1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
|
(* *********************************************************************)
(* *)
(* The Compcert verified compiler *)
(* *)
(* Xavier Leroy, INRIA Paris-Rocquencourt *)
(* *)
(* Copyright Institut National de Recherche en Informatique et en *)
(* Automatique. All rights reserved. This file is distributed *)
(* under the terms of the INRIA Non-Commercial License Agreement. *)
(* *)
(* *********************************************************************)
(** Correctness proof for PPC generation: auxiliary results. *)
Require Import Coqlib.
Require Import Maps.
Require Import AST.
Require Import Integers.
Require Import Floats.
Require Import Values.
Require Import Memory.
Require Import Globalenvs.
Require Import Op.
Require Import Locations.
Require Import Mach.
Require Import Machsem.
Require Import Machtyping.
Require Import Asm.
Require Import Asmgen.
Require Import Conventions.
(** * Properties of low half/high half decomposition *)
Lemma high_half_zero:
forall v, Val.add (high_half v) Vzero = high_half v.
Proof.
intros. generalize (high_half_type v).
rewrite Val.add_commut.
case (high_half v); simpl; intros; try contradiction.
auto.
rewrite Int.add_commut; rewrite Int.add_zero; auto.
rewrite Int.add_zero; auto.
Qed.
Lemma low_high_u:
forall n, Int.or (Int.shl (high_u n) (Int.repr 16)) (low_u n) = n.
Proof.
intros. unfold high_u, low_u.
rewrite Int.shl_rolm. rewrite Int.shru_rolm.
rewrite Int.rolm_rolm.
change (Int.modu (Int.add (Int.sub (Int.repr (Z_of_nat Int.wordsize)) (Int.repr 16))
(Int.repr 16))
(Int.repr (Z_of_nat Int.wordsize)))
with (Int.zero).
rewrite Int.rolm_zero. rewrite <- Int.and_or_distrib.
exact (Int.and_mone n).
apply int_wordsize_divides_modulus. reflexivity. reflexivity.
Qed.
Lemma low_high_u_xor:
forall n, Int.xor (Int.shl (high_u n) (Int.repr 16)) (low_u n) = n.
Proof.
intros. unfold high_u, low_u.
rewrite Int.shl_rolm. rewrite Int.shru_rolm.
rewrite Int.rolm_rolm.
change (Int.modu (Int.add (Int.sub (Int.repr (Z_of_nat Int.wordsize)) (Int.repr 16))
(Int.repr 16))
(Int.repr (Z_of_nat Int.wordsize)))
with (Int.zero).
rewrite Int.rolm_zero. rewrite <- Int.and_xor_distrib.
exact (Int.and_mone n).
apply int_wordsize_divides_modulus. reflexivity. reflexivity.
Qed.
Lemma low_high_s:
forall n, Int.add (Int.shl (high_s n) (Int.repr 16)) (low_s n) = n.
Proof.
intros. rewrite Int.shl_mul_two_p.
unfold high_s.
rewrite <- (Int.divu_pow2 (Int.sub n (low_s n)) (Int.repr 65536) (Int.repr 16)).
change (two_p (Int.unsigned (Int.repr 16))) with 65536.
set (x := Int.sub n (low_s n)).
assert (x = Int.add (Int.mul (Int.divu x (Int.repr 65536)) (Int.repr 65536))
(Int.modu x (Int.repr 65536))).
apply Int.modu_divu_Euclid. compute; congruence.
assert (Int.modu x (Int.repr 65536) = Int.zero).
unfold Int.modu, Int.zero. decEq.
change 0 with (0 mod 65536).
change (Int.unsigned (Int.repr 65536)) with 65536.
apply Int.eqmod_mod_eq. omega.
unfold x, low_s. eapply Int.eqmod_trans.
eapply Int.eqm_eqmod_two_p with (n := 16). compute; auto.
unfold Int.sub. apply Int.eqm_unsigned_repr_l. apply Int.eqm_refl.
replace 0 with (Int.unsigned n - Int.unsigned n) by omega.
apply Int.eqmod_sub. apply Int.eqmod_refl. apply Int.eqmod_sign_ext'.
compute; auto.
rewrite H0 in H. rewrite Int.add_zero in H.
rewrite <- H. unfold x. rewrite Int.sub_add_opp. rewrite Int.add_assoc.
rewrite (Int.add_commut (Int.neg (low_s n))). rewrite <- Int.sub_add_opp.
rewrite Int.sub_idem. apply Int.add_zero.
reflexivity.
Qed.
(** * Correspondence between Mach registers and PPC registers *)
Hint Extern 2 (_ <> _) => discriminate: ppcgen.
(** Mapping from Mach registers to PPC registers. *)
Lemma preg_of_injective:
forall r1 r2, preg_of r1 = preg_of r2 -> r1 = r2.
Proof.
destruct r1; destruct r2; simpl; intros; reflexivity || discriminate.
Qed.
(** Characterization of PPC registers that correspond to Mach registers. *)
Definition is_data_reg (r: preg) : bool :=
match r with
| IR GPR0 => false
| PC => false | LR => false | CTR => false
| CR0_0 => false | CR0_1 => false | CR0_2 => false | CR0_3 => false
| CARRY => false
| _ => true
end.
Lemma ireg_of_is_data_reg:
forall (r: mreg), is_data_reg (ireg_of r) = true.
Proof.
destruct r; reflexivity.
Qed.
Lemma freg_of_is_data_reg:
forall (r: mreg), is_data_reg (ireg_of r) = true.
Proof.
destruct r; reflexivity.
Qed.
Lemma preg_of_is_data_reg:
forall (r: mreg), is_data_reg (preg_of r) = true.
Proof.
destruct r; reflexivity.
Qed.
Lemma data_reg_diff:
forall r r', is_data_reg r = true -> is_data_reg r' = false -> r <> r'.
Proof.
intros. congruence.
Qed.
Lemma ireg_diff:
forall r r', r <> r' -> IR r <> IR r'.
Proof.
intros. congruence.
Qed.
Lemma diff_ireg:
forall r r', IR r <> IR r' -> r <> r'.
Proof.
intros. congruence.
Qed.
Hint Resolve ireg_of_is_data_reg freg_of_is_data_reg preg_of_is_data_reg
data_reg_diff ireg_diff diff_ireg: ppcgen.
Definition is_nontemp_reg (r: preg) : bool :=
match r with
| IR GPR0 => false | IR GPR11 => false | IR GPR12 => false
| FR FPR0 => false | FR FPR12 => false | FR FPR13 => false
| PC => false | LR => false | CTR => false
| CR0_0 => false | CR0_1 => false | CR0_2 => false | CR0_3 => false
| CARRY => false
| _ => true
end.
Remark is_nontemp_is_data:
forall r, is_nontemp_reg r = true -> is_data_reg r = true.
Proof.
destruct r; simpl; try congruence. destruct i; congruence.
Qed.
Lemma nontemp_reg_diff:
forall r r', is_nontemp_reg r = true -> is_nontemp_reg r' = false -> r <> r'.
Proof.
intros. congruence.
Qed.
Hint Resolve is_nontemp_is_data nontemp_reg_diff: ppcgen.
Lemma ireg_of_not_GPR1:
forall r, ireg_of r <> GPR1.
Proof.
intro. case r; discriminate.
Qed.
Lemma preg_of_not_GPR1:
forall r, preg_of r <> GPR1.
Proof.
intro. case r; discriminate.
Qed.
Hint Resolve ireg_of_not_GPR1 preg_of_not_GPR1: ppcgen.
Lemma int_temp_for_diff:
forall r, IR(int_temp_for r) <> preg_of r.
Proof.
intros. unfold int_temp_for. destruct (mreg_eq r IT2).
subst r. compute. congruence.
change (IR GPR12) with (preg_of IT2). red; intros; elim n.
apply preg_of_injective; auto.
Qed.
(** Agreement between Mach register sets and PPC register sets. *)
Record agree (ms: Mach.regset) (sp: val) (rs: Asm.regset) : Prop := mkagree {
agree_sp: rs#GPR1 = sp;
agree_sp_def: sp <> Vundef;
agree_mregs: forall r: mreg, Val.lessdef (ms r) (rs#(preg_of r))
}.
Lemma preg_val:
forall ms sp rs r,
agree ms sp rs -> Val.lessdef (ms r) rs#(preg_of r).
Proof.
intros. eapply agree_mregs; eauto.
Qed.
Lemma preg_vals:
forall ms sp rs rl,
agree ms sp rs -> Val.lessdef_list (List.map ms rl) (List.map rs (List.map preg_of rl)).
Proof.
induction rl; intros; simpl.
constructor.
constructor. eapply preg_val; eauto. eauto.
Qed.
Lemma ireg_val:
forall ms sp rs r,
agree ms sp rs ->
mreg_type r = Tint ->
Val.lessdef (ms r) rs#(ireg_of r).
Proof.
intros. replace (IR (ireg_of r)) with (preg_of r). eapply preg_val; eauto.
unfold preg_of. rewrite H0. auto.
Qed.
Lemma freg_val:
forall ms sp rs r,
agree ms sp rs ->
mreg_type r = Tfloat ->
Val.lessdef (ms r) rs#(freg_of r).
Proof.
intros. replace (FR (freg_of r)) with (preg_of r). eapply preg_val; eauto.
unfold preg_of. rewrite H0. auto.
Qed.
Lemma sp_val:
forall ms sp rs,
agree ms sp rs ->
sp = rs#GPR1.
Proof.
intros. elim H; auto.
Qed.
Lemma agree_exten:
forall ms sp rs rs',
agree ms sp rs ->
(forall r, is_data_reg r = true -> rs'#r = rs#r) ->
agree ms sp rs'.
Proof.
intros. inv H. constructor; auto.
intros. rewrite H0; auto with ppcgen.
Qed.
(** Preservation of register agreement under various assignments. *)
Lemma agree_set_mreg:
forall ms sp rs r v rs',
agree ms sp rs ->
Val.lessdef v (rs'#(preg_of r)) ->
(forall r', is_data_reg r' = true -> r' <> preg_of r -> rs'#r' = rs#r') ->
agree (Regmap.set r v ms) sp rs'.
Proof.
intros. inv H. constructor; auto with ppcgen.
intros. unfold Regmap.set. destruct (RegEq.eq r0 r).
subst r0. auto.
rewrite H1; auto with ppcgen. red; intros; elim n; apply preg_of_injective; auto.
Qed.
Hint Resolve agree_set_mreg: ppcgen.
Lemma agree_set_mireg:
forall ms sp rs r v (rs': regset),
agree ms sp rs ->
Val.lessdef v (rs'#(ireg_of r)) ->
mreg_type r = Tint ->
(forall r', is_data_reg r' = true -> r' <> preg_of r -> rs'#r' = rs#r') ->
agree (Regmap.set r v ms) sp rs'.
Proof.
intros. eapply agree_set_mreg; eauto. unfold preg_of; rewrite H1; auto.
Qed.
Hint Resolve agree_set_mireg: ppcgen.
Lemma agree_set_mfreg:
forall ms sp rs r v (rs': regset),
agree ms sp rs ->
Val.lessdef v (rs'#(freg_of r)) ->
mreg_type r = Tfloat ->
(forall r', is_data_reg r' = true -> r' <> preg_of r -> rs'#r' = rs#r') ->
agree (Regmap.set r v ms) sp rs'.
Proof.
intros. eapply agree_set_mreg; eauto. unfold preg_of; rewrite H1; auto.
Qed.
Lemma agree_set_other:
forall ms sp rs r v,
agree ms sp rs ->
is_data_reg r = false ->
agree ms sp (rs#r <- v).
Proof.
intros. apply agree_exten with rs.
auto. intros. apply Pregmap.gso. congruence.
Qed.
Hint Resolve agree_set_other: ppcgen.
Lemma agree_nextinstr:
forall ms sp rs,
agree ms sp rs -> agree ms sp (nextinstr rs).
Proof.
intros. unfold nextinstr. apply agree_set_other. auto. auto.
Qed.
Hint Resolve agree_nextinstr: ppcgen.
Lemma agree_undef_regs:
forall rl ms sp rs rs',
agree ms sp rs ->
(forall r, is_data_reg r = true -> ~In r (List.map preg_of rl) -> rs'#r = rs#r) ->
agree (undef_regs rl ms) sp rs'.
Proof.
induction rl; simpl; intros.
apply agree_exten with rs; auto.
apply IHrl with (rs#(preg_of a) <- (rs'#(preg_of a))).
apply agree_set_mreg with rs; auto with ppcgen.
intros. unfold Pregmap.set. destruct (PregEq.eq r' (preg_of a)).
congruence. auto.
intros. unfold Pregmap.set. destruct (PregEq.eq r (preg_of a)).
congruence. apply H0; auto. intuition congruence.
Qed.
Lemma agree_undef_temps:
forall ms sp rs rs',
agree ms sp rs ->
(forall r, is_nontemp_reg r = true -> rs'#r = rs#r) ->
agree (undef_temps ms) sp rs'.
Proof.
unfold undef_temps. intros. apply agree_undef_regs with rs; auto.
simpl. unfold preg_of; simpl. intros. intuition.
apply H0. destruct r; simpl in *; auto.
destruct i; intuition. destruct f; intuition.
Qed.
Hint Resolve agree_undef_temps: ppcgen.
Lemma agree_set_mreg_undef_temps:
forall ms sp rs r v rs',
agree ms sp rs ->
Val.lessdef v (rs'#(preg_of r)) ->
(forall r', is_nontemp_reg r' = true -> r' <> preg_of r -> rs'#r' = rs#r') ->
agree (Regmap.set r v (undef_temps ms)) sp rs'.
Proof.
intros. apply agree_set_mreg with (rs'#(preg_of r) <- (rs#(preg_of r))).
apply agree_undef_temps with rs; auto.
intros. unfold Pregmap.set. destruct (PregEq.eq r0 (preg_of r)).
congruence. apply H1; auto.
auto.
intros. rewrite Pregmap.gso; auto.
Qed.
Lemma agree_set_twice_mireg:
forall ms sp rs r v v1 v',
agree (Regmap.set r v1 ms) sp rs ->
mreg_type r = Tint ->
Val.lessdef v v' ->
agree (Regmap.set r v ms) sp (rs#(ireg_of r) <- v').
Proof.
intros. inv H.
split. rewrite Pregmap.gso. auto.
generalize (ireg_of_not_GPR1 r); congruence.
auto.
intros. generalize (agree_mregs0 r0).
case (mreg_eq r0 r); intro.
subst r0. repeat rewrite Regmap.gss. unfold preg_of; rewrite H0.
rewrite Pregmap.gss. auto.
repeat rewrite Regmap.gso; auto.
rewrite Pregmap.gso. auto.
replace (IR (ireg_of r)) with (preg_of r).
red; intros. elim n. apply preg_of_injective; auto.
unfold preg_of. rewrite H0. auto.
Qed.
(** Useful properties of the PC and GPR0 registers. *)
Lemma nextinstr_inv:
forall r rs, r <> PC -> (nextinstr rs)#r = rs#r.
Proof.
intros. unfold nextinstr. apply Pregmap.gso. auto.
Qed.
Hint Resolve nextinstr_inv: ppcgen.
Lemma gpr_or_zero_not_zero:
forall rs r, r <> GPR0 -> gpr_or_zero rs r = rs#r.
Proof.
intros. unfold gpr_or_zero. case (ireg_eq r GPR0); tauto.
Qed.
Lemma gpr_or_zero_zero:
forall rs, gpr_or_zero rs GPR0 = Vzero.
Proof.
intros. reflexivity.
Qed.
Hint Resolve gpr_or_zero_not_zero gpr_or_zero_zero: ppcgen.
(** Connection between Mach and Asm calling conventions for external
functions. *)
Lemma extcall_arg_match:
forall ms sp rs m m' l v,
agree ms sp rs ->
Mem.extends m m' ->
Machsem.extcall_arg ms m sp l v ->
exists v', Asm.extcall_arg rs m' l v' /\ Val.lessdef v v'.
Proof.
intros. inv H1.
exists (rs#(preg_of r)); split. constructor. eapply preg_val; eauto.
unfold load_stack in H2.
exploit Mem.loadv_extends; eauto. intros [v' [A B]].
rewrite (sp_val _ _ _ H) in A.
exists v'; split; auto.
destruct ty; econstructor.
reflexivity. assumption.
reflexivity. assumption.
Qed.
Lemma extcall_args_match:
forall ms sp rs m m', agree ms sp rs -> Mem.extends m m' ->
forall ll vl,
list_forall2 (Machsem.extcall_arg ms m sp) ll vl ->
exists vl', list_forall2 (Asm.extcall_arg rs m') ll vl' /\ Val.lessdef_list vl vl'.
Proof.
induction 3; intros.
exists (@nil val); split. constructor. constructor.
exploit extcall_arg_match; eauto. intros [v1' [A B]].
destruct IHlist_forall2 as [vl' [C D]].
exists (v1' :: vl'); split; constructor; auto.
Qed.
Lemma extcall_arguments_match:
forall ms m m' sp rs sg args,
agree ms sp rs -> Mem.extends m m' ->
Machsem.extcall_arguments ms m sp sg args ->
exists args', Asm.extcall_arguments rs m' sg args' /\ Val.lessdef_list args args'.
Proof.
unfold Machsem.extcall_arguments, Asm.extcall_arguments; intros.
eapply extcall_args_match; eauto.
Qed.
(** Translation of arguments to annotations. *)
Lemma annot_arg_match:
forall ms sp rs m m' p v,
agree ms sp rs ->
Mem.extends m m' ->
Machsem.annot_arg ms m sp p v ->
exists v', Asm.annot_arg rs m' (transl_annot_param p) v' /\ Val.lessdef v v'.
Proof.
intros. inv H1; simpl.
(* reg *)
exists (rs (preg_of r)); split. constructor. eapply preg_val; eauto.
(* stack *)
exploit Mem.load_extends; eauto. intros [v' [A B]].
exists v'; split; auto.
inv H. econstructor; eauto.
Qed.
Lemma annot_arguments_match:
forall ms sp rs m m', agree ms sp rs -> Mem.extends m m' ->
forall pl vl,
Machsem.annot_arguments ms m sp pl vl ->
exists vl', Asm.annot_arguments rs m' (map transl_annot_param pl) vl'
/\ Val.lessdef_list vl vl'.
Proof.
induction 3; intros.
exists (@nil val); split. constructor. constructor.
exploit annot_arg_match; eauto. intros [v1' [A B]].
destruct IHlist_forall2 as [vl' [C D]].
exists (v1' :: vl'); split; constructor; auto.
Qed.
(** * Execution of straight-line code *)
Section STRAIGHTLINE.
Variable ge: genv.
Variable fn: code.
(** Straight-line code is composed of PPC instructions that execute
in sequence (no branches, no function calls and returns).
The following inductive predicate relates the machine states
before and after executing a straight-line sequence of instructions.
Instructions are taken from the first list instead of being fetched
from memory. *)
Inductive exec_straight: code -> regset -> mem ->
code -> regset -> mem -> Prop :=
| exec_straight_one:
forall i1 c rs1 m1 rs2 m2,
exec_instr ge fn i1 rs1 m1 = OK rs2 m2 ->
rs2#PC = Val.add rs1#PC Vone ->
exec_straight (i1 :: c) rs1 m1 c rs2 m2
| exec_straight_step:
forall i c rs1 m1 rs2 m2 c' rs3 m3,
exec_instr ge fn i rs1 m1 = OK rs2 m2 ->
rs2#PC = Val.add rs1#PC Vone ->
exec_straight c rs2 m2 c' rs3 m3 ->
exec_straight (i :: c) rs1 m1 c' rs3 m3.
Lemma exec_straight_trans:
forall c1 rs1 m1 c2 rs2 m2 c3 rs3 m3,
exec_straight c1 rs1 m1 c2 rs2 m2 ->
exec_straight c2 rs2 m2 c3 rs3 m3 ->
exec_straight c1 rs1 m1 c3 rs3 m3.
Proof.
induction 1; intros.
apply exec_straight_step with rs2 m2; auto.
apply exec_straight_step with rs2 m2; auto.
Qed.
Lemma exec_straight_two:
forall i1 i2 c rs1 m1 rs2 m2 rs3 m3,
exec_instr ge fn i1 rs1 m1 = OK rs2 m2 ->
exec_instr ge fn i2 rs2 m2 = OK rs3 m3 ->
rs2#PC = Val.add rs1#PC Vone ->
rs3#PC = Val.add rs2#PC Vone ->
exec_straight (i1 :: i2 :: c) rs1 m1 c rs3 m3.
Proof.
intros. apply exec_straight_step with rs2 m2; auto.
apply exec_straight_one; auto.
Qed.
Lemma exec_straight_three:
forall i1 i2 i3 c rs1 m1 rs2 m2 rs3 m3 rs4 m4,
exec_instr ge fn i1 rs1 m1 = OK rs2 m2 ->
exec_instr ge fn i2 rs2 m2 = OK rs3 m3 ->
exec_instr ge fn i3 rs3 m3 = OK rs4 m4 ->
rs2#PC = Val.add rs1#PC Vone ->
rs3#PC = Val.add rs2#PC Vone ->
rs4#PC = Val.add rs3#PC Vone ->
exec_straight (i1 :: i2 :: i3 :: c) rs1 m1 c rs4 m4.
Proof.
intros. apply exec_straight_step with rs2 m2; auto.
eapply exec_straight_two; eauto.
Qed.
(** * Correctness of PowerPC constructor functions *)
Ltac SIMP :=
(rewrite nextinstr_inv || rewrite Pregmap.gss || rewrite Pregmap.gso); auto with ppcgen.
(** Properties of comparisons. *)
Lemma compare_float_spec:
forall rs v1 v2,
let rs1 := nextinstr (compare_float rs v1 v2) in
rs1#CR0_0 = Val.cmpf Clt v1 v2
/\ rs1#CR0_1 = Val.cmpf Cgt v1 v2
/\ rs1#CR0_2 = Val.cmpf Ceq v1 v2
/\ forall r', r' <> CR0_0 -> r' <> CR0_1 -> r' <> CR0_2 -> r' <> CR0_3 -> r' <> PC -> rs1#r' = rs#r'.
Proof.
intros. unfold rs1.
split. reflexivity.
split. reflexivity.
split. reflexivity.
intros. unfold compare_float. repeat SIMP.
Qed.
Lemma compare_sint_spec:
forall rs v1 v2,
let rs1 := nextinstr (compare_sint rs v1 v2) in
rs1#CR0_0 = Val.cmp Clt v1 v2
/\ rs1#CR0_1 = Val.cmp Cgt v1 v2
/\ rs1#CR0_2 = Val.cmp Ceq v1 v2
/\ forall r', r' <> CR0_0 -> r' <> CR0_1 -> r' <> CR0_2 -> r' <> CR0_3 -> r' <> PC -> rs1#r' = rs#r'.
Proof.
intros. unfold rs1.
split. reflexivity.
split. reflexivity.
split. reflexivity.
intros. unfold compare_sint. repeat SIMP.
Qed.
Lemma compare_uint_spec:
forall rs m v1 v2,
let rs1 := nextinstr (compare_uint rs m v1 v2) in
rs1#CR0_0 = Val.cmpu (Mem.valid_pointer m) Clt v1 v2
/\ rs1#CR0_1 = Val.cmpu (Mem.valid_pointer m) Cgt v1 v2
/\ rs1#CR0_2 = Val.cmpu (Mem.valid_pointer m) Ceq v1 v2
/\ forall r', r' <> CR0_0 -> r' <> CR0_1 -> r' <> CR0_2 -> r' <> CR0_3 -> r' <> PC -> rs1#r' = rs#r'.
Proof.
intros. unfold rs1.
split. reflexivity.
split. reflexivity.
split. reflexivity.
intros. unfold compare_uint. repeat SIMP.
Qed.
(** Loading a constant. *)
Lemma loadimm_correct:
forall r n k rs m,
exists rs',
exec_straight (loadimm r n k) rs m k rs' m
/\ rs'#r = Vint n
/\ forall r': preg, r' <> r -> r' <> PC -> rs'#r' = rs#r'.
Proof.
intros. unfold loadimm.
case (Int.eq (high_s n) Int.zero).
(* addi *)
exists (nextinstr (rs#r <- (Vint n))).
split. apply exec_straight_one.
simpl. rewrite Int.add_zero_l. auto.
reflexivity.
split. repeat SIMP. intros; repeat SIMP.
(* addis *)
generalize (Int.eq_spec (low_s n) Int.zero); case (Int.eq (low_s n) Int.zero); intro.
exists (nextinstr (rs#r <- (Vint n))).
split. apply exec_straight_one.
simpl. rewrite Int.add_commut.
rewrite <- H. rewrite low_high_s. reflexivity.
reflexivity.
split. repeat SIMP. intros; repeat SIMP.
(* addis + ori *)
pose (rs1 := nextinstr (rs#r <- (Vint (Int.shl (high_u n) (Int.repr 16))))).
exists (nextinstr (rs1#r <- (Vint n))).
split. eapply exec_straight_two.
simpl. rewrite Int.add_zero_l. reflexivity.
simpl. rewrite nextinstr_inv; auto with ppcgen. rewrite Pregmap.gss.
unfold Val.or. rewrite low_high_u. reflexivity.
reflexivity. reflexivity.
unfold rs1. split. repeat SIMP. intros; repeat SIMP.
Qed.
(** Add integer immediate. *)
Lemma addimm_correct:
forall r1 r2 n k rs m,
r1 <> GPR0 ->
r2 <> GPR0 ->
exists rs',
exec_straight (addimm r1 r2 n k) rs m k rs' m
/\ rs'#r1 = Val.add rs#r2 (Vint n)
/\ forall r': preg, r' <> r1 -> r' <> PC -> rs'#r' = rs#r'.
Proof.
intros. unfold addimm.
(* addi *)
case (Int.eq (high_s n) Int.zero).
exists (nextinstr (rs#r1 <- (Val.add rs#r2 (Vint n)))).
split. apply exec_straight_one.
simpl. rewrite gpr_or_zero_not_zero; auto.
reflexivity.
split. repeat SIMP. intros. repeat SIMP.
(* addis *)
generalize (Int.eq_spec (low_s n) Int.zero); case (Int.eq (low_s n) Int.zero); intro.
exists (nextinstr (rs#r1 <- (Val.add rs#r2 (Vint n)))).
split. apply exec_straight_one.
simpl. rewrite gpr_or_zero_not_zero; auto.
generalize (low_high_s n). rewrite H1. rewrite Int.add_zero. intro.
rewrite H2. auto.
reflexivity.
split. repeat SIMP. intros; repeat SIMP.
(* addis + addi *)
pose (rs1 := nextinstr (rs#r1 <- (Val.add rs#r2 (Vint (Int.shl (high_s n) (Int.repr 16)))))).
exists (nextinstr (rs1#r1 <- (Val.add rs#r2 (Vint n)))).
split. apply exec_straight_two with rs1 m.
simpl. rewrite gpr_or_zero_not_zero; auto.
simpl. rewrite gpr_or_zero_not_zero; auto.
unfold rs1 at 1. rewrite nextinstr_inv; auto with ppcgen. rewrite Pregmap.gss.
rewrite Val.add_assoc. simpl. rewrite low_high_s. auto.
reflexivity. reflexivity.
unfold rs1; split. repeat SIMP. intros; repeat SIMP.
Qed.
(** And integer immediate. *)
Lemma andimm_base_correct:
forall r1 r2 n k (rs : regset) m,
r2 <> GPR0 ->
let v := Val.and rs#r2 (Vint n) in
exists rs',
exec_straight (andimm_base r1 r2 n k) rs m k rs' m
/\ rs'#r1 = v
/\ rs'#CR0_2 = Val.cmp Ceq v Vzero
/\ forall r', is_data_reg r' = true -> r' <> r1 -> rs'#r' = rs#r'.
Proof.
intros. unfold andimm_base.
case (Int.eq (high_u n) Int.zero).
(* andi *)
exists (nextinstr (compare_sint (rs#r1 <- v) v Vzero)).
generalize (compare_sint_spec (rs#r1 <- v) v Vzero).
intros [A [B [C D]]].
split. apply exec_straight_one. reflexivity. reflexivity.
split. rewrite D; auto with ppcgen. SIMP.
split. auto.
intros. rewrite D; auto with ppcgen. SIMP.
(* andis *)
generalize (Int.eq_spec (low_u n) Int.zero);
case (Int.eq (low_u n) Int.zero); intro.
exists (nextinstr (compare_sint (rs#r1 <- v) v Vzero)).
generalize (compare_sint_spec (rs#r1 <- v) v Vzero).
intros [A [B [C D]]].
split. apply exec_straight_one. simpl.
generalize (low_high_u n). rewrite H0. rewrite Int.or_zero.
intro. rewrite H1. reflexivity. reflexivity.
split. rewrite D; auto with ppcgen. SIMP.
split. auto.
intros. rewrite D; auto with ppcgen. SIMP.
(* loadimm + and *)
generalize (loadimm_correct GPR0 n (Pand_ r1 r2 GPR0 :: k) rs m).
intros [rs1 [EX1 [RES1 OTHER1]]].
exists (nextinstr (compare_sint (rs1#r1 <- v) v Vzero)).
generalize (compare_sint_spec (rs1#r1 <- v) v Vzero).
intros [A [B [C D]]].
split. eapply exec_straight_trans. eexact EX1.
apply exec_straight_one. simpl. rewrite RES1.
rewrite (OTHER1 r2). reflexivity. congruence. congruence.
reflexivity.
split. rewrite D; auto with ppcgen. SIMP.
split. auto.
intros. rewrite D; auto with ppcgen. SIMP.
Qed.
Lemma andimm_correct:
forall r1 r2 n k (rs : regset) m,
r2 <> GPR0 ->
exists rs',
exec_straight (andimm r1 r2 n k) rs m k rs' m
/\ rs'#r1 = Val.and rs#r2 (Vint n)
/\ forall r', is_data_reg r' = true -> r' <> r1 -> rs'#r' = rs#r'.
Proof.
intros. unfold andimm. destruct (is_rlw_mask n).
(* turned into rlw *)
exists (nextinstr (rs#r1 <- (Val.and rs#r2 (Vint n)))).
split. apply exec_straight_one. simpl. rewrite Val.rolm_zero. auto. reflexivity.
split. SIMP. apply Pregmap.gss.
intros. SIMP. apply Pregmap.gso; auto with ppcgen.
(* andimm_base *)
destruct (andimm_base_correct r1 r2 n k rs m) as [rs' [A [B [C D]]]]; auto.
exists rs'; auto.
Qed.
(** Or integer immediate. *)
Lemma orimm_correct:
forall r1 (r2: ireg) n k (rs : regset) m,
let v := Val.or rs#r2 (Vint n) in
exists rs',
exec_straight (orimm r1 r2 n k) rs m k rs' m
/\ rs'#r1 = v
/\ forall r': preg, r' <> r1 -> r' <> PC -> rs'#r' = rs#r'.
Proof.
intros. unfold orimm.
case (Int.eq (high_u n) Int.zero).
(* ori *)
exists (nextinstr (rs#r1 <- v)).
split. apply exec_straight_one. reflexivity. reflexivity.
split. repeat SIMP.
intros. repeat SIMP.
(* oris *)
generalize (Int.eq_spec (low_u n) Int.zero);
case (Int.eq (low_u n) Int.zero); intro.
exists (nextinstr (rs#r1 <- v)).
split. apply exec_straight_one. simpl.
generalize (low_high_u n). rewrite H. rewrite Int.or_zero.
intro. rewrite H0. reflexivity. reflexivity.
split. repeat SIMP.
intros. repeat SIMP.
(* oris + ori *)
econstructor; split. eapply exec_straight_two; simpl; reflexivity.
split. repeat rewrite nextinstr_inv; auto with ppcgen. repeat rewrite Pregmap.gss. rewrite Val.or_assoc. simpl. rewrite low_high_u. reflexivity.
intros. repeat SIMP.
Qed.
(** Xor integer immediate. *)
Lemma xorimm_correct:
forall r1 (r2: ireg) n k (rs : regset) m,
let v := Val.xor rs#r2 (Vint n) in
exists rs',
exec_straight (xorimm r1 r2 n k) rs m k rs' m
/\ rs'#r1 = v
/\ forall r': preg, r' <> r1 -> r' <> PC -> rs'#r' = rs#r'.
Proof.
intros. unfold xorimm.
case (Int.eq (high_u n) Int.zero).
(* xori *)
exists (nextinstr (rs#r1 <- v)).
split. apply exec_straight_one. reflexivity. reflexivity.
split. repeat SIMP. intros. repeat SIMP.
(* xoris *)
generalize (Int.eq_spec (low_u n) Int.zero);
case (Int.eq (low_u n) Int.zero); intro.
exists (nextinstr (rs#r1 <- v)).
split. apply exec_straight_one. simpl.
generalize (low_high_u_xor n). rewrite H. rewrite Int.xor_zero.
intro. rewrite H0. reflexivity. reflexivity.
split. repeat SIMP. intros. repeat SIMP.
(* xoris + xori *)
econstructor; split. eapply exec_straight_two; simpl; reflexivity.
split. repeat rewrite nextinstr_inv; auto with ppcgen. repeat rewrite Pregmap.gss.
rewrite Val.xor_assoc. simpl. rewrite low_high_u_xor. reflexivity.
intros. repeat SIMP.
Qed.
(** Rotate and mask. *)
Lemma rolm_correct:
forall r1 r2 amount mask k (rs : regset) m,
r1 <> GPR0 ->
exists rs',
exec_straight (rolm r1 r2 amount mask k) rs m k rs' m
/\ rs'#r1 = Val.rolm rs#r2 amount mask
/\ forall r', is_data_reg r' = true -> r' <> r1 -> rs'#r' = rs#r'.
Proof.
intros. unfold rolm. destruct (is_rlw_mask mask).
(* rlwinm *)
exists (nextinstr (rs#r1 <- (Val.rolm rs#r2 amount mask))).
split. apply exec_straight_one; auto.
split. SIMP. apply Pregmap.gss.
intros. SIMP. apply Pregmap.gso; auto.
(* rlwinm ; andimm *)
set (rs1 := nextinstr (rs#r1 <- (Val.rolm rs#r2 amount Int.mone))).
destruct (andimm_base_correct r1 r1 mask k rs1 m) as [rs' [A [B [C D]]]]; auto.
exists rs'.
split. eapply exec_straight_step; eauto. auto. auto.
split. rewrite B. unfold rs1. SIMP. rewrite Pregmap.gss.
destruct (rs r2); simpl; auto. unfold Int.rolm. rewrite Int.and_assoc.
decEq; decEq; decEq. rewrite Int.and_commut. apply Int.and_mone.
intros. rewrite D; auto. unfold rs1; SIMP. apply Pregmap.gso; auto.
Qed.
(** Indexed memory loads. *)
Lemma loadind_correct:
forall (base: ireg) ofs ty dst k (rs: regset) m v,
Mem.loadv (chunk_of_type ty) m (Val.add rs#base (Vint ofs)) = Some v ->
mreg_type dst = ty ->
base <> GPR0 ->
exists rs',
exec_straight (loadind base ofs ty dst k) rs m k rs' m
/\ rs'#(preg_of dst) = v
/\ forall r, r <> PC -> r <> preg_of dst -> r <> GPR0 -> rs'#r = rs#r.
Proof.
intros. unfold loadind. destruct (Int.eq (high_s ofs) Int.zero).
(* one load *)
exists (nextinstr (rs#(preg_of dst) <- v)); split.
unfold preg_of. rewrite H0.
destruct ty; apply exec_straight_one; auto with ppcgen; simpl.
unfold load1. rewrite gpr_or_zero_not_zero; auto.
simpl in *. rewrite H. auto.
unfold load1. rewrite gpr_or_zero_not_zero; auto.
simpl in *. rewrite H. auto.
split. repeat SIMP. intros. repeat SIMP.
(* loadimm + one load *)
exploit (loadimm_correct GPR0 ofs); eauto. intros [rs' [A [B C]]].
exists (nextinstr (rs'#(preg_of dst) <- v)); split.
eapply exec_straight_trans. eexact A.
unfold preg_of. rewrite H0.
destruct ty; apply exec_straight_one; auto with ppcgen; simpl.
unfold load2. rewrite B. rewrite C; auto with ppcgen. simpl in H. rewrite H. auto.
unfold load2. rewrite B. rewrite C; auto with ppcgen. simpl in H. rewrite H. auto.
split. repeat SIMP.
intros. repeat SIMP.
Qed.
(** Indexed memory stores. *)
Lemma storeind_correct:
forall (base: ireg) ofs ty src k (rs: regset) m m',
Mem.storev (chunk_of_type ty) m (Val.add rs#base (Vint ofs)) (rs#(preg_of src)) = Some m' ->
mreg_type src = ty ->
base <> GPR0 ->
exists rs',
exec_straight (storeind src base ofs ty k) rs m k rs' m'
/\ forall r, r <> PC -> r <> GPR0 -> rs'#r = rs#r.
Proof.
intros. unfold storeind. destruct (Int.eq (high_s ofs) Int.zero).
(* one store *)
exists (nextinstr rs); split.
destruct ty; apply exec_straight_one; auto with ppcgen; simpl.
unfold store1. rewrite gpr_or_zero_not_zero; auto.
simpl in *. unfold preg_of in H; rewrite H0 in H. rewrite H. auto.
unfold store1. rewrite gpr_or_zero_not_zero; auto.
simpl in *. unfold preg_of in H; rewrite H0 in H. rewrite H. auto.
intros. apply nextinstr_inv; auto.
(* loadimm + one store *)
exploit (loadimm_correct GPR0 ofs); eauto. intros [rs' [A [B C]]].
assert (rs' base = rs base). apply C; auto with ppcgen.
assert (rs' (preg_of src) = rs (preg_of src)). apply C; auto with ppcgen.
exists (nextinstr rs').
split. eapply exec_straight_trans. eexact A.
destruct ty; apply exec_straight_one; auto with ppcgen; simpl.
unfold store2. replace (IR (ireg_of src)) with (preg_of src).
rewrite H2; rewrite H3. rewrite B. simpl in H. rewrite H. auto.
unfold preg_of; rewrite H0; auto.
unfold store2. replace (FR (freg_of src)) with (preg_of src).
rewrite H2; rewrite H3. rewrite B. simpl in H. rewrite H. auto.
unfold preg_of; rewrite H0; auto.
intros. rewrite nextinstr_inv; auto.
Qed.
(** Float comparisons. *)
Lemma floatcomp_correct:
forall cmp (r1 r2: freg) k rs m,
exists rs',
exec_straight (floatcomp cmp r1 r2 k) rs m k rs' m
/\ rs'#(reg_of_crbit (fst (crbit_for_fcmp cmp))) =
(if snd (crbit_for_fcmp cmp)
then Val.cmpf cmp rs#r1 rs#r2
else Val.notbool (Val.cmpf cmp rs#r1 rs#r2))
/\ forall r',
r' <> PC -> r' <> CR0_0 -> r' <> CR0_1 ->
r' <> CR0_2 -> r' <> CR0_3 -> rs'#r' = rs#r'.
Proof.
intros.
generalize (compare_float_spec rs rs#r1 rs#r2).
intros [A [B [C D]]].
set (rs1 := nextinstr (compare_float rs rs#r1 rs#r2)) in *.
assert ((cmp = Ceq \/ cmp = Cne \/ cmp = Clt \/ cmp = Cgt)
\/ (cmp = Cle \/ cmp = Cge)).
case cmp; tauto.
unfold floatcomp. elim H; intro; clear H.
exists rs1.
split. generalize H0; intros [EQ|[EQ|[EQ|EQ]]]; subst cmp;
apply exec_straight_one; reflexivity.
split.
generalize H0; intros [EQ|[EQ|[EQ|EQ]]]; subst cmp; simpl; auto.
rewrite Val.negate_cmpf_eq. auto.
auto.
(* two instrs *)
exists (nextinstr (rs1#CR0_3 <- (Val.cmpf cmp rs#r1 rs#r2))).
split. elim H0; intro; subst cmp.
apply exec_straight_two with rs1 m.
reflexivity. simpl.
rewrite C; rewrite A. rewrite Val.or_commut. rewrite <- Val.cmpf_le.
reflexivity. reflexivity. reflexivity.
apply exec_straight_two with rs1 m.
reflexivity. simpl.
rewrite C; rewrite B. rewrite Val.or_commut. rewrite <- Val.cmpf_ge.
reflexivity. reflexivity. reflexivity.
split. elim H0; intro; subst cmp; simpl.
reflexivity.
reflexivity.
intros. rewrite nextinstr_inv; auto. rewrite Pregmap.gso; auto.
Qed.
Ltac TypeInv :=
match goal with
| H: (List.map ?f ?x = nil) |- _ =>
destruct x; [clear H | simpl in H; discriminate]
| H: (List.map ?f ?x = ?hd :: ?tl) |- _ =>
destruct x; simpl in H;
[ discriminate |
injection H; clear H; let T := fresh "T" in (
intros H T; TypeInv) ]
| _ => idtac
end.
Ltac UseTypeInfo :=
match goal with
| T: (mreg_type ?r = ?t), H: context[preg_of ?r] |- _ =>
unfold preg_of in H; UseTypeInfo
| T: (mreg_type ?r = ?t), H: context[mreg_type ?r] |- _ =>
rewrite T in H; UseTypeInfo
| T: (mreg_type ?r = ?t) |- context[preg_of ?r] =>
unfold preg_of; UseTypeInfo
| T: (mreg_type ?r = ?t) |- context[mreg_type ?r] =>
rewrite T; UseTypeInfo
| _ => idtac
end.
(** Translation of conditions. *)
Lemma transl_cond_correct_1:
forall cond args k rs m,
map mreg_type args = type_of_condition cond ->
exists rs',
exec_straight (transl_cond cond args k) rs m k rs' m
/\ rs'#(reg_of_crbit (fst (crbit_for_cond cond))) =
(if snd (crbit_for_cond cond)
then Val.of_optbool (eval_condition cond (map rs (map preg_of args)) m)
else Val.notbool (Val.of_optbool (eval_condition cond (map rs (map preg_of args)) m)))
/\ forall r, is_data_reg r = true -> rs'#r = rs#r.
Proof.
intros.
destruct cond; simpl in H; TypeInv; simpl; UseTypeInfo.
(* Ccomp *)
fold (Val.cmp c (rs (ireg_of m0)) (rs (ireg_of m1))).
destruct (compare_sint_spec rs (rs (ireg_of m0)) (rs (ireg_of m1)))
as [A [B [C D]]].
econstructor; split.
apply exec_straight_one. simpl; reflexivity. reflexivity.
split.
case c; simpl; auto; rewrite <- Val.negate_cmp; simpl; auto.
auto with ppcgen.
(* Ccompu *)
fold (Val.cmpu (Mem.valid_pointer m) c (rs (ireg_of m0)) (rs (ireg_of m1))).
destruct (compare_uint_spec rs m (rs (ireg_of m0)) (rs (ireg_of m1)))
as [A [B [C D]]].
econstructor; split.
apply exec_straight_one. simpl; reflexivity. reflexivity.
split.
case c; simpl; auto; rewrite <- Val.negate_cmpu; simpl; auto.
auto with ppcgen.
(* Ccompimm *)
fold (Val.cmp c (rs (ireg_of m0)) (Vint i)).
case (Int.eq (high_s i) Int.zero).
destruct (compare_sint_spec rs (rs (ireg_of m0)) (Vint i))
as [A [B [C D]]].
econstructor; split.
apply exec_straight_one. simpl. eauto. reflexivity.
split.
case c; simpl; auto; rewrite <- Val.negate_cmp; simpl; auto.
auto with ppcgen.
generalize (loadimm_correct GPR0 i (Pcmpw (ireg_of m0) GPR0 :: k) rs m).
intros [rs1 [EX1 [RES1 OTH1]]].
destruct (compare_sint_spec rs1 (rs (ireg_of m0)) (Vint i))
as [A [B [C D]]].
assert (rs1 (ireg_of m0) = rs (ireg_of m0)).
apply OTH1; auto with ppcgen.
exists (nextinstr (compare_sint rs1 (rs1 (ireg_of m0)) (Vint i))).
split. eapply exec_straight_trans. eexact EX1.
apply exec_straight_one. simpl. rewrite RES1; rewrite H; auto.
reflexivity.
split. rewrite H.
case c; simpl; auto; rewrite <- Val.negate_cmp; simpl; auto.
intros. rewrite H; rewrite D; auto with ppcgen.
(* Ccompuimm *)
fold (Val.cmpu (Mem.valid_pointer m) c (rs (ireg_of m0)) (Vint i)).
case (Int.eq (high_u i) Int.zero).
destruct (compare_uint_spec rs m (rs (ireg_of m0)) (Vint i))
as [A [B [C D]]].
econstructor; split.
apply exec_straight_one. simpl. eauto. reflexivity.
split.
case c; simpl; auto; rewrite <- Val.negate_cmpu; simpl; auto.
auto with ppcgen.
generalize (loadimm_correct GPR0 i (Pcmplw (ireg_of m0) GPR0 :: k) rs m).
intros [rs1 [EX1 [RES1 OTH1]]].
destruct (compare_uint_spec rs1 m (rs (ireg_of m0)) (Vint i))
as [A [B [C D]]].
assert (rs1 (ireg_of m0) = rs (ireg_of m0)). apply OTH1; auto with ppcgen.
exists (nextinstr (compare_uint rs1 m (rs1 (ireg_of m0)) (Vint i))).
split. eapply exec_straight_trans. eexact EX1.
apply exec_straight_one. simpl. rewrite RES1; rewrite H; auto.
reflexivity.
split. rewrite H.
case c; simpl; auto; rewrite <- Val.negate_cmpu; simpl; auto.
intros. rewrite H; rewrite D; auto with ppcgen.
(* Ccompf *)
fold (Val.cmpf c (rs (freg_of m0)) (rs (freg_of m1))).
destruct (floatcomp_correct c (freg_of m0) (freg_of m1) k rs m)
as [rs' [EX [RES OTH]]].
exists rs'. split. auto.
split. apply RES.
auto with ppcgen.
(* Cnotcompf *)
rewrite Val.notbool_negb_3. rewrite Val.notbool_idem4.
fold (Val.cmpf c (rs (freg_of m0)) (rs (freg_of m1))).
destruct (floatcomp_correct c (freg_of m0) (freg_of m1) k rs m)
as [rs' [EX [RES OTH]]].
exists rs'. split. auto.
split. rewrite RES. destruct (snd (crbit_for_fcmp c)); auto.
auto with ppcgen.
(* Cmaskzero *)
destruct (andimm_base_correct GPR0 (ireg_of m0) i k rs m)
as [rs' [A [B [C D]]]]. auto with ppcgen.
exists rs'. split. assumption.
split. rewrite C. destruct (rs (ireg_of m0)); auto.
auto with ppcgen.
(* Cmasknotzero *)
destruct (andimm_base_correct GPR0 (ireg_of m0) i k rs m)
as [rs' [A [B [C D]]]]. auto with ppcgen.
exists rs'. split. assumption.
split. rewrite C. destruct (rs (ireg_of m0)); auto.
fold (option_map negb (Some (Int.eq (Int.and i0 i) Int.zero))).
rewrite Val.notbool_negb_3. rewrite Val.notbool_idem4. auto.
auto with ppcgen.
Qed.
Lemma transl_cond_correct_2:
forall cond args k rs m b,
map mreg_type args = type_of_condition cond ->
eval_condition cond (map rs (map preg_of args)) m = Some b ->
exists rs',
exec_straight (transl_cond cond args k) rs m k rs' m
/\ rs'#(reg_of_crbit (fst (crbit_for_cond cond))) =
(if snd (crbit_for_cond cond)
then Val.of_bool b
else Val.notbool (Val.of_bool b))
/\ forall r, is_data_reg r = true -> rs'#r = rs#r.
Proof.
intros.
replace (Val.of_bool b)
with (Val.of_optbool (eval_condition cond rs ## (preg_of ## args) m)).
eapply transl_cond_correct_1; eauto.
rewrite H0; auto.
Qed.
Lemma transl_cond_correct:
forall cond args k ms sp rs m b m',
map mreg_type args = type_of_condition cond ->
agree ms sp rs ->
eval_condition cond (map ms args) m = Some b ->
Mem.extends m m' ->
exists rs',
exec_straight (transl_cond cond args k) rs m' k rs' m'
/\ rs'#(reg_of_crbit (fst (crbit_for_cond cond))) =
(if snd (crbit_for_cond cond)
then Val.of_bool b
else Val.notbool (Val.of_bool b))
/\ agree ms sp rs'.
Proof.
intros.
exploit transl_cond_correct_2. eauto.
eapply eval_condition_lessdef. eapply preg_vals; eauto. eauto. eauto.
intros [rs' [A [B C]]].
exists rs'; split. eauto. split. auto. apply agree_exten with rs; auto.
Qed.
(** Translation of condition operators *)
Remark add_carry_eq0:
forall i,
Vint (Int.add (Int.add (Int.sub Int.zero i) i)
(Int.add_carry Int.zero (Int.xor i Int.mone) Int.one)) =
Val.of_bool (Int.eq i Int.zero).
Proof.
intros. rewrite <- Int.sub_add_l. rewrite Int.add_zero_l.
rewrite Int.sub_idem. rewrite Int.add_zero_l. fold (Int.not i).
predSpec Int.eq Int.eq_spec i Int.zero.
subst i. reflexivity.
unfold Val.of_bool, Vfalse. decEq.
unfold Int.add_carry. rewrite Int.unsigned_zero. rewrite Int.unsigned_one.
apply zlt_true.
generalize (Int.unsigned_range (Int.not i)); intro.
assert (Int.unsigned (Int.not i) <> Int.modulus - 1).
red; intros.
assert (Int.repr (Int.unsigned (Int.not i)) = Int.mone).
rewrite H1. apply Int.mkint_eq. reflexivity.
rewrite Int.repr_unsigned in H2.
assert (Int.not (Int.not i) = Int.zero).
rewrite H2. apply Int.mkint_eq; reflexivity.
rewrite Int.not_involutive in H3.
congruence.
omega.
Qed.
Remark add_carry_ne0:
forall i,
Vint (Int.add (Int.add i (Int.xor (Int.add i Int.mone) Int.mone))
(Int.add_carry i Int.mone Int.zero)) =
Val.of_bool (negb (Int.eq i Int.zero)).
Proof.
intros. fold (Int.not (Int.add i Int.mone)). rewrite Int.not_neg.
rewrite (Int.add_commut (Int.neg (Int.add i Int.mone))).
rewrite <- Int.sub_add_opp. rewrite Int.sub_add_r. rewrite Int.sub_idem.
rewrite Int.add_zero_l. rewrite Int.add_neg_zero. rewrite Int.add_zero_l.
unfold Int.add_carry, Int.eq.
rewrite Int.unsigned_zero. rewrite Int.unsigned_mone.
unfold negb, Val.of_bool, Vtrue, Vfalse.
destruct (zeq (Int.unsigned i) 0); decEq.
apply zlt_true. omega.
apply zlt_false. generalize (Int.unsigned_range i). omega.
Qed.
Lemma transl_cond_op_correct:
forall cond args r k rs m,
mreg_type r = Tint ->
map mreg_type args = type_of_condition cond ->
exists rs',
exec_straight (transl_cond_op cond args r k) rs m k rs' m
/\ rs'#(ireg_of r) = Val.of_optbool (eval_condition cond (map rs (map preg_of args)) m)
/\ forall r', is_data_reg r' = true -> r' <> ireg_of r -> rs'#r' = rs#r'.
Proof.
intros until args. unfold transl_cond_op.
destruct (classify_condition cond args);
intros until m; intros TY1 TY2; simpl in TY2.
(* eq 0 *)
inv TY2. simpl. unfold preg_of; rewrite H0.
econstructor; split.
eapply exec_straight_two; simpl; reflexivity.
split. repeat SIMP. destruct (rs (ireg_of r)); simpl; auto.
apply add_carry_eq0.
intros; repeat SIMP.
(* ne 0 *)
inv TY2. simpl. unfold preg_of; rewrite H0.
econstructor; split.
eapply exec_straight_two; simpl; reflexivity.
split. repeat SIMP. rewrite gpr_or_zero_not_zero; auto with ppcgen.
destruct (rs (ireg_of r)); simpl; auto.
apply add_carry_ne0.
intros; repeat SIMP.
(* ge 0 *)
inv TY2. simpl. unfold preg_of; rewrite H0.
econstructor; split.
eapply exec_straight_two; simpl; reflexivity.
split. repeat SIMP. rewrite Val.rolm_ge_zero. auto.
intros; repeat SIMP.
(* lt 0 *)
inv TY2. simpl. unfold preg_of; rewrite H0.
econstructor; split.
apply exec_straight_one; simpl; reflexivity.
split. repeat SIMP. rewrite Val.rolm_lt_zero. auto.
intros; repeat SIMP.
(* default *)
set (bit := fst (crbit_for_cond c)).
set (isset := snd (crbit_for_cond c)).
set (k1 :=
Pmfcrbit (ireg_of r) bit ::
(if isset
then k
else Pxori (ireg_of r) (ireg_of r) (Cint Int.one) :: k)).
generalize (transl_cond_correct_1 c rl k1 rs m TY2).
fold bit; fold isset.
intros [rs1 [EX1 [RES1 AG1]]].
destruct isset.
(* bit set *)
econstructor; split. eapply exec_straight_trans. eexact EX1.
unfold k1. apply exec_straight_one; simpl; reflexivity.
split. repeat SIMP. intros; repeat SIMP.
(* bit clear *)
econstructor; split. eapply exec_straight_trans. eexact EX1.
unfold k1. eapply exec_straight_two; simpl; reflexivity.
split. repeat SIMP. rewrite RES1.
destruct (eval_condition c rs ## (preg_of ## rl) m). destruct b; auto. auto.
intros; repeat SIMP.
Qed.
(** Translation of arithmetic operations. *)
Ltac TranslOpSimpl :=
econstructor; split;
[ apply exec_straight_one; [simpl; eauto | reflexivity]
| split; intros; (repeat SIMP; fail) ].
Lemma transl_op_correct_aux:
forall op args res k (rs: regset) m v,
wt_instr (Mop op args res) ->
eval_operation ge (rs#GPR1) op (map rs (map preg_of args)) m = Some v ->
exists rs',
exec_straight (transl_op op args res k) rs m k rs' m
/\ rs'#(preg_of res) = v
/\ forall r,
match op with Omove => is_data_reg r = true | _ => is_nontemp_reg r = true end ->
r <> preg_of res -> rs'#r = rs#r.
Proof.
intros until v; intros WT EV.
inv WT.
(* Omove *)
simpl in *. inv EV.
exists (nextinstr (rs#(preg_of res) <- (rs#(preg_of r1)))).
split. unfold preg_of. rewrite <- H0.
destruct (mreg_type r1); apply exec_straight_one; auto.
split. repeat SIMP. intros; repeat SIMP.
(* Other instructions *)
destruct op; simpl; simpl in H3; injection H3; clear H3; intros;
TypeInv; simpl in *; UseTypeInfo; inv EV; try (TranslOpSimpl).
(* Ointconst *)
destruct (loadimm_correct (ireg_of res) i k rs m) as [rs' [A [B C]]].
exists rs'. split. auto. split. auto. auto with ppcgen.
(* Oaddrsymbol *)
change (symbol_address ge i i0) with (symbol_offset ge i i0).
set (v' := symbol_offset ge i i0).
caseEq (symbol_is_small_data i i0); intro SD.
(* small data *)
econstructor; split. apply exec_straight_one; simpl; reflexivity.
split. repeat SIMP.
rewrite (small_data_area_addressing _ _ _ SD). unfold v', symbol_offset.
destruct (Genv.find_symbol ge i); auto. rewrite Int.add_zero; auto.
intros; repeat SIMP.
(* not small data *)
Opaque Val.add.
econstructor; split. eapply exec_straight_two; simpl; reflexivity.
split. repeat SIMP. rewrite gpr_or_zero_zero.
rewrite gpr_or_zero_not_zero; auto with ppcgen. repeat SIMP.
rewrite (Val.add_commut Vzero). rewrite high_half_zero.
rewrite Val.add_commut. rewrite low_high_half. auto.
intros; repeat SIMP.
(* Oaddrstack *)
destruct (addimm_correct (ireg_of res) GPR1 i k rs m) as [rs' [EX [RES OTH]]].
auto with ppcgen. congruence.
exists rs'; auto with ppcgen.
(* Oaddimm *)
destruct (addimm_correct (ireg_of res) (ireg_of m0) i k rs m) as [rs' [A [B C]]]; auto with ppcgen.
exists rs'; auto with ppcgen.
(* Osubimm *)
case (Int.eq (high_s i) Int.zero).
TranslOpSimpl.
destruct (loadimm_correct GPR0 i (Psubfc (ireg_of res) (ireg_of m0) GPR0 :: k) rs m) as [rs1 [EX [RES OTH]]].
econstructor; split.
eapply exec_straight_trans. eexact EX. apply exec_straight_one; simpl; reflexivity.
split. repeat SIMP. rewrite RES. rewrite OTH; auto with ppcgen.
intros; repeat SIMP.
(* Omulimm *)
case (Int.eq (high_s i) Int.zero).
TranslOpSimpl.
destruct (loadimm_correct GPR0 i (Pmullw (ireg_of res) (ireg_of m0) GPR0 :: k) rs m) as [rs1 [EX [RES OTH]]].
econstructor; split.
eapply exec_straight_trans. eexact EX. apply exec_straight_one; simpl; reflexivity.
split. repeat SIMP. rewrite RES. rewrite OTH; auto with ppcgen.
intros; repeat SIMP.
(* Odivs *)
replace v with (Val.maketotal (Val.divs (rs (ireg_of m0)) (rs (ireg_of m1)))).
TranslOpSimpl.
rewrite H2; auto.
(* Odivu *)
replace v with (Val.maketotal (Val.divu (rs (ireg_of m0)) (rs (ireg_of m1)))).
TranslOpSimpl.
rewrite H2; auto.
(* Oand *)
set (v' := Val.and (rs (ireg_of m0)) (rs (ireg_of m1))) in *.
pose (rs1 := rs#(ireg_of res) <- v').
generalize (compare_sint_spec rs1 v' Vzero).
intros [A [B [C D]]].
econstructor; split. apply exec_straight_one; simpl; reflexivity.
split. rewrite D; auto with ppcgen. unfold rs1. SIMP.
intros. rewrite D; auto with ppcgen. unfold rs1. SIMP.
(* Oandimm *)
destruct (andimm_correct (ireg_of res) (ireg_of m0) i k rs m) as [rs' [A [B C]]]; auto with ppcgen.
exists rs'; auto with ppcgen.
(* Oorimm *)
destruct (orimm_correct (ireg_of res) (ireg_of m0) i k rs m) as [rs' [A [B C]]].
exists rs'; auto with ppcgen.
(* Oxorimm *)
destruct (xorimm_correct (ireg_of res) (ireg_of m0) i k rs m) as [rs' [A [B C]]].
exists rs'; auto with ppcgen.
(* Onor *)
replace (Val.notint (rs (ireg_of m0)))
with (Val.notint (Val.or (rs (ireg_of m0)) (rs (ireg_of m0)))).
TranslOpSimpl.
destruct (rs (ireg_of m0)); simpl; auto. rewrite Int.or_idem. auto.
(* Oshrximm *)
econstructor; split.
eapply exec_straight_two; simpl; reflexivity.
split. repeat SIMP. apply Val.shrx_carry. auto.
intros; repeat SIMP.
(* Orolm *)
destruct (rolm_correct (ireg_of res) (ireg_of m0) i i0 k rs m) as [rs' [A [B C]]]; auto with ppcgen.
exists rs'; auto with ppcgen.
(* Oroli *)
destruct (mreg_eq m0 res). subst m0.
TranslOpSimpl.
econstructor; split.
eapply exec_straight_three; simpl; reflexivity.
split. repeat SIMP. intros; repeat SIMP.
(* Ointoffloat *)
replace v with (Val.maketotal (Val.intoffloat (rs (freg_of m0)))).
TranslOpSimpl.
rewrite H2; auto.
(* Ocmp *)
destruct (transl_cond_op_correct c args res k rs m) as [rs' [A [B C]]]; auto.
exists rs'; auto with ppcgen.
Qed.
Lemma transl_op_correct:
forall op args res k ms sp rs m v m',
wt_instr (Mop op args res) ->
agree ms sp rs ->
eval_operation ge sp op (map ms args) m = Some v ->
Mem.extends m m' ->
exists rs',
exec_straight (transl_op op args res k) rs m' k rs' m'
/\ agree (Regmap.set res v (undef_op op ms)) sp rs'.
Proof.
intros.
exploit eval_operation_lessdef. eapply preg_vals; eauto. eauto. eauto.
intros [v' [A B]]. rewrite (sp_val _ _ _ H0) in A.
exploit transl_op_correct_aux; eauto. intros [rs' [P [Q R]]].
rewrite <- Q in B.
exists rs'; split. eexact P.
unfold undef_op. destruct op;
(apply agree_set_mreg_undef_temps with rs || apply agree_set_mreg with rs);
auto.
Qed.
Lemma transl_load_store_correct:
forall (mk1: constant -> ireg -> instruction) (mk2: ireg -> ireg -> instruction)
addr args (temp: ireg) k ms sp rs m ms' m',
(forall cst (r1: ireg) (rs1: regset) k,
eval_addressing ge sp addr (map rs (map preg_of args)) =
Some(Val.add (gpr_or_zero rs1 r1) (const_low ge cst)) ->
(forall (r: preg), r <> PC -> r <> temp -> rs1 r = rs r) ->
exists rs',
exec_straight (mk1 cst r1 :: k) rs1 m k rs' m' /\
agree ms' sp rs') ->
(forall (r1 r2: ireg) k,
eval_addressing ge sp addr (map rs (map preg_of args)) = Some(Val.add rs#r1 rs#r2) ->
exists rs',
exec_straight (mk2 r1 r2 :: k) rs m k rs' m' /\
agree ms' sp rs') ->
agree ms sp rs ->
map mreg_type args = type_of_addressing addr ->
temp <> GPR0 ->
exists rs',
exec_straight (transl_load_store mk1 mk2 addr args temp k) rs m
k rs' m'
/\ agree ms' sp rs'.
Proof.
intros. destruct addr; simpl in H2; TypeInv; simpl.
(* Aindexed *)
case (Int.eq (high_s i) Int.zero).
(* Aindexed short *)
apply H.
simpl. UseTypeInfo. rewrite gpr_or_zero_not_zero; auto with ppcgen.
auto.
(* Aindexed long *)
set (rs1 := nextinstr (rs#temp <- (Val.add (rs (ireg_of m0)) (Vint (Int.shl (high_s i) (Int.repr 16)))))).
exploit (H (Cint (low_s i)) temp rs1 k).
simpl. UseTypeInfo. rewrite gpr_or_zero_not_zero; auto.
unfold rs1; repeat SIMP. rewrite Val.add_assoc.
Transparent Val.add.
simpl. rewrite low_high_s. auto.
intros; unfold rs1; repeat SIMP.
intros [rs' [EX' AG']].
exists rs'. split. apply exec_straight_step with rs1 m.
simpl. rewrite gpr_or_zero_not_zero; auto with ppcgen. auto.
auto. auto.
(* Aindexed2 *)
apply H0.
simpl. UseTypeInfo; auto.
(* Aglobal *)
case_eq (symbol_is_small_data i i0); intro SISD.
(* Aglobal from small data *)
apply H. rewrite gpr_or_zero_zero. simpl const_low.
rewrite small_data_area_addressing; auto. simpl.
unfold symbol_address, symbol_offset.
destruct (Genv.find_symbol ge i); auto. rewrite Int.add_zero. auto.
auto.
(* Aglobal general case *)
set (rs1 := nextinstr (rs#temp <- (const_high ge (Csymbol_high i i0)))).
exploit (H (Csymbol_low i i0) temp rs1 k).
simpl. rewrite gpr_or_zero_not_zero; auto.
unfold rs1. rewrite nextinstr_inv. rewrite Pregmap.gss.
unfold const_high, const_low.
set (v := symbol_offset ge i i0).
symmetry. rewrite Val.add_commut. unfold v. rewrite low_high_half. auto.
discriminate.
intros; unfold rs1. rewrite nextinstr_inv; auto. apply Pregmap.gso; auto.
intros [rs' [EX' AG']].
exists rs'. split. apply exec_straight_step with rs1 m.
unfold exec_instr. rewrite gpr_or_zero_zero.
rewrite Val.add_commut. unfold const_high.
rewrite high_half_zero.
reflexivity. reflexivity.
assumption. assumption.
(* Abased *)
set (rs1 := nextinstr (rs#temp <- (Val.add (rs (ireg_of m0)) (const_high ge (Csymbol_high i i0))))).
exploit (H (Csymbol_low i i0) temp rs1 k).
simpl. rewrite gpr_or_zero_not_zero; auto.
unfold rs1. rewrite nextinstr_inv. rewrite Pregmap.gss.
rewrite Val.add_assoc.
unfold const_high, const_low.
set (v := symbol_offset ge i i0).
symmetry. rewrite Val.add_commut. decEq. decEq.
unfold v. rewrite Val.add_commut. rewrite low_high_half. auto.
UseTypeInfo. auto. discriminate.
intros. unfold rs1. rewrite nextinstr_inv; auto. apply Pregmap.gso; auto.
intros [rs' [EX' AG']].
exists rs'. split. apply exec_straight_step with rs1 m.
unfold exec_instr. rewrite gpr_or_zero_not_zero; auto with ppcgen. auto.
assumption. assumption.
(* Ainstack *)
case (Int.eq (high_s i) Int.zero).
apply H. simpl. rewrite gpr_or_zero_not_zero; auto with ppcgen.
rewrite (sp_val ms sp rs); auto. auto.
set (rs1 := nextinstr (rs#temp <- (Val.add sp (Vint (Int.shl (high_s i) (Int.repr 16)))))).
exploit (H (Cint (low_s i)) temp rs1 k).
simpl. rewrite gpr_or_zero_not_zero; auto.
unfold rs1. rewrite nextinstr_inv. rewrite Pregmap.gss.
rewrite Val.add_assoc. simpl. rewrite low_high_s. auto.
congruence.
intros. unfold rs1. rewrite nextinstr_inv; auto. apply Pregmap.gso; auto.
intros [rs' [EX' AG']].
exists rs'. split. apply exec_straight_step with rs1 m.
unfold exec_instr. rewrite gpr_or_zero_not_zero; auto with ppcgen.
rewrite <- (sp_val ms sp rs); auto. auto.
assumption. assumption.
Qed.
(** Translation of memory loads. *)
Lemma transl_load_correct:
forall (mk1: constant -> ireg -> instruction) (mk2: ireg -> ireg -> instruction)
chunk addr args k ms sp rs m m' dst a v,
(forall cst (r1: ireg) (rs1: regset),
exec_instr ge fn (mk1 cst r1) rs1 m' =
load1 ge chunk (preg_of dst) cst r1 rs1 m') ->
(forall (r1 r2: ireg) (rs1: regset),
exec_instr ge fn (mk2 r1 r2) rs1 m' =
load2 chunk (preg_of dst) r1 r2 rs1 m') ->
agree ms sp rs ->
map mreg_type args = type_of_addressing addr ->
eval_addressing ge sp addr (map ms args) = Some a ->
Mem.loadv chunk m a = Some v ->
Mem.extends m m' ->
exists rs',
exec_straight (transl_load_store mk1 mk2 addr args GPR12 k) rs m'
k rs' m'
/\ agree (Regmap.set dst v (undef_temps ms)) sp rs'.
Proof.
intros.
exploit eval_addressing_lessdef. eapply preg_vals; eauto. eauto.
intros [a' [A B]].
exploit Mem.loadv_extends; eauto. intros [v' [C D]].
apply transl_load_store_correct with ms; auto.
(* mk1 *)
intros. exists (nextinstr (rs1#(preg_of dst) <- v')).
split. apply exec_straight_one. rewrite H.
unfold load1. rewrite A in H6. inv H6. rewrite C. auto.
unfold nextinstr. SIMP. decEq. SIMP. apply sym_not_equal; auto with ppcgen.
apply agree_set_mreg with rs1.
apply agree_undef_temps with rs; auto with ppcgen.
repeat SIMP.
intros; repeat SIMP.
(* mk2 *)
intros. exists (nextinstr (rs#(preg_of dst) <- v')).
split. apply exec_straight_one. rewrite H0.
unfold load2. rewrite A in H6. inv H6. rewrite C. auto.
unfold nextinstr. SIMP. decEq. SIMP. apply sym_not_equal; auto with ppcgen.
apply agree_set_mreg with rs.
apply agree_undef_temps with rs; auto with ppcgen.
repeat SIMP.
intros; repeat SIMP.
(* not GPR0 *)
congruence.
Qed.
(** Translation of memory stores. *)
Lemma transl_store_correct:
forall (mk1: constant -> ireg -> instruction) (mk2: ireg -> ireg -> instruction)
chunk addr args k ms sp rs m src a m' m1,
(forall cst (r1: ireg) (rs1 rs2: regset) (m2: mem),
store1 ge chunk (preg_of src) cst r1 rs1 m1 = OK rs2 m2 ->
exists rs3,
exec_instr ge fn (mk1 cst r1) rs1 m1 = OK rs3 m2
/\ (forall (r: preg), r <> FPR13 -> rs3 r = rs2 r)) ->
(forall (r1 r2: ireg) (rs1 rs2: regset) (m2: mem),
store2 chunk (preg_of src) r1 r2 rs1 m1 = OK rs2 m2 ->
exists rs3,
exec_instr ge fn (mk2 r1 r2) rs1 m1 = OK rs3 m2
/\ (forall (r: preg), r <> FPR13 -> rs3 r = rs2 r)) ->
agree ms sp rs ->
map mreg_type args = type_of_addressing addr ->
eval_addressing ge sp addr (map ms args) = Some a ->
Mem.storev chunk m a (ms src) = Some m' ->
Mem.extends m m1 ->
exists m1',
Mem.extends m' m1'
/\ exists rs',
exec_straight (transl_load_store mk1 mk2 addr args (int_temp_for src) k) rs m1
k rs' m1'
/\ agree (undef_temps ms) sp rs'.
Proof.
intros.
exploit eval_addressing_lessdef. eapply preg_vals; eauto. eauto.
intros [a' [A B]].
assert (Z: Val.lessdef (ms src) (rs (preg_of src))). eapply preg_val; eauto.
exploit Mem.storev_extends; eauto. intros [m1' [C D]].
exists m1'; split; auto.
apply transl_load_store_correct with ms; auto.
(* mk1 *)
intros.
exploit (H cst r1 rs1 (nextinstr rs1) m1').
unfold store1. rewrite A in H6. inv H6.
replace (rs1 (preg_of src)) with (rs (preg_of src)).
rewrite C. auto.
symmetry. apply H7. auto with ppcgen.
apply sym_not_equal. apply int_temp_for_diff.
intros [rs3 [U V]].
exists rs3; split.
apply exec_straight_one. auto. rewrite V; auto with ppcgen.
apply agree_undef_temps with rs. auto.
intros. rewrite V; auto with ppcgen. SIMP. apply H7; auto with ppcgen.
unfold int_temp_for. destruct (mreg_eq src IT2); auto with ppcgen.
(* mk2 *)
intros.
exploit (H0 r1 r2 rs (nextinstr rs) m1').
unfold store2. rewrite A in H6. inv H6. rewrite C. auto.
intros [rs3 [U V]].
exists rs3; split.
apply exec_straight_one. auto. rewrite V; auto with ppcgen.
eapply agree_undef_temps; eauto. intros.
rewrite V; auto with ppcgen.
unfold int_temp_for. destruct (mreg_eq src IT2); congruence.
Qed.
End STRAIGHTLINE.
|