1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
|
(* *********************************************************************)
(* *)
(* The Compcert verified compiler *)
(* *)
(* Xavier Leroy, INRIA Paris-Rocquencourt *)
(* *)
(* Copyright Institut National de Recherche en Informatique et en *)
(* Automatique. All rights reserved. This file is distributed *)
(* under the terms of the INRIA Non-Commercial License Agreement. *)
(* *)
(* *********************************************************************)
(** Correctness proof for constant propagation (processor-dependent part). *)
Require Import Coqlib.
Require Import AST.
Require Import Integers.
Require Import Floats.
Require Import Values.
Require Import Memory.
Require Import Globalenvs.
Require Import Events.
Require Import Op.
Require Import Registers.
Require Import RTL.
Require Import ConstpropOp.
Require Import Constprop.
(** * Correctness of the static analysis *)
Section ANALYSIS.
Variable ge: genv.
Variable sp: val.
(** We first show that the dataflow analysis is correct with respect
to the dynamic semantics: the approximations (sets of values)
of a register at a program point predicted by the static analysis
are a superset of the values actually encountered during concrete
executions. We formalize this correspondence between run-time values and
compile-time approximations by the following predicate. *)
Definition val_match_approx (a: approx) (v: val) : Prop :=
match a with
| Unknown => True
| I p => v = Vint p
| F p => v = Vfloat p
| L p => v = Vlong p
| G symb ofs => v = symbol_address ge symb ofs
| S ofs => v = Val.add sp (Vint ofs)
| _ => False
end.
Inductive val_list_match_approx: list approx -> list val -> Prop :=
| vlma_nil:
val_list_match_approx nil nil
| vlma_cons:
forall a al v vl,
val_match_approx a v ->
val_list_match_approx al vl ->
val_list_match_approx (a :: al) (v :: vl).
Ltac SimplVMA :=
match goal with
| H: (val_match_approx (I _) ?v) |- _ =>
simpl in H; (try subst v); SimplVMA
| H: (val_match_approx (F _) ?v) |- _ =>
simpl in H; (try subst v); SimplVMA
| H: (val_match_approx (L _) ?v) |- _ =>
simpl in H; (try subst v); SimplVMA
| H: (val_match_approx (G _ _) ?v) |- _ =>
simpl in H; (try subst v); SimplVMA
| H: (val_match_approx (S _) ?v) |- _ =>
simpl in H; (try subst v); SimplVMA
| _ =>
idtac
end.
Ltac InvVLMA :=
match goal with
| H: (val_list_match_approx nil ?vl) |- _ =>
inv H
| H: (val_list_match_approx (?a :: ?al) ?vl) |- _ =>
inv H; SimplVMA; InvVLMA
| _ =>
idtac
end.
(** We then show that [eval_static_operation] is a correct abstract
interpretations of [eval_operation]: if the concrete arguments match
the given approximations, the concrete results match the
approximations returned by [eval_static_operation]. *)
Lemma eval_static_condition_correct:
forall cond al vl m b,
val_list_match_approx al vl ->
eval_static_condition cond al = Some b ->
eval_condition cond vl m = Some b.
Proof.
intros until b.
unfold eval_static_condition.
case (eval_static_condition_match cond al); intros;
InvVLMA; simpl; congruence.
Qed.
Remark shift_symbol_address:
forall symb ofs n,
symbol_address ge symb (Int.add ofs n) = Val.add (symbol_address ge symb ofs) (Vint n).
Proof.
unfold symbol_address; intros. destruct (Genv.find_symbol ge symb); auto.
Qed.
Lemma eval_static_operation_correct:
forall op al vl m v,
val_list_match_approx al vl ->
eval_operation ge sp op vl m = Some v ->
val_match_approx (eval_static_operation op al) v.
Proof.
intros until v.
unfold eval_static_operation.
case (eval_static_operation_match op al); intros;
InvVLMA; simpl in *; FuncInv; try subst v; auto.
destruct (propagate_float_constants tt); simpl; auto.
rewrite shift_symbol_address; auto.
rewrite Int.add_commut. rewrite shift_symbol_address. rewrite Val.add_commut. auto.
rewrite Int.add_commut; auto.
rewrite Val.add_assoc. rewrite Int.add_commut. auto.
change (Val.add (Vint n1) (Val.add sp (Vint n2)) = Val.add sp (Vint (Int.add n1 n2))).
rewrite Val.add_permut. auto.
rewrite shift_symbol_address; auto.
rewrite Val.add_assoc; auto.
unfold symbol_address. destruct (Genv.find_symbol ge s1); auto.
rewrite Val.sub_add_opp. rewrite Val.add_assoc. simpl. rewrite Int.sub_add_opp. auto.
destruct (Int.eq n2 Int.zero). inv H0.
destruct (Int.eq n1 (Int.repr Int.min_signed) && Int.eq n2 Int.mone); inv H0; simpl; auto.
destruct (Int.eq n2 Int.zero); inv H0; simpl; auto.
destruct (Int.ltu n2 Int.iwordsize); simpl; auto.
destruct (Int.ltu n2 Int.iwordsize); simpl; auto.
destruct (Int.ltu n Int.iwordsize); simpl; auto.
destruct (Int.ltu n (Int.repr 31)); inv H0. simpl; auto.
destruct (Int.ltu n2 Int.iwordsize); simpl; auto.
unfold eval_static_intoffloat. destruct (Float.intoffloat n1); simpl in H0; inv H0.
simpl; auto.
destruct (propagate_float_constants tt); simpl; auto.
unfold eval_static_condition_val, Val.of_optbool.
destruct (eval_static_condition c vl0) eqn:?.
rewrite (eval_static_condition_correct _ _ _ m _ H Heqo).
destruct b; simpl; auto.
simpl; auto.
Qed.
Lemma eval_static_addressing_correct:
forall addr al vl v,
val_list_match_approx al vl ->
eval_addressing ge sp addr vl = Some v ->
val_match_approx (eval_static_addressing addr al) v.
Proof.
intros until v. unfold eval_static_addressing.
case (eval_static_addressing_match addr al); intros;
InvVLMA; simpl in *; FuncInv; try subst v; auto.
rewrite shift_symbol_address; auto.
rewrite Val.add_assoc. auto.
repeat rewrite shift_symbol_address. auto.
fold (Val.add (Vint n1) (symbol_address ge id ofs)).
repeat rewrite shift_symbol_address. apply Val.add_commut.
repeat rewrite Val.add_assoc. auto.
fold (Val.add (Vint n1) (Val.add sp (Vint ofs))).
rewrite Val.add_permut. decEq. rewrite Val.add_commut. auto.
rewrite shift_symbol_address. auto.
Qed.
(** * Correctness of strength reduction *)
(** We now show that strength reduction over operators and addressing
modes preserve semantics: the strength-reduced operations and
addressings evaluate to the same values as the original ones if the
actual arguments match the static approximations used for strength
reduction. *)
Section STRENGTH_REDUCTION.
Variable app: D.t.
Variable rs: regset.
Variable m: mem.
Hypothesis MATCH: forall r, val_match_approx (approx_reg app r) rs#r.
Ltac InvApproxRegs :=
match goal with
| [ H: _ :: _ = _ :: _ |- _ ] =>
injection H; clear H; intros; InvApproxRegs
| [ H: ?v = approx_reg app ?r |- _ ] =>
generalize (MATCH r); rewrite <- H; clear H; intro; InvApproxRegs
| _ => idtac
end.
Lemma cond_strength_reduction_correct:
forall cond args vl,
vl = approx_regs app args ->
let (cond', args') := cond_strength_reduction cond args vl in
eval_condition cond' rs##args' m = eval_condition cond rs##args m.
Proof.
intros until vl. unfold cond_strength_reduction.
case (cond_strength_reduction_match cond args vl); simpl; intros; InvApproxRegs; SimplVMA.
rewrite H0. apply Val.swap_cmp_bool.
rewrite H. auto.
rewrite H0. apply Val.swap_cmpu_bool.
rewrite H. auto.
auto.
Qed.
Lemma make_addimm_correct:
forall n r,
let (op, args) := make_addimm n r in
exists v, eval_operation ge sp op rs##args m = Some v /\ Val.lessdef (Val.add rs#r (Vint n)) v.
Proof.
intros. unfold make_addimm.
predSpec Int.eq Int.eq_spec n Int.zero; intros.
subst. exists (rs#r); split; auto. destruct (rs#r); simpl; auto; rewrite Int.add_zero; auto.
exists (Val.add rs#r (Vint n)); auto.
Qed.
Lemma make_shlimm_correct:
forall n r1 r2,
rs#r2 = Vint n ->
let (op, args) := make_shlimm n r1 r2 in
exists v, eval_operation ge sp op rs##args m = Some v /\ Val.lessdef (Val.shl rs#r1 (Vint n)) v.
Proof.
intros; unfold make_shlimm.
predSpec Int.eq Int.eq_spec n Int.zero; intros. subst.
exists (rs#r1); split; auto. destruct (rs#r1); simpl; auto. rewrite Int.shl_zero. auto.
destruct (Int.ltu n Int.iwordsize) eqn:?; intros.
rewrite Val.shl_rolm; auto. econstructor; split; eauto. auto.
econstructor; split; eauto. simpl. congruence.
Qed.
Lemma make_shrimm_correct:
forall n r1 r2,
rs#r2 = Vint n ->
let (op, args) := make_shrimm n r1 r2 in
exists v, eval_operation ge sp op rs##args m = Some v /\ Val.lessdef (Val.shr rs#r1 (Vint n)) v.
Proof.
intros; unfold make_shrimm.
predSpec Int.eq Int.eq_spec n Int.zero; intros. subst.
exists (rs#r1); split; auto. destruct (rs#r1); simpl; auto. rewrite Int.shr_zero. auto.
destruct (Int.ltu n Int.iwordsize) eqn:?.
econstructor; split; eauto. simpl. auto.
econstructor; split; eauto. simpl. congruence.
Qed.
Lemma make_shruimm_correct:
forall n r1 r2,
rs#r2 = Vint n ->
let (op, args) := make_shruimm n r1 r2 in
exists v, eval_operation ge sp op rs##args m = Some v /\ Val.lessdef (Val.shru rs#r1 (Vint n)) v.
Proof.
intros; unfold make_shruimm.
predSpec Int.eq Int.eq_spec n Int.zero; intros. subst.
exists (rs#r1); split; auto. destruct (rs#r1); simpl; auto. rewrite Int.shru_zero. auto.
destruct (Int.ltu n Int.iwordsize) eqn:?; intros.
rewrite Val.shru_rolm; auto. econstructor; split; eauto. auto.
econstructor; split; eauto. simpl. congruence.
Qed.
Lemma make_mulimm_correct:
forall n r1 r2,
rs#r2 = Vint n ->
let (op, args) := make_mulimm n r1 r2 in
exists v, eval_operation ge sp op rs##args m = Some v /\ Val.lessdef (Val.mul rs#r1 (Vint n)) v.
Proof.
intros; unfold make_mulimm.
predSpec Int.eq Int.eq_spec n Int.zero; intros. subst.
exists (Vint Int.zero); split; auto. destruct (rs#r1); simpl; auto. rewrite Int.mul_zero; auto.
predSpec Int.eq Int.eq_spec n Int.one; intros. subst.
exists (rs#r1); split; auto. destruct (rs#r1); simpl; auto. rewrite Int.mul_one; auto.
destruct (Int.is_power2 n) eqn:?; intros.
rewrite (Val.mul_pow2 rs#r1 _ _ Heqo). rewrite Val.shl_rolm.
econstructor; split; eauto. auto.
eapply Int.is_power2_range; eauto.
econstructor; split; eauto. auto.
Qed.
Lemma make_divimm_correct:
forall n r1 r2 v,
Val.divs rs#r1 rs#r2 = Some v ->
rs#r2 = Vint n ->
let (op, args) := make_divimm n r1 r2 in
exists w, eval_operation ge sp op rs##args m = Some w /\ Val.lessdef v w.
Proof.
intros; unfold make_divimm.
destruct (Int.is_power2 n) eqn:?.
destruct (Int.ltu i (Int.repr 31)) eqn:?.
exists v; split; auto. simpl. eapply Val.divs_pow2; eauto. congruence.
exists v; auto.
exists v; auto.
Qed.
Lemma make_divuimm_correct:
forall n r1 r2 v,
Val.divu rs#r1 rs#r2 = Some v ->
rs#r2 = Vint n ->
let (op, args) := make_divuimm n r1 r2 in
exists w, eval_operation ge sp op rs##args m = Some w /\ Val.lessdef v w.
Proof.
intros; unfold make_divuimm.
destruct (Int.is_power2 n) eqn:?.
econstructor; split. simpl; eauto.
exploit Int.is_power2_range; eauto. intros RANGE.
rewrite <- Val.shru_rolm; auto. rewrite H0 in H.
destruct (rs#r1); simpl in *; inv H.
destruct (Int.eq n Int.zero); inv H2.
rewrite RANGE. rewrite (Int.divu_pow2 i0 _ _ Heqo). auto.
exists v; auto.
Qed.
Lemma make_andimm_correct:
forall n r,
let (op, args) := make_andimm n r in
exists v, eval_operation ge sp op rs##args m = Some v /\ Val.lessdef (Val.and rs#r (Vint n)) v.
Proof.
intros; unfold make_andimm.
predSpec Int.eq Int.eq_spec n Int.zero; intros.
subst n. exists (Vint Int.zero); split; auto. destruct (rs#r); simpl; auto. rewrite Int.and_zero; auto.
predSpec Int.eq Int.eq_spec n Int.mone; intros.
subst n. exists (rs#r); split; auto. destruct (rs#r); simpl; auto. rewrite Int.and_mone; auto.
econstructor; split; eauto. auto.
Qed.
Lemma make_orimm_correct:
forall n r,
let (op, args) := make_orimm n r in
exists v, eval_operation ge sp op rs##args m = Some v /\ Val.lessdef (Val.or rs#r (Vint n)) v.
Proof.
intros; unfold make_orimm.
predSpec Int.eq Int.eq_spec n Int.zero; intros.
subst n. exists (rs#r); split; auto. destruct (rs#r); simpl; auto. rewrite Int.or_zero; auto.
predSpec Int.eq Int.eq_spec n Int.mone; intros.
subst n. exists (Vint Int.mone); split; auto. destruct (rs#r); simpl; auto. rewrite Int.or_mone; auto.
econstructor; split; eauto. auto.
Qed.
Lemma make_xorimm_correct:
forall n r,
let (op, args) := make_xorimm n r in
exists v, eval_operation ge sp op rs##args m = Some v /\ Val.lessdef (Val.xor rs#r (Vint n)) v.
Proof.
intros; unfold make_xorimm.
predSpec Int.eq Int.eq_spec n Int.zero; intros.
subst n. exists (rs#r); split; auto. destruct (rs#r); simpl; auto. rewrite Int.xor_zero; auto.
econstructor; split; eauto. auto.
Qed.
Lemma op_strength_reduction_correct:
forall op args vl v,
vl = approx_regs app args ->
eval_operation ge sp op rs##args m = Some v ->
let (op', args') := op_strength_reduction op args vl in
exists w, eval_operation ge sp op' rs##args' m = Some w /\ Val.lessdef v w.
Proof.
intros until v; unfold op_strength_reduction;
case (op_strength_reduction_match op args vl); simpl; intros.
(* add *)
InvApproxRegs. SimplVMA. inv H0. rewrite H1. rewrite Val.add_commut. apply make_addimm_correct.
InvApproxRegs. SimplVMA. inv H0. rewrite H. apply make_addimm_correct.
(* sub *)
InvApproxRegs; SimplVMA. inv H0. rewrite H1. econstructor; split; eauto.
InvApproxRegs; SimplVMA. inv H0. rewrite H. rewrite Val.sub_add_opp. apply make_addimm_correct.
(* mul *)
InvApproxRegs; SimplVMA. inv H0. rewrite H1. rewrite Val.mul_commut. apply make_mulimm_correct; auto.
InvApproxRegs; SimplVMA. inv H0. rewrite H. apply make_mulimm_correct; auto.
(* divs *)
assert (rs#r2 = Vint n2). clear H0. InvApproxRegs; SimplVMA; auto.
apply make_divimm_correct; auto.
(* divu *)
assert (rs#r2 = Vint n2). clear H0. InvApproxRegs; SimplVMA; auto.
apply make_divuimm_correct; auto.
(* and *)
InvApproxRegs. SimplVMA. inv H0. rewrite H1. rewrite Val.and_commut. apply make_andimm_correct.
InvApproxRegs. SimplVMA. inv H0. rewrite H. apply make_andimm_correct.
(* or *)
InvApproxRegs. SimplVMA. inv H0. rewrite H1. rewrite Val.or_commut. apply make_orimm_correct.
InvApproxRegs. SimplVMA. inv H0. rewrite H. apply make_orimm_correct.
(* xor *)
InvApproxRegs. SimplVMA. inv H0. rewrite H1. rewrite Val.xor_commut. apply make_xorimm_correct.
InvApproxRegs. SimplVMA. inv H0. rewrite H. apply make_xorimm_correct.
(* shl *)
InvApproxRegs. SimplVMA. inv H0. rewrite H. apply make_shlimm_correct; auto.
(* shr *)
InvApproxRegs. SimplVMA. inv H0. rewrite H. apply make_shrimm_correct; auto.
(* shru *)
InvApproxRegs. SimplVMA. inv H0. rewrite H. apply make_shruimm_correct; auto.
(* cmp *)
generalize (cond_strength_reduction_correct c args0 vl0).
destruct (cond_strength_reduction c args0 vl0) as [c' args']; intros.
rewrite <- H1 in H0; auto. econstructor; split; eauto.
(* default *)
exists v; auto.
Qed.
Lemma addr_strength_reduction_correct:
forall addr args vl,
vl = approx_regs app args ->
let (addr', args') := addr_strength_reduction addr args vl in
eval_addressing ge sp addr' rs##args' = eval_addressing ge sp addr rs##args.
Proof.
intros until vl. unfold addr_strength_reduction.
destruct (addr_strength_reduction_match addr args vl); simpl; intros; InvApproxRegs; SimplVMA.
rewrite H; rewrite H0. rewrite shift_symbol_address. auto.
rewrite H; rewrite H0. rewrite Int.add_commut. rewrite shift_symbol_address. rewrite Val.add_commut; auto.
rewrite H; rewrite H0. rewrite Val.add_assoc; auto.
rewrite H; rewrite H0. rewrite Val.add_permut; auto.
rewrite H0. auto.
rewrite H. rewrite Val.add_commut. auto.
rewrite H0. rewrite Val.add_commut; auto.
rewrite H; auto.
rewrite H. rewrite shift_symbol_address. auto.
rewrite H. rewrite shift_symbol_address. auto.
rewrite H. rewrite Val.add_assoc. auto.
auto.
Qed.
End STRENGTH_REDUCTION.
End ANALYSIS.
|