blob: 88b70c1d66dc20aad62f2e132371c73032434e76 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
|
(* *********************************************************************)
(* *)
(* The Compcert verified compiler *)
(* *)
(* Xavier Leroy, INRIA Paris-Rocquencourt *)
(* *)
(* Copyright Institut National de Recherche en Informatique et en *)
(* Automatique. All rights reserved. This file is distributed *)
(* under the terms of the INRIA Non-Commercial License Agreement. *)
(* *)
(* *********************************************************************)
Require Import Coqlib.
Require Import Maps.
Require Import AST.
(** ** Machine registers *)
(** The following type defines the machine registers that can be referenced
as locations. These include:
- Integer registers that can be allocated to RTL pseudo-registers ([Rxx]).
- Floating-point registers that can be allocated to RTL pseudo-registers
([Fxx]).
- Two integer registers, not allocatable, reserved as temporaries for
spilling and reloading ([IT1, IT2]).
- Two float registers, not allocatable, reserved as temporaries for
spilling and reloading ([FT1, FT2]).
The type [mreg] does not include special-purpose or reserved
machine registers such as the stack pointer and the condition codes. *)
Inductive mreg: Type :=
(** Allocatable integer regs *)
| R3: mreg | R4: mreg | R5: mreg | R6: mreg
| R7: mreg | R8: mreg | R9: mreg | R10: mreg
| R14: mreg | R15: mreg | R16: mreg
| R17: mreg | R18: mreg | R19: mreg | R20: mreg
| R21: mreg | R22: mreg | R23: mreg | R24: mreg
| R25: mreg | R26: mreg | R27: mreg | R28: mreg
| R29: mreg | R30: mreg | R31: mreg
(** Allocatable float regs *)
| F1: mreg | F2: mreg | F3: mreg | F4: mreg
| F5: mreg | F6: mreg | F7: mreg | F8: mreg
| F9: mreg | F10: mreg | F14: mreg | F15: mreg
| F16: mreg | F17: mreg | F18: mreg | F19: mreg
| F20: mreg | F21: mreg | F22: mreg | F23: mreg
| F24: mreg | F25: mreg | F26: mreg | F27: mreg
| F28: mreg | F29: mreg | F30: mreg | F31: mreg
(** Integer temporaries *)
| IT1: mreg (* R11 *) | IT2: mreg (* R0 *)
(** Float temporaries *)
| FT1: mreg (* F11 *) | FT2: mreg (* F12 *) | FT3: mreg (* F0 *).
Lemma mreg_eq: forall (r1 r2: mreg), {r1 = r2} + {r1 <> r2}.
Proof. decide equality. Qed.
Definition mreg_type (r: mreg): typ :=
match r with
| R3 => Tint | R4 => Tint | R5 => Tint | R6 => Tint
| R7 => Tint | R8 => Tint | R9 => Tint | R10 => Tint
| R14 => Tint | R15 => Tint | R16 => Tint
| R17 => Tint | R18 => Tint | R19 => Tint | R20 => Tint
| R21 => Tint | R22 => Tint | R23 => Tint | R24 => Tint
| R25 => Tint | R26 => Tint | R27 => Tint | R28 => Tint
| R29 => Tint | R30 => Tint | R31 => Tint
| F1 => Tfloat | F2 => Tfloat | F3 => Tfloat | F4 => Tfloat
| F5 => Tfloat | F6 => Tfloat | F7 => Tfloat | F8 => Tfloat
| F9 => Tfloat | F10 => Tfloat | F14 => Tfloat | F15 => Tfloat
| F16 => Tfloat | F17 => Tfloat | F18 => Tfloat | F19 => Tfloat
| F20 => Tfloat | F21 => Tfloat | F22 => Tfloat | F23 => Tfloat
| F24 => Tfloat | F25 => Tfloat | F26 => Tfloat | F27 => Tfloat
| F28 => Tfloat | F29 => Tfloat | F30 => Tfloat | F31 => Tfloat
| IT1 => Tint | IT2 => Tint
| FT1 => Tfloat | FT2 => Tfloat | FT3 => Tfloat
end.
Open Scope positive_scope.
Module IndexedMreg <: INDEXED_TYPE.
Definition t := mreg.
Definition eq := mreg_eq.
Definition index (r: mreg): positive :=
match r with
| R3 => 1 | R4 => 2 | R5 => 3 | R6 => 4
| R7 => 5 | R8 => 6 | R9 => 7 | R10 => 8
| R14 => 9 | R15 => 10 | R16 => 11
| R17 => 12 | R18 => 13 | R19 => 14 | R20 => 15
| R21 => 16 | R22 => 17 | R23 => 18 | R24 => 19
| R25 => 20 | R26 => 21 | R27 => 22 | R28 => 23
| R29 => 24 | R30 => 25 | R31 => 26
| F1 => 28 | F2 => 29 | F3 => 30 | F4 => 31
| F5 => 32 | F6 => 33 | F7 => 34 | F8 => 35
| F9 => 36 | F10 => 37 | F14 => 38 | F15 => 39
| F16 => 40 | F17 => 41 | F18 => 42 | F19 => 43
| F20 => 44 | F21 => 45 | F22 => 46 | F23 => 47
| F24 => 48 | F25 => 49 | F26 => 50 | F27 => 51
| F28 => 52 | F29 => 53 | F30 => 54 | F31 => 55
| IT1 => 56 | IT2 => 57
| FT1 => 58 | FT2 => 59 | FT3 => 60
end.
Lemma index_inj:
forall r1 r2, index r1 = index r2 -> r1 = r2.
Proof.
destruct r1; destruct r2; simpl; intro; discriminate || reflexivity.
Qed.
End IndexedMreg.
|