x => a). This is *)
+-(* shorthand for {morph f : x / a >-> a}; note *)
+-(* that the two instances of a are often *)
+-(* interpreted at different types. *)
+-(* {morph f : x y / a >-> r} <-> f is a morphism with respect to functions *)
+-(* (fun x y => a) and (fun x y => r). *)
+-(* {morph f : x y / a} <-> f is a morphism with respect to the *)
+-(* function expression (fun x y => a). *)
+-(* {homo f : x / a >-> r} <-> f is a homomorphism with respect to the *)
+-(* predicates (fun x => a) and (fun x => r); *)
+-(* if r == R[x], this states that a -> R[f x] *)
+-(* for all x. *)
+-(* {homo f : x / a} <-> f is a homomorphism with respect to the *)
+-(* predicate expression (fun x => a). *)
+-(* {homo f : x y / a >-> r} <-> f is a homomorphism with respect to the *)
+-(* relations (fun x y => a) and (fun x y => r). *)
+-(* {homo f : x y / a} <-> f is a homomorphism with respect to the *)
+-(* relation expression (fun x y => a). *)
+-(* {mono f : x / a >-> r} <-> f is monotone with respect to projectors *)
+-(* (fun x => a) and (fun x => r); if r == R[x], *)
+-(* this states that R[f x] = a for all x. *)
+-(* {mono f : x / a} <-> f is monotone with respect to the projector *)
+-(* expression (fun x => a). *)
+-(* {mono f : x y / a >-> r} <-> f is monotone with respect to relators *)
+-(* (fun x y => a) and (fun x y => r). *)
+-(* {mono f : x y / a} <-> f is monotone with respect to the relator *)
+-(* expression (fun x y => a). *)
+-(* *)
+-(* The file also contains some basic lemmas for the above concepts. *)
+-(* Lemmas relative to cancellation laws use some abbreviated suffixes: *)
+-(* K - a cancellation rule like esymK : cancel (@esym T x y) (@esym T y x). *)
+-(* LR - a lemma moving an operation from the left hand side of a relation to *)
+-(* the right hand side, like canLR: cancel g f -> x = g y -> f x = y. *)
+-(* RL - a lemma moving an operation from the right to the left, e.g., canRL. *)
+-(* Beware that the LR and RL orientations refer to an "apply" (back chaining) *)
+-(* usage; when using the same lemmas with "have" or "move" (forward chaining) *)
+-(* the directions will be reversed!. *)
+-(******************************************************************************)
+-
+-Set Implicit Arguments.
+-Unset Strict Implicit.
+-Unset Printing Implicit Defensive.
+-
+-Delimit Scope fun_scope with FUN.
+-Open Scope fun_scope.
+-
+-(* Notations for argument transpose *)
+-Notation "f ^~ y" := (fun x => f x y)
+- (at level 10, y at level 8, no associativity, format "f ^~ y") : fun_scope.
+-Notation "@^~ x" := (fun f => f x)
+- (at level 10, x at level 8, no associativity, format "@^~ x") : fun_scope.
+-
+-Delimit Scope pair_scope with PAIR.
+-Open Scope pair_scope.
+-
+-(* Notations for pair/conjunction projections *)
+-Notation "p .1" := (fst p)
+- (at level 2, left associativity, format "p .1") : pair_scope.
+-Notation "p .2" := (snd p)
+- (at level 2, left associativity, format "p .2") : pair_scope.
+-
+-Coercion pair_of_and P Q (PandQ : P /\ Q) := (proj1 PandQ, proj2 PandQ).
+-
+-Definition all_pair I T U (w : forall i : I, T i * U i) :=
+- (fun i => (w i).1, fun i => (w i).2).
+-
+-(* Complements on the option type constructor, used below to *)
+-(* encode partial functions. *)
+-
+-Module Option.
+-
+-Definition apply aT rT (f : aT -> rT) x u := if u is Some y then f y else x.
+-
+-Definition default T := apply (fun x : T => x).
+-
+-Definition bind aT rT (f : aT -> option rT) := apply f None.
+-
+-Definition map aT rT (f : aT -> rT) := bind (fun x => Some (f x)).
+-
+-End Option.
+-
+-Notation oapp := Option.apply.
+-Notation odflt := Option.default.
+-Notation obind := Option.bind.
+-Notation omap := Option.map.
+-Notation some := (@Some _) (only parsing).
+-
+-(* Shorthand for some basic equality lemmas. *)
+-
+-Notation erefl := refl_equal.
+-Notation ecast i T e x := (let: erefl in _ = i := e return T in x).
+-Definition esym := sym_eq.
+-Definition nesym := sym_not_eq.
+-Definition etrans := trans_eq.
+-Definition congr1 := f_equal.
+-Definition congr2 := f_equal2.
+-(* Force at least one implicit when used as a view. *)
+-Prenex Implicits esym nesym.
+-
+-(* A predicate for singleton types. *)
+-Definition all_equal_to T (x0 : T) := forall x, unkeyed x = x0.
+-
+-Lemma unitE : all_equal_to tt. Proof. by case. Qed.
+-
+-(* A generic wrapper type *)
+-
+-Structure wrapped T := Wrap {unwrap : T}.
+-Canonical wrap T x := @Wrap T x.
+-
+-Prenex Implicits unwrap wrap Wrap.
+-
+-(* Syntax for defining auxiliary recursive function. *)
+-(* Usage: *)
+-(* Section FooDefinition. *)
+-(* Variables (g1 : T1) (g2 : T2). (globals) *)
+-(* Fixoint foo_auxiliary (a3 : T3) ... := *)
+-(* body, using [rec e3, ...] for recursive calls *)
+-(* where "[ 'rec' a3 , a4 , ... ]" := foo_auxiliary. *)
+-(* Definition foo x y .. := [rec e1, ...]. *)
+-(* + proofs about foo *)
+-(* End FooDefinition. *)
+-
+-Reserved Notation "[ 'rec' a0 ]"
+- (at level 0, format "[ 'rec' a0 ]").
+-Reserved Notation "[ 'rec' a0 , a1 ]"
+- (at level 0, format "[ 'rec' a0 , a1 ]").
+-Reserved Notation "[ 'rec' a0 , a1 , a2 ]"
+- (at level 0, format "[ 'rec' a0 , a1 , a2 ]").
+-Reserved Notation "[ 'rec' a0 , a1 , a2 , a3 ]"
+- (at level 0, format "[ 'rec' a0 , a1 , a2 , a3 ]").
+-Reserved Notation "[ 'rec' a0 , a1 , a2 , a3 , a4 ]"
+- (at level 0, format "[ 'rec' a0 , a1 , a2 , a3 , a4 ]").
+-Reserved Notation "[ 'rec' a0 , a1 , a2 , a3 , a4 , a5 ]"
+- (at level 0, format "[ 'rec' a0 , a1 , a2 , a3 , a4 , a5 ]").
+-Reserved Notation "[ 'rec' a0 , a1 , a2 , a3 , a4 , a5 , a6 ]"
+- (at level 0, format "[ 'rec' a0 , a1 , a2 , a3 , a4 , a5 , a6 ]").
+-Reserved Notation "[ 'rec' a0 , a1 , a2 , a3 , a4 , a5 , a6 , a7 ]"
+- (at level 0,
+- format "[ 'rec' a0 , a1 , a2 , a3 , a4 , a5 , a6 , a7 ]").
+-Reserved Notation "[ 'rec' a0 , a1 , a2 , a3 , a4 , a5 , a6 , a7 , a8 ]"
+- (at level 0,
+- format "[ 'rec' a0 , a1 , a2 , a3 , a4 , a5 , a6 , a7 , a8 ]").
+-Reserved Notation "[ 'rec' a0 , a1 , a2 , a3 , a4 , a5 , a6 , a7 , a8 , a9 ]"
+- (at level 0,
+- format "[ 'rec' a0 , a1 , a2 , a3 , a4 , a5 , a6 , a7 , a8 , a9 ]").
+-
+-(* Definitions and notation for explicit functions with simplification, *)
+-(* i.e., which simpl and /= beta expand (this is complementary to nosimpl). *)
+-
+-Section SimplFun.
+-
+-Variables aT rT : Type.
+-
+-CoInductive simpl_fun := SimplFun of aT -> rT.
+-
+-Definition fun_of_simpl f := fun x => let: SimplFun lam := f in lam x.
+-
+-Coercion fun_of_simpl : simpl_fun >-> Funclass.
+-
+-End SimplFun.
+-
+-Notation "[ 'fun' : T => E ]" := (SimplFun (fun _ : T => E))
+- (at level 0,
+- format "'[hv' [ 'fun' : T => '/ ' E ] ']'") : fun_scope.
+-
+-Notation "[ 'fun' x => E ]" := (SimplFun (fun x => E))
+- (at level 0, x ident,
+- format "'[hv' [ 'fun' x => '/ ' E ] ']'") : fun_scope.
+-
+-Notation "[ 'fun' x : T => E ]" := (SimplFun (fun x : T => E))
+- (at level 0, x ident, only parsing) : fun_scope.
+-
+-Notation "[ 'fun' x y => E ]" := (fun x => [fun y => E])
+- (at level 0, x ident, y ident,
+- format "'[hv' [ 'fun' x y => '/ ' E ] ']'") : fun_scope.
+-
+-Notation "[ 'fun' x y : T => E ]" := (fun x : T => [fun y : T => E])
+- (at level 0, x ident, y ident, only parsing) : fun_scope.
+-
+-Notation "[ 'fun' ( x : T ) y => E ]" := (fun x : T => [fun y => E])
+- (at level 0, x ident, y ident, only parsing) : fun_scope.
+-
+-Notation "[ 'fun' x ( y : T ) => E ]" := (fun x => [fun y : T => E])
+- (at level 0, x ident, y ident, only parsing) : fun_scope.
+-
+-Notation "[ 'fun' ( x : xT ) ( y : yT ) => E ]" :=
+- (fun x : xT => [fun y : yT => E])
+- (at level 0, x ident, y ident, only parsing) : fun_scope.
+-
+-(* For delta functions in eqtype.v. *)
+-Definition SimplFunDelta aT rT (f : aT -> aT -> rT) := [fun z => f z z].
+-
+-(* Extensional equality, for unary and binary functions, including syntactic *)
+-(* sugar. *)
+-
+-Section ExtensionalEquality.
+-
+-Variables A B C : Type.
+-
+-Definition eqfun (f g : B -> A) : Prop := forall x, f x = g x.
+-
+-Definition eqrel (r s : C -> B -> A) : Prop := forall x y, r x y = s x y.
+-
+-Lemma frefl f : eqfun f f. Proof. by []. Qed.
+-Lemma fsym f g : eqfun f g -> eqfun g f. Proof. by move=> eq_fg x. Qed.
+-
+-Lemma ftrans f g h : eqfun f g -> eqfun g h -> eqfun f h.
+-Proof. by move=> eq_fg eq_gh x; rewrite eq_fg. Qed.
+-
+-Lemma rrefl r : eqrel r r. Proof. by []. Qed.
+-
+-End ExtensionalEquality.
+-
+-Typeclasses Opaque eqfun.
+-Typeclasses Opaque eqrel.
+-
+-Hint Resolve frefl rrefl.
+-
+-Notation "f1 =1 f2" := (eqfun f1 f2)
+- (at level 70, no associativity) : fun_scope.
+-Notation "f1 =1 f2 :> A" := (f1 =1 (f2 : A))
+- (at level 70, f2 at next level, A at level 90) : fun_scope.
+-Notation "f1 =2 f2" := (eqrel f1 f2)
+- (at level 70, no associativity) : fun_scope.
+-Notation "f1 =2 f2 :> A" := (f1 =2 (f2 : A))
+- (at level 70, f2 at next level, A at level 90) : fun_scope.
+-
+-Section Composition.
+-
+-Variables A B C : Type.
+-
+-Definition funcomp u (f : B -> A) (g : C -> B) x := let: tt := u in f (g x).
+-Definition catcomp u g f := funcomp u f g.
+-Local Notation comp := (funcomp tt).
+-
+-Definition pcomp (f : B -> option A) (g : C -> option B) x := obind f (g x).
+-
+-Lemma eq_comp f f' g g' : f =1 f' -> g =1 g' -> comp f g =1 comp f' g'.
+-Proof. by move=> eq_ff' eq_gg' x; rewrite /= eq_gg' eq_ff'. Qed.
+-
+-End Composition.
+-
+-Notation comp := (funcomp tt).
+-Notation "@ 'comp'" := (fun A B C => @funcomp A B C tt).
+-Notation "f1 \o f2" := (comp f1 f2)
+- (at level 50, format "f1 \o '/ ' f2") : fun_scope.
+-Notation "f1 \; f2" := (catcomp tt f1 f2)
+- (at level 60, right associativity, format "f1 \; '/ ' f2") : fun_scope.
+-
+-Notation "[ 'eta' f ]" := (fun x => f x)
+- (at level 0, format "[ 'eta' f ]") : fun_scope.
+-
+-Notation "'fun' => E" := (fun _ => E) (at level 200, only parsing) : fun_scope.
+-
+-Notation id := (fun x => x).
+-Notation "@ 'id' T" := (fun x : T => x)
+- (at level 10, T at level 8, only parsing) : fun_scope.
+-
+-Definition id_head T u x : T := let: tt := u in x.
+-Definition explicit_id_key := tt.
+-Notation idfun := (id_head tt).
+-Notation "@ 'idfun' T " := (@id_head T explicit_id_key)
+- (at level 10, T at level 8, format "@ 'idfun' T") : fun_scope.
+-
+-Definition phant_id T1 T2 v1 v2 := phantom T1 v1 -> phantom T2 v2.
+-
+-(* Strong sigma types. *)
+-
+-Section Tag.
+-
+-Variables (I : Type) (i : I) (T_ U_ : I -> Type).
+-
+-Definition tag := projT1.
+-Definition tagged : forall w, T_(tag w) := @projT2 I [eta T_].
+-Definition Tagged x := @existT I [eta T_] i x.
+-
+-Definition tag2 (w : @sigT2 I T_ U_) := let: existT2 _ _ i _ _ := w in i.
+-Definition tagged2 w : T_(tag2 w) := let: existT2 _ _ _ x _ := w in x.
+-Definition tagged2' w : U_(tag2 w) := let: existT2 _ _ _ _ y := w in y.
+-Definition Tagged2 x y := @existT2 I [eta T_] [eta U_] i x y.
+-
+-End Tag.
+-
+-Arguments Tagged [I i].
+-Arguments Tagged2 [I i].
+-Prenex Implicits tag tagged Tagged tag2 tagged2 tagged2' Tagged2.
+-
+-Coercion tag_of_tag2 I T_ U_ (w : @sigT2 I T_ U_) :=
+- Tagged (fun i => T_ i * U_ i)%type (tagged2 w, tagged2' w).
+-
+-Lemma all_tag I T U :
+- (forall x : I, {y : T x & U x y}) ->
+- {f : forall x, T x & forall x, U x (f x)}.
+-Proof. by move=> fP; exists (fun x => tag (fP x)) => x; case: (fP x). Qed.
+-
+-Lemma all_tag2 I T U V :
+- (forall i : I, {y : T i & U i y & V i y}) ->
+- {f : forall i, T i & forall i, U i (f i) & forall i, V i (f i)}.
+-Proof. by case/all_tag=> f /all_pair[]; exists f. Qed.
+-
+-(* Refinement types. *)
+-
+-(* Prenex Implicits and renaming. *)
+-Notation sval := (@proj1_sig _ _).
+-Notation "@ 'sval'" := (@proj1_sig) (at level 10, format "@ 'sval'").
+-
+-Section Sig.
+-
+-Variables (T : Type) (P Q : T -> Prop).
+-
+-Lemma svalP (u : sig P) : P (sval u). Proof. by case: u. Qed.
+-
+-Definition s2val (u : sig2 P Q) := let: exist2 _ _ x _ _ := u in x.
+-
+-Lemma s2valP u : P (s2val u). Proof. by case: u. Qed.
+-
+-Lemma s2valP' u : Q (s2val u). Proof. by case: u. Qed.
+-
+-End Sig.
+-
+-Prenex Implicits svalP s2val s2valP s2valP'.
+-
+-Coercion tag_of_sig I P (u : @sig I P) := Tagged P (svalP u).
+-
+-Coercion sig_of_sig2 I P Q (u : @sig2 I P Q) :=
+- exist (fun i => P i /\ Q i) (s2val u) (conj (s2valP u) (s2valP' u)).
+-
+-Lemma all_sig I T P :
+- (forall x : I, {y : T x | P x y}) ->
+- {f : forall x, T x | forall x, P x (f x)}.
+-Proof. by case/all_tag=> f; exists f. Qed.
+-
+-Lemma all_sig2 I T P Q :
+- (forall x : I, {y : T x | P x y & Q x y}) ->
+- {f : forall x, T x | forall x, P x (f x) & forall x, Q x (f x)}.
+-Proof. by case/all_sig=> f /all_pair[]; exists f. Qed.
+-
+-Section Morphism.
+-
+-Variables (aT rT sT : Type) (f : aT -> rT).
+-
+-(* Morphism property for unary and binary functions *)
+-Definition morphism_1 aF rF := forall x, f (aF x) = rF (f x).
+-Definition morphism_2 aOp rOp := forall x y, f (aOp x y) = rOp (f x) (f y).
+-
+-(* Homomorphism property for unary and binary relations *)
+-Definition homomorphism_1 (aP rP : _ -> Prop) := forall x, aP x -> rP (f x).
+-Definition homomorphism_2 (aR rR : _ -> _ -> Prop) :=
+- forall x y, aR x y -> rR (f x) (f y).
+-
+-(* Stability property for unary and binary relations *)
+-Definition monomorphism_1 (aP rP : _ -> sT) := forall x, rP (f x) = aP x.
+-Definition monomorphism_2 (aR rR : _ -> _ -> sT) :=
+- forall x y, rR (f x) (f y) = aR x y.
+-
+-End Morphism.
+-
+-Notation "{ 'morph' f : x / a >-> r }" :=
+- (morphism_1 f (fun x => a) (fun x => r))
+- (at level 0, f at level 99, x ident,
+- format "{ 'morph' f : x / a >-> r }") : type_scope.
+-
+-Notation "{ 'morph' f : x / a }" :=
+- (morphism_1 f (fun x => a) (fun x => a))
+- (at level 0, f at level 99, x ident,
+- format "{ 'morph' f : x / a }") : type_scope.
+-
+-Notation "{ 'morph' f : x y / a >-> r }" :=
+- (morphism_2 f (fun x y => a) (fun x y => r))
+- (at level 0, f at level 99, x ident, y ident,
+- format "{ 'morph' f : x y / a >-> r }") : type_scope.
+-
+-Notation "{ 'morph' f : x y / a }" :=
+- (morphism_2 f (fun x y => a) (fun x y => a))
+- (at level 0, f at level 99, x ident, y ident,
+- format "{ 'morph' f : x y / a }") : type_scope.
+-
+-Notation "{ 'homo' f : x / a >-> r }" :=
+- (homomorphism_1 f (fun x => a) (fun x => r))
+- (at level 0, f at level 99, x ident,
+- format "{ 'homo' f : x / a >-> r }") : type_scope.
+-
+-Notation "{ 'homo' f : x / a }" :=
+- (homomorphism_1 f (fun x => a) (fun x => a))
+- (at level 0, f at level 99, x ident,
+- format "{ 'homo' f : x / a }") : type_scope.
+-
+-Notation "{ 'homo' f : x y / a >-> r }" :=
+- (homomorphism_2 f (fun x y => a) (fun x y => r))
+- (at level 0, f at level 99, x ident, y ident,
+- format "{ 'homo' f : x y / a >-> r }") : type_scope.
+-
+-Notation "{ 'homo' f : x y / a }" :=
+- (homomorphism_2 f (fun x y => a) (fun x y => a))
+- (at level 0, f at level 99, x ident, y ident,
+- format "{ 'homo' f : x y / a }") : type_scope.
+-
+-Notation "{ 'homo' f : x y /~ a }" :=
+- (homomorphism_2 f (fun y x => a) (fun x y => a))
+- (at level 0, f at level 99, x ident, y ident,
+- format "{ 'homo' f : x y /~ a }") : type_scope.
+-
+-Notation "{ 'mono' f : x / a >-> r }" :=
+- (monomorphism_1 f (fun x => a) (fun x => r))
+- (at level 0, f at level 99, x ident,
+- format "{ 'mono' f : x / a >-> r }") : type_scope.
+-
+-Notation "{ 'mono' f : x / a }" :=
+- (monomorphism_1 f (fun x => a) (fun x => a))
+- (at level 0, f at level 99, x ident,
+- format "{ 'mono' f : x / a }") : type_scope.
+-
+-Notation "{ 'mono' f : x y / a >-> r }" :=
+- (monomorphism_2 f (fun x y => a) (fun x y => r))
+- (at level 0, f at level 99, x ident, y ident,
+- format "{ 'mono' f : x y / a >-> r }") : type_scope.
+-
+-Notation "{ 'mono' f : x y / a }" :=
+- (monomorphism_2 f (fun x y => a) (fun x y => a))
+- (at level 0, f at level 99, x ident, y ident,
+- format "{ 'mono' f : x y / a }") : type_scope.
+-
+-Notation "{ 'mono' f : x y /~ a }" :=
+- (monomorphism_2 f (fun y x => a) (fun x y => a))
+- (at level 0, f at level 99, x ident, y ident,
+- format "{ 'mono' f : x y /~ a }") : type_scope.
+-
+-(* In an intuitionistic setting, we have two degrees of injectivity. The *)
+-(* weaker one gives only simplification, and the strong one provides a left *)
+-(* inverse (we show in `fintype' that they coincide for finite types). *)
+-(* We also define an intermediate version where the left inverse is only a *)
+-(* partial function. *)
+-
+-Section Injections.
+-
+-(* rT must come first so we can use @ to mitigate the Coq 1st order *)
+-(* unification bug (e..g., Coq can't infer rT from a "cancel" lemma). *)
+-Variables (rT aT : Type) (f : aT -> rT).
+-
+-Definition injective := forall x1 x2, f x1 = f x2 -> x1 = x2.
+-
+-Definition cancel g := forall x, g (f x) = x.
+-
+-Definition pcancel g := forall x, g (f x) = Some x.
+-
+-Definition ocancel (g : aT -> option rT) h := forall x, oapp h x (g x) = x.
+-
+-Lemma can_pcan g : cancel g -> pcancel (fun y => Some (g y)).
+-Proof. by move=> fK x; congr (Some _). Qed.
+-
+-Lemma pcan_inj g : pcancel g -> injective.
+-Proof. by move=> fK x y /(congr1 g); rewrite !fK => [[]]. Qed.
+-
+-Lemma can_inj g : cancel g -> injective.
+-Proof. by move/can_pcan; apply: pcan_inj. Qed.
+-
+-Lemma canLR g x y : cancel g -> x = f y -> g x = y.
+-Proof. by move=> fK ->. Qed.
+-
+-Lemma canRL g x y : cancel g -> f x = y -> x = g y.
+-Proof. by move=> fK <-. Qed.
+-
+-End Injections.
+-
+-Lemma Some_inj {T} : injective (@Some T). Proof. by move=> x y []. Qed.
+-
+-(* Force implicits to use as a view. *)
+-Prenex Implicits Some_inj.
+-
+-(* cancellation lemmas for dependent type casts. *)
+-Lemma esymK T x y : cancel (@esym T x y) (@esym T y x).
+-Proof. by case: y /. Qed.
+-
+-Lemma etrans_id T x y (eqxy : x = y :> T) : etrans (erefl x) eqxy = eqxy.
+-Proof. by case: y / eqxy. Qed.
+-
+-Section InjectionsTheory.
+-
+-Variables (A B C : Type) (f g : B -> A) (h : C -> B).
+-
+-Lemma inj_id : injective (@id A).
+-Proof. by []. Qed.
+-
+-Lemma inj_can_sym f' : cancel f f' -> injective f' -> cancel f' f.
+-Proof. by move=> fK injf' x; apply: injf'. Qed.
+-
+-Lemma inj_comp : injective f -> injective h -> injective (f \o h).
+-Proof. by move=> injf injh x y /injf; apply: injh. Qed.
+-
+-Lemma can_comp f' h' : cancel f f' -> cancel h h' -> cancel (f \o h) (h' \o f').
+-Proof. by move=> fK hK x; rewrite /= fK hK. Qed.
+-
+-Lemma pcan_pcomp f' h' :
+- pcancel f f' -> pcancel h h' -> pcancel (f \o h) (pcomp h' f').
+-Proof. by move=> fK hK x; rewrite /pcomp fK /= hK. Qed.
+-
+-Lemma eq_inj : injective f -> f =1 g -> injective g.
+-Proof. by move=> injf eqfg x y; rewrite -2!eqfg; apply: injf. Qed.
+-
+-Lemma eq_can f' g' : cancel f f' -> f =1 g -> f' =1 g' -> cancel g g'.
+-Proof. by move=> fK eqfg eqfg' x; rewrite -eqfg -eqfg'. Qed.
+-
+-Lemma inj_can_eq f' : cancel f f' -> injective f' -> cancel g f' -> f =1 g.
+-Proof. by move=> fK injf' gK x; apply: injf'; rewrite fK. Qed.
+-
+-End InjectionsTheory.
+-
+-Section Bijections.
+-
+-Variables (A B : Type) (f : B -> A).
+-
+-CoInductive bijective : Prop := Bijective g of cancel f g & cancel g f.
+-
+-Hypothesis bijf : bijective.
+-
+-Lemma bij_inj : injective f.
+-Proof. by case: bijf => g fK _; apply: can_inj fK. Qed.
+-
+-Lemma bij_can_sym f' : cancel f' f <-> cancel f f'.
+-Proof.
+-split=> fK; first exact: inj_can_sym fK bij_inj.
+-by case: bijf => h _ hK x; rewrite -[x]hK fK.
+-Qed.
+-
+-Lemma bij_can_eq f' f'' : cancel f f' -> cancel f f'' -> f' =1 f''.
+-Proof.
+-by move=> fK fK'; apply: (inj_can_eq _ bij_inj); apply/bij_can_sym.
+-Qed.
+-
+-End Bijections.
+-
+-Section BijectionsTheory.
+-
+-Variables (A B C : Type) (f : B -> A) (h : C -> B).
+-
+-Lemma eq_bij : bijective f -> forall g, f =1 g -> bijective g.
+-Proof. by case=> f' fK f'K g eqfg; exists f'; eapply eq_can; eauto. Qed.
+-
+-Lemma bij_comp : bijective f -> bijective h -> bijective (f \o h).
+-Proof.
+-by move=> [f' fK f'K] [h' hK h'K]; exists (h' \o f'); apply: can_comp; auto.
+-Qed.
+-
+-Lemma bij_can_bij : bijective f -> forall f', cancel f f' -> bijective f'.
+-Proof. by move=> bijf; exists f; first by apply/(bij_can_sym bijf). Qed.
+-
+-End BijectionsTheory.
+-
+-Section Involutions.
+-
+-Variables (A : Type) (f : A -> A).
+-
+-Definition involutive := cancel f f.
+-
+-Hypothesis Hf : involutive.
+-
+-Lemma inv_inj : injective f. Proof. exact: can_inj Hf. Qed.
+-Lemma inv_bij : bijective f. Proof. by exists f. Qed.
+-
+-End Involutions.
+-
+-Section OperationProperties.
+-
+-Variables S T R : Type.
+-
+-Section SopTisR.
+-Implicit Type op : S -> T -> R.
+-Definition left_inverse e inv op := forall x, op (inv x) x = e.
+-Definition right_inverse e inv op := forall x, op x (inv x) = e.
+-Definition left_injective op := forall x, injective (op^~ x).
+-Definition right_injective op := forall y, injective (op y).
+-End SopTisR.
+-
+-
+-Section SopTisS.
+-Implicit Type op : S -> T -> S.
+-Definition right_id e op := forall x, op x e = x.
+-Definition left_zero z op := forall x, op z x = z.
+-Definition right_commutative op := forall x y z, op (op x y) z = op (op x z) y.
+-Definition left_distributive op add :=
+- forall x y z, op (add x y) z = add (op x z) (op y z).
+-Definition right_loop inv op := forall y, cancel (op^~ y) (op^~ (inv y)).
+-Definition rev_right_loop inv op := forall y, cancel (op^~ (inv y)) (op^~ y).
+-End SopTisS.
+-
+-Section SopTisT.
+-Implicit Type op : S -> T -> T.
+-Definition left_id e op := forall x, op e x = x.
+-Definition right_zero z op := forall x, op x z = z.
+-Definition left_commutative op := forall x y z, op x (op y z) = op y (op x z).
+-Definition right_distributive op add :=
+- forall x y z, op x (add y z) = add (op x y) (op x z).
+-Definition left_loop inv op := forall x, cancel (op x) (op (inv x)).
+-Definition rev_left_loop inv op := forall x, cancel (op (inv x)) (op x).
+-End SopTisT.
+-
+-Section SopSisT.
+-Implicit Type op : S -> S -> T.
+-Definition self_inverse e op := forall x, op x x = e.
+-Definition commutative op := forall x y, op x y = op y x.
+-End SopSisT.
+-
+-Section SopSisS.
+-Implicit Type op : S -> S -> S.
+-Definition idempotent op := forall x, op x x = x.
+-Definition associative op := forall x y z, op x (op y z) = op (op x y) z.
+-Definition interchange op1 op2 :=
+- forall x y z t, op1 (op2 x y) (op2 z t) = op2 (op1 x z) (op1 y t).
+-End SopSisS.
+-
+-End OperationProperties.
+-
+-
+-
+-
+-
+-
+-
+-
+-
+-
+--- a/test-suite/bugs/closed/2800.v
++++ /dev/null
+@@ -1,19 +0,0 @@
+-Goal False.
+-
+-intuition
+- match goal with
+- | |- _ => idtac " foo"
+- end.
+-
+- lazymatch goal with _ => idtac end.
+- match goal with _ => idtac end.
+- unshelve lazymatch goal with _ => idtac end.
+- unshelve match goal with _ => idtac end.
+- unshelve (let x := I in idtac).
+-Abort.
+-
+-Require Import ssreflect.
+-
+-Goal True.
+-match goal with _ => idtac end => //.
+-Qed.
+--- a/test-suite/bugs/closed/5692.v
++++ /dev/null
+@@ -1,88 +0,0 @@
+-Set Primitive Projections.
+-Require Import ZArith ssreflect.
+-
+-Module Test1.
+-
+-Structure semigroup := SemiGroup {
+- sg_car :> Type;
+- sg_op : sg_car -> sg_car -> sg_car;
+-}.
+-
+-Structure monoid := Monoid {
+- monoid_car :> Type;
+- monoid_op : monoid_car -> monoid_car -> monoid_car;
+- monoid_unit : monoid_car;
+-}.
+-
+-Coercion monoid_sg (X : monoid) : semigroup :=
+- SemiGroup (monoid_car X) (monoid_op X).
+-Canonical Structure monoid_sg.
+-
+-Parameter X : monoid.
+-Parameter x y : X.
+-
+-Check (sg_op _ x y).
+-
+-End Test1.
+-
+-Module Test2.
+-
+-Structure semigroup := SemiGroup {
+- sg_car :> Type;
+- sg_op : sg_car -> sg_car -> sg_car;
+-}.
+-
+-Structure monoid := Monoid {
+- monoid_car :> Type;
+- monoid_op : monoid_car -> monoid_car -> monoid_car;
+- monoid_unit : monoid_car;
+- monoid_left_id x : monoid_op monoid_unit x = x;
+-}.
+-
+-Coercion monoid_sg (X : monoid) : semigroup :=
+- SemiGroup (monoid_car X) (monoid_op X).
+-Canonical Structure monoid_sg.
+-
+-Canonical Structure nat_sg := SemiGroup nat plus.
+-Canonical Structure nat_monoid := Monoid nat plus 0 plus_O_n.
+-
+-Lemma foo (x : nat) : 0 + x = x.
+-Proof.
+-apply monoid_left_id.
+-Qed.
+-
+-End Test2.
+-
+-Module Test3.
+-
+-Structure semigroup := SemiGroup {
+- sg_car :> Type;
+- sg_op : sg_car -> sg_car -> sg_car;
+-}.
+-
+-Structure group := Something {
+- group_car :> Type;
+- group_op : group_car -> group_car -> group_car;
+- group_neg : group_car -> group_car;
+- group_neg_op' x y : group_neg (group_op x y) = group_op (group_neg x) (group_neg y)
+-}.
+-
+-Coercion group_sg (X : group) : semigroup :=
+- SemiGroup (group_car X) (group_op X).
+-Canonical Structure group_sg.
+-
+-Axiom group_neg_op : forall (X : group) (x y : X),
+- group_neg X (sg_op (group_sg X) x y) = sg_op (group_sg X) (group_neg X x) (group_neg X y).
+-
+-Canonical Structure Z_sg := SemiGroup Z Z.add .
+-Canonical Structure Z_group := Something Z Z.add Z.opp Z.opp_add_distr.
+-
+-Lemma foo (x y : Z) :
+- sg_op Z_sg (group_neg Z_group x) (group_neg Z_group y) =
+- group_neg Z_group (sg_op Z_sg x y).
+-Proof.
+- rewrite -group_neg_op.
+- reflexivity.
+-Qed.
+-
+-End Test3.
+--- a/test-suite/bugs/closed/6634.v
++++ /dev/null
+@@ -1,6 +0,0 @@
+-From Coq Require Import ssreflect.
+-
+-Lemma normalizeP (p : tt = tt) : p = p.
+-Proof.
+-Fail move: {2} tt p.
+-Abort.
+--- a/test-suite/bugs/closed/6910.v
++++ /dev/null
+@@ -1,5 +0,0 @@
+-From Coq Require Import ssreflect ssrfun.
+-
+-(* We should be able to use Some_inj as a view: *)
+-Lemma foo (x y : nat) : Some x = Some y -> x = y.
+-Proof. by move/Some_inj. Qed.
+--- a/test-suite/output/ssr_clear.v
++++ /dev/null
+@@ -1,6 +0,0 @@
+-Require Import ssreflect.
+-
+-Example foo : True -> True.
+-Proof.
+-Fail move=> {NO_SUCH_NAME}.
+-Abort.
+--- a/test-suite/success/ssr_delayed_clear_rename.v
++++ /dev/null
+@@ -1,5 +0,0 @@
+-Require Import ssreflect.
+-Example foo (t t1 t2 : True) : True /\ True -> True -> True.
+-Proof.
+-move=>[{t1 t2 t} t1 t2] t.
+-Abort.
diff --git a/debian/patches/series b/debian/patches/series
index aea3a7f2..dab7506c 100644
--- a/debian/patches/series
+++ b/debian/patches/series
@@ -2,3 +2,4 @@
0002-Remove-test-4429.patch
0003-Remove-3441.v-and-4811.v-due-to-timeout-on-small-pla.patch
0004-5127-fails-on-mips.patch
+0005-remove-ssrmatching.patch