1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
|
(* *********************************************************************)
(* *)
(* The Compcert verified compiler *)
(* *)
(* Xavier Leroy, INRIA Paris-Rocquencourt *)
(* *)
(* Copyright Institut National de Recherche en Informatique et en *)
(* Automatique. All rights reserved. This file is distributed *)
(* under the terms of the INRIA Non-Commercial License Agreement. *)
(* *)
(* *********************************************************************)
(* Printing PPC assembly code in asm syntax *)
open Printf
open Datatypes
open Maps
open Camlcoq
open Sections
open AST
open Memdata
open Asm
(* Recognition of target ABI and asm syntax *)
type target = Linux | Diab
let target =
match Configuration.system with
| "linux" -> Linux
| "diab" -> Diab
| _ -> invalid_arg ("System " ^ Configuration.system ^ " not supported")
(* On-the-fly label renaming *)
let next_label = ref 100
let new_label() =
let lbl = !next_label in incr next_label; lbl
let current_function_labels = (Hashtbl.create 39 : (label, int) Hashtbl.t)
let transl_label lbl =
try
Hashtbl.find current_function_labels lbl
with Not_found ->
let lbl' = new_label() in
Hashtbl.add current_function_labels lbl lbl';
lbl'
(* Record identifiers of functions that need a special stub *)
module IdentSet = Set.Make(struct type t = ident let compare = compare end)
let stubbed_functions = ref IdentSet.empty
(* Basic printing functions *)
let coqint oc n =
fprintf oc "%ld" (camlint_of_coqint n)
let raw_symbol oc s =
fprintf oc "%s" s
let symbol oc symb =
if IdentSet.mem symb !stubbed_functions
then fprintf oc ".L%s$stub" (extern_atom symb)
else fprintf oc "%s" (extern_atom symb)
let symbol_offset oc (symb, ofs) =
symbol oc symb;
if ofs <> 0l then fprintf oc " + %ld" ofs
let label oc lbl =
fprintf oc ".L%d" lbl
let label_low oc lbl =
fprintf oc ".L%d@l" lbl
let label_high oc lbl =
fprintf oc ".L%d@ha" lbl
let comment =
match target with
| Linux -> "#"
| Diab -> ";"
let constant oc cst =
match cst with
| Cint n ->
fprintf oc "%ld" (camlint_of_coqint n)
| Csymbol_low(s, n) ->
fprintf oc "(%a)@l" symbol_offset (s, camlint_of_coqint n)
| Csymbol_high(s, n) ->
fprintf oc "(%a)@ha" symbol_offset (s, camlint_of_coqint n)
| Csymbol_sda(s, n) ->
begin match target with
| Linux ->
fprintf oc "(%a)@sda21" symbol_offset (s, camlint_of_coqint n)
| Diab ->
fprintf oc "(%a)@sdarx" symbol_offset (s, camlint_of_coqint n)
end
let num_crbit = function
| CRbit_0 -> 0
| CRbit_1 -> 1
| CRbit_2 -> 2
| CRbit_3 -> 3
let crbit oc bit =
fprintf oc "%d" (num_crbit bit)
let int_reg_name = function
| GPR0 -> "0" | GPR1 -> "1" | GPR2 -> "2" | GPR3 -> "3"
| GPR4 -> "4" | GPR5 -> "5" | GPR6 -> "6" | GPR7 -> "7"
| GPR8 -> "8" | GPR9 -> "9" | GPR10 -> "10" | GPR11 -> "11"
| GPR12 -> "12" | GPR13 -> "13" | GPR14 -> "14" | GPR15 -> "15"
| GPR16 -> "16" | GPR17 -> "17" | GPR18 -> "18" | GPR19 -> "19"
| GPR20 -> "20" | GPR21 -> "21" | GPR22 -> "22" | GPR23 -> "23"
| GPR24 -> "24" | GPR25 -> "25" | GPR26 -> "26" | GPR27 -> "27"
| GPR28 -> "28" | GPR29 -> "29" | GPR30 -> "30" | GPR31 -> "31"
let float_reg_name = function
| FPR0 -> "0" | FPR1 -> "1" | FPR2 -> "2" | FPR3 -> "3"
| FPR4 -> "4" | FPR5 -> "5" | FPR6 -> "6" | FPR7 -> "7"
| FPR8 -> "8" | FPR9 -> "9" | FPR10 -> "10" | FPR11 -> "11"
| FPR12 -> "12" | FPR13 -> "13" | FPR14 -> "14" | FPR15 -> "15"
| FPR16 -> "16" | FPR17 -> "17" | FPR18 -> "18" | FPR19 -> "19"
| FPR20 -> "20" | FPR21 -> "21" | FPR22 -> "22" | FPR23 -> "23"
| FPR24 -> "24" | FPR25 -> "25" | FPR26 -> "26" | FPR27 -> "27"
| FPR28 -> "28" | FPR29 -> "29" | FPR30 -> "30" | FPR31 -> "31"
let ireg oc r =
begin match target with
| Diab -> output_char oc 'r'
| Linux -> ()
end;
output_string oc (int_reg_name r)
let ireg_or_zero oc r =
if r = GPR0 then output_string oc "0" else ireg oc r
let freg oc r =
begin match target with
| Diab -> output_char oc 'f'
| Linux -> ()
end;
output_string oc (float_reg_name r)
let creg oc r =
match target with
| Diab -> fprintf oc "cr%d" r
| Linux -> fprintf oc "%d" r
let preg oc = function
| IR r -> ireg oc r
| FR r -> freg oc r
| _ -> assert false
(* Names of sections *)
let name_of_section_Linux = function
| Section_text -> ".text"
| Section_data i -> if i then ".data" else "COMM"
| Section_small_data i -> if i then ".sdata" else "COMM"
| Section_const -> ".rodata"
| Section_small_const -> ".sdata2"
| Section_string -> ".rodata"
| Section_literal -> ".section .rodata.cst8,\"aM\",@progbits,8"
| Section_jumptable -> ".text"
| Section_user(s, wr, ex) ->
sprintf ".section \"%s\",\"a%s%s\",@progbits"
s (if wr then "w" else "") (if ex then "x" else "")
let name_of_section_Diab = function
| Section_text -> ".text"
| Section_data i -> if i then ".data" else ".bss"
| Section_small_data i -> if i then ".sdata" else ".sbss"
| Section_const -> ".text"
| Section_small_const -> ".sdata2"
| Section_string -> ".text"
| Section_literal -> ".text"
| Section_jumptable -> ".text"
| Section_user(s, wr, ex) ->
sprintf ".section \"%s\",,%c"
s
(match wr, ex with
| true, true -> 'm' (* text+data *)
| true, false -> 'd' (* data *)
| false, true -> 'c' (* text *)
| false, false -> 'r') (* const *)
let name_of_section =
match target with
| Linux -> name_of_section_Linux
| Diab -> name_of_section_Diab
let section oc sec =
let name = name_of_section sec in
assert (name <> "COMM");
fprintf oc " %s\n" name
(* Encoding masks for rlwinm instructions *)
let rolm_mask n =
let mb = ref 0 (* location of last 0->1 transition *)
and me = ref 32 (* location of last 1->0 transition *)
and last = ref ((Int32.logand n 1l) <> 0l) (* last bit seen *)
and count = ref 0 (* number of transitions *)
and mask = ref 0x8000_0000l in
for mx = 0 to 31 do
if Int32.logand n !mask <> 0l then
if !last then () else (incr count; mb := mx; last := true)
else
if !last then (incr count; me := mx; last := false) else ();
mask := Int32.shift_right_logical !mask 1
done;
if !me = 0 then me := 32;
assert (!count = 2 || (!count = 0 && !last));
(!mb, !me-1)
(* Built-ins. They come in three flavors:
- annotation statements: take their arguments in registers or stack
locations; generate no code;
- inlined by the compiler: take their arguments in arbitrary
registers; preserve all registers except the temporaries
(GPR0, GPR11, GPR12, FPR0, FPR12, FPR13);
- inlined while printing asm code; take their arguments in
locations dictated by the calling conventions; preserve
callee-save regs only. *)
(* Handling of annotations *)
let print_annot_stmt oc txt targs args =
fprintf oc "%s annotation: " comment;
PrintAnnot.print_annot_stmt preg "R1" oc txt targs args
let print_annot_val oc txt args res =
fprintf oc "%s annotation: " comment;
PrintAnnot.print_annot_val preg oc txt args;
match args, res with
| IR src :: _, IR dst ->
if dst <> src then fprintf oc " mr %a, %a\n" ireg dst ireg src
| FR src :: _, FR dst ->
if dst <> src then fprintf oc " fmr %a, %a\n" freg dst freg src
| _, _ -> assert false
(* Handling of memcpy *)
(* On the PowerPC, unaligned accesses to 16- and 32-bit integers are
fast, but unaligned accesses to 64-bit floats can be slow
(not so much on G5, but clearly so on Power7).
So, use 64-bit accesses only if alignment >= 4.
Note that lfd and stfd cannot trap on ill-formed floats. *)
let print_builtin_memcpy_small oc sz al src dst =
let rec copy ofs sz =
if sz >= 8 && al >= 4 then begin
fprintf oc " lfd %a, %d(%a)\n" freg FPR0 ofs ireg src;
fprintf oc " stfd %a, %d(%a)\n" freg FPR0 ofs ireg dst;
copy (ofs + 8) (sz - 8)
end else if sz >= 4 then begin
fprintf oc " lwz %a, %d(%a)\n" ireg GPR0 ofs ireg src;
fprintf oc " stw %a, %d(%a)\n" ireg GPR0 ofs ireg dst;
copy (ofs + 4) (sz - 4)
end else if sz >= 2 then begin
fprintf oc " lhz %a, %d(%a)\n" ireg GPR0 ofs ireg src;
fprintf oc " sth %a, %d(%a)\n" ireg GPR0 ofs ireg dst;
copy (ofs + 2) (sz - 2)
end else if sz >= 1 then begin
fprintf oc " lbz %a, %d(%a)\n" ireg GPR0 ofs ireg src;
fprintf oc " stb %a, %d(%a)\n" ireg GPR0 ofs ireg dst;
copy (ofs + 1) (sz - 1)
end in
copy 0 sz
let print_builtin_memcpy_big oc sz al src dst =
assert (sz >= 4);
fprintf oc " li %a, %d\n" ireg GPR0 (sz / 4);
fprintf oc " mtctr %a\n" ireg GPR0;
let (s,d) = if dst <> GPR11 then (GPR11, GPR12) else (GPR12, GPR11) in
fprintf oc " addi %a, %a, -4\n" ireg s ireg src;
fprintf oc " addi %a, %a, -4\n" ireg d ireg dst;
let lbl = new_label() in
fprintf oc "%a: lwzu %a, 4(%a)\n" label lbl ireg GPR0 ireg s;
fprintf oc " stwu %a, 4(%a)\n" ireg GPR0 ireg d;
fprintf oc " bdnz %a\n" label lbl;
(* s and d lag behind by 4 bytes *)
match sz land 3 with
| 1 -> fprintf oc " lbz %a, 4(%a)\n" ireg GPR0 ireg s;
fprintf oc " stb %a, 4(%a)\n" ireg GPR0 ireg d
| 2 -> fprintf oc " lhz %a, 4(%a)\n" ireg GPR0 ireg s;
fprintf oc " sth %a, 4(%a)\n" ireg GPR0 ireg d
| 3 -> fprintf oc " lhz %a, 4(%a)\n" ireg GPR0 ireg s;
fprintf oc " sth %a, 4(%a)\n" ireg GPR0 ireg d;
fprintf oc " lbz %a, 6(%a)\n" ireg GPR0 ireg s;
fprintf oc " stb %a, 6(%a)\n" ireg GPR0 ireg d
| _ -> ()
let print_builtin_memcpy oc sz al args =
let (dst, src) =
match args with [IR d; IR s] -> (d, s) | _ -> assert false in
fprintf oc "%s begin builtin __builtin_memcpy_aligned, size = %d, alignment = %d\n"
comment sz al;
if sz <= 64
then print_builtin_memcpy_small oc sz al src dst
else print_builtin_memcpy_big oc sz al src dst;
fprintf oc "%s end builtin __builtin_memcpy_aligned\n" comment
(* Handling of volatile reads and writes *)
let print_builtin_vload_common oc chunk base offset res =
match chunk, res with
| Mint8unsigned, IR res ->
fprintf oc " lbz %a, %a(%a)\n" ireg res constant offset ireg base
| Mint8signed, IR res ->
fprintf oc " lbz %a, %a(%a)\n" ireg res constant offset ireg base;
fprintf oc " extsb %a, %a\n" ireg res ireg res
| Mint16unsigned, IR res ->
fprintf oc " lhz %a, %a(%a)\n" ireg res constant offset ireg base
| Mint16signed, IR res ->
fprintf oc " lha %a, %a(%a)\n" ireg res constant offset ireg base
| Mint32, IR res ->
fprintf oc " lwz %a, %a(%a)\n" ireg res constant offset ireg base
| Mfloat32, FR res ->
fprintf oc " lfs %a, %a(%a)\n" freg res constant offset ireg base
| (Mfloat64 | Mfloat64al32), FR res ->
fprintf oc " lfd %a, %a(%a)\n" freg res constant offset ireg base
| _ ->
assert false
let print_builtin_vload oc chunk args res =
fprintf oc "%s begin builtin __builtin_volatile_read\n" comment;
begin match args with
| [IR addr] ->
print_builtin_vload_common oc chunk addr (Cint Integers.Int.zero) res
| _ ->
assert false
end;
fprintf oc "%s end builtin __builtin_volatile_read\n" comment
let print_builtin_vload_global oc chunk id ofs args res =
fprintf oc "%s begin builtin __builtin_volatile_read\n" comment;
fprintf oc " addis %a, %a, %a\n"
ireg GPR11 ireg_or_zero GPR0 constant (Csymbol_high(id, ofs));
print_builtin_vload_common oc chunk GPR11 (Csymbol_low(id, ofs)) res;
fprintf oc "%s end builtin __builtin_volatile_read\n" comment
let print_builtin_vstore_common oc chunk base offset src =
match chunk, src with
| (Mint8signed | Mint8unsigned), IR src ->
fprintf oc " stb %a, %a(%a)\n" ireg src constant offset ireg base
| (Mint16signed | Mint16unsigned), IR src ->
fprintf oc " sth %a, %a(%a)\n" ireg src constant offset ireg base
| Mint32, IR src ->
fprintf oc " stw %a, %a(%a)\n" ireg src constant offset ireg base
| Mfloat32, FR src ->
fprintf oc " frsp %a, %a\n" freg FPR13 freg src;
fprintf oc " stfs %a, %a(%a)\n" freg FPR13 constant offset ireg base
| (Mfloat64 | Mfloat64al32), FR src ->
fprintf oc " stfd %a, %a(%a)\n" freg src constant offset ireg base
| _ ->
assert false
let print_builtin_vstore oc chunk args =
fprintf oc "%s begin builtin __builtin_volatile_write\n" comment;
begin match args with
| [IR addr; src] ->
print_builtin_vstore_common oc chunk addr (Cint Integers.Int.zero) src
| _ ->
assert false
end;
fprintf oc "%s end builtin __builtin_volatile_write\n" comment
let print_builtin_vstore_global oc chunk id ofs args =
fprintf oc "%s begin builtin __builtin_volatile_write\n" comment;
begin match args with
| [src] ->
let tmp = if src = IR GPR11 then GPR12 else GPR11 in
fprintf oc " addis %a, %a, %a\n"
ireg tmp ireg_or_zero GPR0 constant (Csymbol_high(id, ofs));
print_builtin_vstore_common oc chunk tmp (Csymbol_low(id, ofs)) src
| _ ->
assert false
end;
fprintf oc "%s end builtin __builtin_volatile_write\n" comment
(* Handling of compiler-inlined builtins *)
let print_builtin_inline oc name args res =
fprintf oc "%s begin builtin %s\n" comment name;
(* Can use as temporaries: GPR0, GPR11, GPR12, FPR0, FPR12, FPR13 *)
begin match name, args, res with
(* Integer arithmetic *)
| "__builtin_mulhw", [IR a1; IR a2], IR res ->
fprintf oc " mulhw %a, %a, %a\n" ireg res ireg a1 ireg a2
| "__builtin_mulhwu", [IR a1; IR a2], IR res ->
fprintf oc " mulhwu %a, %a, %a\n" ireg res ireg a1 ireg a2
| "__builtin_cntlz", [IR a1], IR res ->
fprintf oc " cntlzw %a, %a\n" ireg res ireg a1
| "__builtin_bswap", [IR a1], IR res ->
fprintf oc " stwu %a, -8(%a)\n" ireg a1 ireg GPR1;
fprintf oc " lwbrx %a, %a, %a\n" ireg res ireg_or_zero GPR0 ireg GPR1;
fprintf oc " addi %a, %a, 8\n" ireg GPR1 ireg GPR1
(* Float arithmetic *)
| "__builtin_fmadd", [FR a1; FR a2; FR a3], FR res ->
fprintf oc " fmadd %a, %a, %a, %a\n" freg res freg a1 freg a2 freg a3
| "__builtin_fmsub", [FR a1; FR a2; FR a3], FR res ->
fprintf oc " fmsub %a, %a, %a, %a\n" freg res freg a1 freg a2 freg a3
| "__builtin_fnmadd", [FR a1; FR a2; FR a3], FR res ->
fprintf oc " fnmadd %a, %a, %a, %a\n" freg res freg a1 freg a2 freg a3
| "__builtin_fnmsub", [FR a1; FR a2; FR a3], FR res ->
fprintf oc " fnmsub %a, %a, %a, %a\n" freg res freg a1 freg a2 freg a3
| "__builtin_fabs", [FR a1], FR res ->
fprintf oc " fabs %a, %a\n" freg res freg a1
| "__builtin_fsqrt", [FR a1], FR res ->
fprintf oc " fsqrt %a, %a\n" freg res freg a1
| "__builtin_frsqrte", [FR a1], FR res ->
fprintf oc " frsqrte %a, %a\n" freg res freg a1
| "__builtin_fres", [FR a1], FR res ->
fprintf oc " fres %a, %a\n" freg res freg a1
| "__builtin_fsel", [FR a1; FR a2; FR a3], FR res ->
fprintf oc " fsel %a, %a, %a, %a\n" freg res freg a1 freg a2 freg a3
| "__builtin_fcti", [FR a1], IR res ->
fprintf oc " fctiw %a, %a\n" freg FPR13 freg a1;
fprintf oc " stfdu %a, -8(%a)\n" freg FPR13 ireg GPR1;
fprintf oc " lwz %a, 4(%a)\n" ireg res ireg GPR1;
fprintf oc " addi %a, %a, 8\n" ireg GPR1 ireg GPR1
(* Memory accesses *)
| "__builtin_read16_reversed", [IR a1], IR res ->
fprintf oc " lhbrx %a, %a, %a\n" ireg res ireg_or_zero GPR0 ireg a1
| "__builtin_read32_reversed", [IR a1], IR res ->
fprintf oc " lwbrx %a, %a, %a\n" ireg res ireg_or_zero GPR0 ireg a1
| "__builtin_write16_reversed", [IR a1; IR a2], _ ->
fprintf oc " sthbrx %a, %a, %a\n" ireg a2 ireg_or_zero GPR0 ireg a1
| "__builtin_write32_reversed", [IR a1; IR a2], _ ->
fprintf oc " stwbrx %a, %a, %a\n" ireg a2 ireg_or_zero GPR0 ireg a1
(* Synchronization *)
| "__builtin_eieio", [], _ ->
fprintf oc " eieio\n"
| "__builtin_sync", [], _ ->
fprintf oc " sync\n"
| "__builtin_isync", [], _ ->
fprintf oc " isync\n"
| "__builtin_trap", [], _ ->
fprintf oc " trap\n"
(* Catch-all *)
| _ ->
invalid_arg ("unrecognized builtin " ^ name)
end;
fprintf oc "%s end builtin %s\n" comment name
(* Determine if the displacement of a conditional branch fits the short form *)
let short_cond_branch tbl pc lbl_dest =
match PTree.get lbl_dest tbl with
| None -> assert false
| Some pc_dest ->
let disp = pc_dest - pc in -0x2000 <= disp && disp < 0x2000
(* Printing of instructions *)
let float_literals : (int * int64) list ref = ref []
let jumptables : (int * label list) list ref = ref []
let print_instruction oc tbl pc fallthrough = function
| Padd(r1, r2, r3) ->
fprintf oc " add %a, %a, %a\n" ireg r1 ireg r2 ireg r3
| Padde(r1, r2, r3) ->
fprintf oc " adde %a, %a, %a\n" ireg r1 ireg r2 ireg r3
| Paddi(r1, r2, c) ->
fprintf oc " addi %a, %a, %a\n" ireg r1 ireg_or_zero r2 constant c
| Paddic(r1, r2, c) ->
fprintf oc " addic %a, %a, %a\n" ireg r1 ireg_or_zero r2 constant c
| Paddis(r1, r2, c) ->
fprintf oc " addis %a, %a, %a\n" ireg r1 ireg_or_zero r2 constant c
| Paddze(r1, r2) ->
fprintf oc " addze %a, %a\n" ireg r1 ireg r2
| Pallocframe(sz, ofs) ->
let sz = camlint_of_coqint sz
and ofs = camlint_of_coqint ofs in
assert (ofs = 0l);
let adj = Int32.neg sz in
if adj >= -0x8000l then
fprintf oc " stwu %a, %ld(%a)\n" ireg GPR1 adj ireg GPR1
else begin
fprintf oc " addis %a, 0, %ld\n" ireg GPR12 (Int32.shift_right_logical adj 16);
fprintf oc " ori %a, %a, %ld\n" ireg GPR12 ireg GPR12 (Int32.logand adj 0xFFFFl);
fprintf oc " stwux %a, %a, %a\n" ireg GPR1 ireg GPR1 ireg GPR12
end
| Pand_(r1, r2, r3) ->
fprintf oc " and. %a, %a, %a\n" ireg r1 ireg r2 ireg r3
| Pandc(r1, r2, r3) ->
fprintf oc " andc %a, %a, %a\n" ireg r1 ireg r2 ireg r3
| Pandi_(r1, r2, c) ->
fprintf oc " andi. %a, %a, %a\n" ireg r1 ireg r2 constant c
| Pandis_(r1, r2, c) ->
fprintf oc " andis. %a, %a, %a\n" ireg r1 ireg r2 constant c
| Pb lbl ->
fprintf oc " b %a\n" label (transl_label lbl)
| Pbctr ->
fprintf oc " bctr\n"
| Pbctrl ->
fprintf oc " bctrl\n"
| Pbf(bit, lbl) ->
if !Clflags.option_faligncondbranchs > 0 then
fprintf oc " .balign %d\n" !Clflags.option_faligncondbranchs;
if short_cond_branch tbl pc lbl then
fprintf oc " bf %a, %a\n" crbit bit label (transl_label lbl)
else begin
let next = new_label() in
fprintf oc " bt %a, %a\n" crbit bit label next;
fprintf oc " b %a\n" label (transl_label lbl);
fprintf oc "%a:\n" label next
end
| Pbl s ->
fprintf oc " bl %a\n" symbol s
| Pbs s ->
fprintf oc " b %a\n" symbol s
| Pblr ->
fprintf oc " blr\n"
| Pbt(bit, lbl) ->
if !Clflags.option_faligncondbranchs > 0 then
fprintf oc " .balign %d\n" !Clflags.option_faligncondbranchs;
if short_cond_branch tbl pc lbl then
fprintf oc " bt %a, %a\n" crbit bit label (transl_label lbl)
else begin
let next = new_label() in
fprintf oc " bf %a, %a\n" crbit bit label next;
fprintf oc " b %a\n" label (transl_label lbl);
fprintf oc "%a:\n" label next
end
| Pbtbl(r, tbl) ->
let lbl = new_label() in
fprintf oc "%s begin pseudoinstr btbl(%a)\n" comment ireg r;
fprintf oc "%s jumptable [ " comment;
List.iter (fun l -> fprintf oc "%a " label (transl_label l)) tbl;
fprintf oc "]\n";
fprintf oc " slwi %a, %a, 2\n" ireg GPR12 ireg r;
fprintf oc " addis %a, %a, %a\n" ireg GPR12 ireg GPR12 label_high lbl;
fprintf oc " lwz %a, %a(%a)\n" ireg GPR12 label_low lbl ireg GPR12;
fprintf oc " mtctr %a\n" ireg GPR12;
fprintf oc " bctr\n";
jumptables := (lbl, tbl) :: !jumptables;
fprintf oc "%s end pseudoinstr btbl\n" comment
| Pcmplw(r1, r2) ->
fprintf oc " cmplw %a, %a, %a\n" creg 0 ireg r1 ireg r2
| Pcmplwi(r1, c) ->
fprintf oc " cmplwi %a, %a, %a\n" creg 0 ireg r1 constant c
| Pcmpw(r1, r2) ->
fprintf oc " cmpw %a, %a, %a\n" creg 0 ireg r1 ireg r2
| Pcmpwi(r1, c) ->
fprintf oc " cmpwi %a, %a, %a\n" creg 0 ireg r1 constant c
| Pcror(c1, c2, c3) ->
fprintf oc " cror %a, %a, %a\n" crbit c1 crbit c2 crbit c3
| Pdivw(r1, r2, r3) ->
fprintf oc " divw %a, %a, %a\n" ireg r1 ireg r2 ireg r3
| Pdivwu(r1, r2, r3) ->
fprintf oc " divwu %a, %a, %a\n" ireg r1 ireg r2 ireg r3
| Peqv(r1, r2, r3) ->
fprintf oc " eqv %a, %a, %a\n" ireg r1 ireg r2 ireg r3
| Pextsb(r1, r2) ->
fprintf oc " extsb %a, %a\n" ireg r1 ireg r2
| Pextsh(r1, r2) ->
fprintf oc " extsh %a, %a\n" ireg r1 ireg r2
| Pfreeframe(sz, ofs) ->
let sz = camlint_of_coqint sz
and ofs = camlint_of_coqint ofs in
if sz < 0x8000l then
fprintf oc " addi %a, %a, %ld\n" ireg GPR1 ireg GPR1 sz
else
fprintf oc " lwz %a, %ld(%a)\n" ireg GPR1 ofs ireg GPR1
| Pfabs(r1, r2) ->
fprintf oc " fabs %a, %a\n" freg r1 freg r2
| Pfadd(r1, r2, r3) ->
fprintf oc " fadd %a, %a, %a\n" freg r1 freg r2 freg r3
| Pfcmpu(r1, r2) ->
fprintf oc " fcmpu %a, %a, %a\n" creg 0 freg r1 freg r2
| Pfcti(r1, r2) ->
fprintf oc "%s begin pseudoinstr %a = fcti(%a)\n" comment ireg r1 freg r2;
fprintf oc " fctiwz %a, %a\n" freg FPR13 freg r2;
fprintf oc " stfdu %a, -8(%a)\n" freg FPR13 ireg GPR1;
fprintf oc " lwz %a, 4(%a)\n" ireg r1 ireg GPR1;
fprintf oc " addi %a, %a, 8\n" ireg GPR1 ireg GPR1;
fprintf oc "%s end pseudoinstr fcti\n" comment
| Pfdiv(r1, r2, r3) ->
fprintf oc " fdiv %a, %a, %a\n" freg r1 freg r2 freg r3
| Pfmake(rd, r1, r2) ->
fprintf oc "%s begin pseudoinstr %a = fmake(%a, %a)\n"
comment freg rd ireg r1 ireg r2;
fprintf oc " stwu %a, -8(%a)\n" ireg r1 ireg GPR1;
fprintf oc " stw %a, 4(%a)\n" ireg r2 ireg GPR1;
fprintf oc " lfd %a, 0(%a)\n" freg rd ireg GPR1;
fprintf oc " addi %a, %a, 8\n" ireg GPR1 ireg GPR1;
fprintf oc "%s end pseudoinstr fmake\n" comment
| Pfmr(r1, r2) ->
fprintf oc " fmr %a, %a\n" freg r1 freg r2
| Pfmul(r1, r2, r3) ->
fprintf oc " fmul %a, %a, %a\n" freg r1 freg r2 freg r3
| Pfneg(r1, r2) ->
fprintf oc " fneg %a, %a\n" freg r1 freg r2
| Pfrsp(r1, r2) ->
fprintf oc " frsp %a, %a\n" freg r1 freg r2
| Pfsub(r1, r2, r3) ->
fprintf oc " fsub %a, %a, %a\n" freg r1 freg r2 freg r3
| Plbz(r1, c, r2) ->
fprintf oc " lbz %a, %a(%a)\n" ireg r1 constant c ireg r2
| Plbzx(r1, r2, r3) ->
fprintf oc " lbzx %a, %a, %a\n" ireg r1 ireg r2 ireg r3
| Plfd(r1, c, r2) ->
fprintf oc " lfd %a, %a(%a)\n" freg r1 constant c ireg r2
| Plfdx(r1, r2, r3) ->
fprintf oc " lfdx %a, %a, %a\n" freg r1 ireg r2 ireg r3
| Plfi(r1, c) ->
let lbl = new_label() in
fprintf oc " addis %a, 0, %a\n" ireg GPR12 label_high lbl;
fprintf oc " lfd %a, %a(%a) %s %.18g\n" freg r1 label_low lbl ireg GPR12 comment (camlfloat_of_coqfloat c);
float_literals := (lbl, camlint64_of_coqint (Floats.Float.bits_of_double c)) :: !float_literals;
| Plfs(r1, c, r2) ->
fprintf oc " lfs %a, %a(%a)\n" freg r1 constant c ireg r2
| Plfsx(r1, r2, r3) ->
fprintf oc " lfsx %a, %a, %a\n" freg r1 ireg r2 ireg r3
| Plha(r1, c, r2) ->
fprintf oc " lha %a, %a(%a)\n" ireg r1 constant c ireg r2
| Plhax(r1, r2, r3) ->
fprintf oc " lhax %a, %a, %a\n" ireg r1 ireg r2 ireg r3
| Plhz(r1, c, r2) ->
fprintf oc " lhz %a, %a(%a)\n" ireg r1 constant c ireg r2
| Plhzx(r1, r2, r3) ->
fprintf oc " lhzx %a, %a, %a\n" ireg r1 ireg r2 ireg r3
| Plwz(r1, c, r2) ->
fprintf oc " lwz %a, %a(%a)\n" ireg r1 constant c ireg r2
| Plwzx(r1, r2, r3) ->
fprintf oc " lwzx %a, %a, %a\n" ireg r1 ireg r2 ireg r3
| Pmfcrbit(r1, bit) ->
fprintf oc " mfcr %a\n" ireg r1;
fprintf oc " rlwinm %a, %a, %d, 31, 31\n" ireg r1 ireg r1 (1 + num_crbit bit)
| Pmflr(r1) ->
fprintf oc " mflr %a\n" ireg r1
| Pmr(r1, r2) ->
fprintf oc " mr %a, %a\n" ireg r1 ireg r2
| Pmtctr(r1) ->
fprintf oc " mtctr %a\n" ireg r1
| Pmtlr(r1) ->
fprintf oc " mtlr %a\n" ireg r1
| Pmulli(r1, r2, c) ->
fprintf oc " mulli %a, %a, %a\n" ireg r1 ireg r2 constant c
| Pmullw(r1, r2, r3) ->
fprintf oc " mullw %a, %a, %a\n" ireg r1 ireg r2 ireg r3
| Pnand(r1, r2, r3) ->
fprintf oc " nand %a, %a, %a\n" ireg r1 ireg r2 ireg r3
| Pnor(r1, r2, r3) ->
fprintf oc " nor %a, %a, %a\n" ireg r1 ireg r2 ireg r3
| Por(r1, r2, r3) ->
fprintf oc " or %a, %a, %a\n" ireg r1 ireg r2 ireg r3
| Porc(r1, r2, r3) ->
fprintf oc " orc %a, %a, %a\n" ireg r1 ireg r2 ireg r3
| Pori(r1, r2, c) ->
fprintf oc " ori %a, %a, %a\n" ireg r1 ireg r2 constant c
| Poris(r1, r2, c) ->
fprintf oc " oris %a, %a, %a\n" ireg r1 ireg r2 constant c
| Prlwinm(r1, r2, c1, c2) ->
let (mb, me) = rolm_mask (camlint_of_coqint c2) in
fprintf oc " rlwinm %a, %a, %ld, %d, %d %s 0x%lx\n"
ireg r1 ireg r2 (camlint_of_coqint c1) mb me
comment (camlint_of_coqint c2)
| Prlwimi(r1, r2, c1, c2) ->
let (mb, me) = rolm_mask (camlint_of_coqint c2) in
fprintf oc " rlwimi %a, %a, %ld, %d, %d %s 0x%lx\n"
ireg r1 ireg r2 (camlint_of_coqint c1) mb me
comment (camlint_of_coqint c2)
| Pslw(r1, r2, r3) ->
fprintf oc " slw %a, %a, %a\n" ireg r1 ireg r2 ireg r3
| Psraw(r1, r2, r3) ->
fprintf oc " sraw %a, %a, %a\n" ireg r1 ireg r2 ireg r3
| Psrawi(r1, r2, c) ->
fprintf oc " srawi %a, %a, %ld\n" ireg r1 ireg r2 (camlint_of_coqint c)
| Psrw(r1, r2, r3) ->
fprintf oc " srw %a, %a, %a\n" ireg r1 ireg r2 ireg r3
| Pstb(r1, c, r2) ->
fprintf oc " stb %a, %a(%a)\n" ireg r1 constant c ireg r2
| Pstbx(r1, r2, r3) ->
fprintf oc " stbx %a, %a, %a\n" ireg r1 ireg r2 ireg r3
| Pstfd(r1, c, r2) ->
fprintf oc " stfd %a, %a(%a)\n" freg r1 constant c ireg r2
| Pstfdx(r1, r2, r3) ->
fprintf oc " stfdx %a, %a, %a\n" freg r1 ireg r2 ireg r3
| Pstfs(r1, c, r2) ->
fprintf oc " frsp %a, %a\n" freg FPR13 freg r1;
fprintf oc " stfs %a, %a(%a)\n" freg FPR13 constant c ireg r2
| Pstfsx(r1, r2, r3) ->
fprintf oc " frsp %a, %a\n" freg FPR13 freg r1;
fprintf oc " stfsx %a, %a, %a\n" freg FPR13 ireg r2 ireg r3
| Psth(r1, c, r2) ->
fprintf oc " sth %a, %a(%a)\n" ireg r1 constant c ireg r2
| Psthx(r1, r2, r3) ->
fprintf oc " sthx %a, %a, %a\n" ireg r1 ireg r2 ireg r3
| Pstw(r1, c, r2) ->
fprintf oc " stw %a, %a(%a)\n" ireg r1 constant c ireg r2
| Pstwx(r1, r2, r3) ->
fprintf oc " stwx %a, %a, %a\n" ireg r1 ireg r2 ireg r3
| Psubfc(r1, r2, r3) ->
fprintf oc " subfc %a, %a, %a\n" ireg r1 ireg r2 ireg r3
| Psubfe(r1, r2, r3) ->
fprintf oc " subfe %a, %a, %a\n" ireg r1 ireg r2 ireg r3
| Psubfic(r1, r2, c) ->
fprintf oc " subfic %a, %a, %a\n" ireg r1 ireg r2 constant c
| Pxor(r1, r2, r3) ->
fprintf oc " xor %a, %a, %a\n" ireg r1 ireg r2 ireg r3
| Pxori(r1, r2, c) ->
fprintf oc " xori %a, %a, %a\n" ireg r1 ireg r2 constant c
| Pxoris(r1, r2, c) ->
fprintf oc " xoris %a, %a, %a\n" ireg r1 ireg r2 constant c
| Plabel lbl ->
if (not fallthrough) && !Clflags.option_falignbranchtargets > 0 then
fprintf oc " .balign %d\n" !Clflags.option_falignbranchtargets;
fprintf oc "%a:\n" label (transl_label lbl)
| Pbuiltin(ef, args, res) ->
begin match ef with
| EF_builtin(name, sg) ->
print_builtin_inline oc (extern_atom name) args res
| EF_vload chunk ->
print_builtin_vload oc chunk args res
| EF_vstore chunk ->
print_builtin_vstore oc chunk args
| EF_vload_global(chunk, id, ofs) ->
print_builtin_vload_global oc chunk id ofs args res
| EF_vstore_global(chunk, id, ofs) ->
print_builtin_vstore_global oc chunk id ofs args
| EF_memcpy(sz, al) ->
print_builtin_memcpy oc (Int32.to_int (camlint_of_coqint sz))
(Int32.to_int (camlint_of_coqint al)) args
| EF_annot_val(txt, targ) ->
print_annot_val oc (extern_atom txt) args res
| EF_inline_asm txt ->
fprintf oc "%s begin inline assembly\n" comment;
fprintf oc " %s\n" (extern_atom txt);
fprintf oc "%s end inline assembly\n" comment
| _ ->
assert false
end
| Pannot(ef, args) ->
begin match ef with
| EF_annot(txt, targs) ->
print_annot_stmt oc (extern_atom txt) targs args
| _ ->
assert false
end
(* Determine if an instruction falls through *)
let instr_fall_through = function
| Pb _ -> false
| Pbctr -> false
| Pbs _ -> false
| Pblr -> false
| _ -> true
(* Estimate the size of an Asm instruction encoding, in number of actual
PowerPC instructions. We can over-approximate. *)
let instr_size = function
| Pallocframe(sz, ofs) -> 3
| Pbf(bit, lbl) -> 2
| Pbt(bit, lbl) -> 2
| Pbtbl(r, tbl) -> 4
| Pfcti(r1, r2) -> 4
| Pfmake(rd, r1, r2) -> 4
| Plfi(r1, c) -> 2
| Pmfcrbit(r1, bit) -> 2
| Pstfs(r1, c, r2) -> 2
| Pstfsx(r1, r2, r3) -> 2
| Plabel lbl -> 0
| Pbuiltin(ef, args, res) ->
begin match ef with
| EF_builtin(name, sg) ->
begin match extern_atom name with
| "__builtin_bswap" -> 3
| "__builtin_fcti" -> 4
| _ -> 1
end
| EF_vload chunk ->
if chunk = Mint8signed then 2 else 1
| EF_vstore chunk ->
if chunk = Mfloat32 then 2 else 1
| EF_vload_global(chunk, id, ofs) ->
if chunk = Mint8signed then 3 else 2
| EF_vstore_global(chunk, id, ofs) ->
if chunk = Mfloat32 then 3 else 2
| EF_memcpy(sz, al) ->
let sz = Int32.to_int (camlint_of_coqint sz) in
if sz <= 64 then (sz / 4) * 2 + 6 else 11
| EF_annot_val(txt, targ) ->
0
| _ ->
assert false
end
| Pannot(ef, args) -> 0
| _ -> 1
(* Build a table label -> estimated position in generated code.
Used to predict if relative conditional branches can use the short form. *)
let rec label_positions tbl pc = function
| [] -> tbl
| Plabel lbl :: c -> label_positions (PTree.set lbl pc tbl) pc c
| i :: c -> label_positions tbl (pc + instr_size i) c
(* Emit a sequence of instructions *)
let rec print_instructions oc tbl pc fallthrough = function
| [] -> ()
| i :: c ->
print_instruction oc tbl pc fallthrough i;
print_instructions oc tbl (pc + instr_size i) (instr_fall_through i) c
(* Print the code for a function *)
let print_literal oc (lbl, n) =
let nlo = Int64.to_int32 n
and nhi = Int64.to_int32(Int64.shift_right_logical n 32) in
fprintf oc "%a: .long 0x%lx, 0x%lx\n" label lbl nhi nlo
let print_jumptable oc (lbl, tbl) =
fprintf oc "%a:" label lbl;
List.iter
(fun l -> fprintf oc " .long %a\n" label (transl_label l))
tbl
let print_function oc name code =
Hashtbl.clear current_function_labels;
float_literals := [];
jumptables := [];
let (text, lit, jmptbl) =
match C2C.atom_sections name with
| [t;l;j] -> (t, l, j)
| _ -> (Section_text, Section_literal, Section_jumptable) in
section oc text;
let alignment =
match !Clflags.option_falignfunctions with Some n -> n | None -> 4 in
fprintf oc " .balign %d\n" alignment;
if not (C2C.atom_is_static name) then
fprintf oc " .globl %a\n" symbol name;
fprintf oc "%a:\n" symbol name;
print_instructions oc (label_positions PTree.empty 0 code) 0 true code;
fprintf oc " .type %a, @function\n" symbol name;
fprintf oc " .size %a, . - %a\n" symbol name symbol name;
if !float_literals <> [] then begin
section oc lit;
fprintf oc " .balign 8\n";
List.iter (print_literal oc) !float_literals;
float_literals := []
end;
if !jumptables <> [] then begin
section oc jmptbl;
fprintf oc " .balign 4\n";
List.iter (print_jumptable oc) !jumptables;
jumptables := []
end
(* Generation of stub functions *)
let re_variadic_stub = Str.regexp "\\(.*\\)\\$[if]*$"
(* Stubs for EABI *)
let variadic_stub oc stub_name fun_name args =
section oc Section_text;
fprintf oc " .balign 4\n";
fprintf oc ".L%s$stub:\n" stub_name;
(* bit 6 must be set if at least one argument is a float; clear otherwise *)
if List.mem Tfloat args
then fprintf oc " creqv 6, 6, 6\n"
else fprintf oc " crxor 6, 6, 6\n";
fprintf oc " b %s\n" fun_name
let stub_function oc name sg =
let name = extern_atom name in
(* Only variadic functions need a stub *)
if Str.string_match re_variadic_stub name 0
then variadic_stub oc name (Str.matched_group 1 name) sg.sig_args
let function_needs_stub name =
Str.string_match re_variadic_stub (extern_atom name) 0
(* Generation of whole programs *)
let print_fundef oc name defn =
match defn with
| Internal code ->
print_function oc name code
| External ((EF_external _ | EF_malloc | EF_free) as ef) ->
if function_needs_stub name then stub_function oc name (ef_sig ef)
| External _ ->
()
let record_extfun (name, gd) =
match gd with
| Gfun(External (EF_external _ | EF_malloc | EF_free)) ->
if function_needs_stub name then
stubbed_functions := IdentSet.add name !stubbed_functions
| _ -> ()
let print_init oc = function
| Init_int8 n ->
fprintf oc " .byte %ld\n" (camlint_of_coqint n)
| Init_int16 n ->
fprintf oc " .short %ld\n" (camlint_of_coqint n)
| Init_int32 n ->
fprintf oc " .long %ld\n" (camlint_of_coqint n)
| Init_float32 n ->
fprintf oc " .long 0x%lx %s %.18g\n"
(camlint_of_coqint (Floats.Float.bits_of_single n))
comment (camlfloat_of_coqfloat n)
| Init_float64 n ->
let b = camlint64_of_coqint (Floats.Float.bits_of_double n) in
fprintf oc " .long 0x%Lx, 0x%Lx %s %.18g\n"
(Int64.shift_right_logical b 32)
(Int64.logand b 0xFFFFFFFFL)
comment (camlfloat_of_coqfloat n)
| Init_space n ->
if Z.gt n Z.zero then
fprintf oc " .space %s\n" (Z.to_string n)
| Init_addrof(symb, ofs) ->
fprintf oc " .long %a\n"
symbol_offset (symb, camlint_of_coqint ofs)
let print_init_data oc name id =
if Str.string_match PrintCsyntax.re_string_literal (extern_atom name) 0
&& List.for_all (function Init_int8 _ -> true | _ -> false) id
then
fprintf oc " .ascii \"%s\"\n" (PrintCsyntax.string_of_init id)
else
List.iter (print_init oc) id
let print_var oc name v =
match v.gvar_init with
| [] -> ()
| _ ->
let sec =
match C2C.atom_sections name with
| [s] -> s
| _ -> Section_data true
and align =
match C2C.atom_alignof name with
| Some a -> a
| None -> 8 in (* 8-alignment is a safe default *)
let name_sec =
name_of_section sec in
if name_sec <> "COMM" then begin
fprintf oc " %s\n" name_sec;
fprintf oc " .balign %d\n" align;
if not (C2C.atom_is_static name) then
fprintf oc " .globl %a\n" symbol name;
fprintf oc "%a:\n" symbol name;
print_init_data oc name v.gvar_init;
fprintf oc " .type %a, @object\n" symbol name;
fprintf oc " .size %a, . - %a\n" symbol name symbol name
end else begin
let sz =
match v.gvar_init with [Init_space sz] -> sz | _ -> assert false in
fprintf oc " %s %a, %s, %d\n"
(if C2C.atom_is_static name then ".lcomm" else ".comm")
symbol name
(Z.to_string sz)
(1 lsl align)
end
let print_globdef oc (name, gdef) =
match gdef with
| Gfun f -> print_fundef oc name f
| Gvar v -> print_var oc name v
let print_prologue oc =
match target with
| Linux ->
()
| Diab ->
fprintf oc " .xopt align-fill-text=0x60000000\n"
let print_program oc p =
stubbed_functions := IdentSet.empty;
List.iter record_extfun p.prog_defs;
print_prologue oc;
List.iter (print_globdef oc) p.prog_defs
|