1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
|
(* *********************************************************************)
(* *)
(* The Compcert verified compiler *)
(* *)
(* Xavier Leroy, INRIA Paris-Rocquencourt *)
(* *)
(* Copyright Institut National de Recherche en Informatique et en *)
(* Automatique. All rights reserved. This file is distributed *)
(* under the terms of the GNU General Public License as published by *)
(* the Free Software Foundation, either version 2 of the License, or *)
(* (at your option) any later version. This file is also distributed *)
(* under the terms of the INRIA Non-Commercial License Agreement. *)
(* *)
(* *********************************************************************)
(** A persistent union-find data structure. *)
Require Import Wf.
Require Recdef.
Require Setoid.
Require Coq.Program.Wf.
Require Import Coqlib.
Open Scope nat_scope.
Set Implicit Arguments.
Module Type MAP.
Variable elt: Type.
Variable elt_eq: forall (x y: elt), {x=y} + {x<>y}.
Variable t: Type -> Type.
Variable empty: forall (A: Type), t A.
Variable get: forall (A: Type), elt -> t A -> option A.
Variable set: forall (A: Type), elt -> A -> t A -> t A.
Hypothesis gempty: forall (A: Type) (x: elt), get x (empty A) = None.
Hypothesis gsspec: forall (A: Type) (x y: elt) (v: A) (m: t A),
get x (set y v m) = if elt_eq x y then Some v else get x m.
End MAP.
Unset Implicit Arguments.
Module Type UNIONFIND.
Variable elt: Type.
Variable elt_eq: forall (x y: elt), {x=y} + {x<>y}.
Variable t: Type.
Variable repr: t -> elt -> elt.
Hypothesis repr_canonical: forall uf a, repr uf (repr uf a) = repr uf a.
Definition sameclass (uf: t) (a b: elt) : Prop := repr uf a = repr uf b.
Hypothesis sameclass_refl:
forall uf a, sameclass uf a a.
Hypothesis sameclass_sym:
forall uf a b, sameclass uf a b -> sameclass uf b a.
Hypothesis sameclass_trans:
forall uf a b c,
sameclass uf a b -> sameclass uf b c -> sameclass uf a c.
Hypothesis sameclass_repr:
forall uf a, sameclass uf a (repr uf a).
Variable empty: t.
Hypothesis repr_empty:
forall a, repr empty a = a.
Hypothesis sameclass_empty:
forall a b, sameclass empty a b -> a = b.
Variable find: t -> elt -> elt * t.
Hypothesis find_repr:
forall uf a, fst (find uf a) = repr uf a.
Hypothesis find_unchanged:
forall uf a x, repr (snd (find uf a)) x = repr uf x.
Hypothesis sameclass_find_1:
forall uf a x y, sameclass (snd (find uf a)) x y <-> sameclass uf x y.
Hypothesis sameclass_find_2:
forall uf a, sameclass uf a (fst (find uf a)).
Hypothesis sameclass_find_3:
forall uf a, sameclass (snd (find uf a)) a (fst (find uf a)).
Variable union: t -> elt -> elt -> t.
Hypothesis repr_union_1:
forall uf a b x, repr uf x <> repr uf a -> repr (union uf a b) x = repr uf x.
Hypothesis repr_union_2:
forall uf a b x, repr uf x = repr uf a -> repr (union uf a b) x = repr uf b.
Hypothesis repr_union_3:
forall uf a b, repr (union uf a b) b = repr uf b.
Hypothesis sameclass_union_1:
forall uf a b, sameclass (union uf a b) a b.
Hypothesis sameclass_union_2:
forall uf a b x y, sameclass uf x y -> sameclass (union uf a b) x y.
Hypothesis sameclass_union_3:
forall uf a b x y,
sameclass (union uf a b) x y ->
sameclass uf x y
\/ sameclass uf x a /\ sameclass uf y b
\/ sameclass uf x b /\ sameclass uf y a.
Variable merge: t -> elt -> elt -> t.
Hypothesis repr_merge:
forall uf a b x, repr (merge uf a b) x = repr (union uf a b) x.
Hypothesis sameclass_merge:
forall uf a b x y, sameclass (merge uf a b) x y <-> sameclass (union uf a b) x y.
Variable path_ord: t -> elt -> elt -> Prop.
Hypothesis path_ord_wellfounded:
forall uf, well_founded (path_ord uf).
Hypothesis path_ord_canonical:
forall uf x y, repr uf x = x -> ~path_ord uf y x.
Hypothesis path_ord_merge_1:
forall uf a b x y,
path_ord uf x y -> path_ord (merge uf a b) x y.
Hypothesis path_ord_merge_2:
forall uf a b,
repr uf a <> repr uf b -> path_ord (merge uf a b) b (repr uf a).
Variable pathlen: t -> elt -> nat.
Hypothesis pathlen_zero:
forall uf a, repr uf a = a <-> pathlen uf a = O.
Hypothesis pathlen_merge:
forall uf a b x,
pathlen (merge uf a b) x =
if elt_eq (repr uf a) (repr uf b) then
pathlen uf x
else if elt_eq (repr uf x) (repr uf a) then
pathlen uf x + pathlen uf b + 1
else
pathlen uf x.
Hypothesis pathlen_gt_merge:
forall uf a b x y,
repr uf x = repr uf y ->
pathlen uf x > pathlen uf y ->
pathlen (merge uf a b) x > pathlen (merge uf a b) y.
End UNIONFIND.
Module UF (M: MAP) : UNIONFIND with Definition elt := M.elt.
Definition elt := M.elt.
Definition elt_eq := M.elt_eq.
(* A set of equivalence classes over elt is represented by a map m.
M.get a m = Some a' means that a is in the same class as a'.
M.get a m = None means that a is the canonical representative
for its equivalence class. *)
(* The ordering over elt induced by such a map.
repr_order m a a' iff M.get a' m = Some a.
This ordering must be well founded. *)
Definition order (m: M.t elt) (a a': elt) : Prop :=
M.get a' m = Some a.
Record unionfind : Type := mk { m: M.t elt; mwf: well_founded (order m) }.
Definition t := unionfind.
(* The canonical representative of an element *)
Section REPR.
Variable uf: t.
Function repr (a: elt) {wf (order uf.(m)) a} : elt :=
match M.get a uf.(m) with
| Some a' => repr a'
| None => a
end.
Proof.
intros. auto.
apply mwf.
Qed.
Lemma repr_none:
forall a,
M.get a uf.(m) = None ->
repr a = a.
Proof.
intros.
functional induction (repr a). congruence. auto.
Qed.
Lemma repr_some:
forall a a',
M.get a uf.(m) = Some a' ->
repr a = repr a'.
Proof.
intros.
functional induction (repr a). congruence. congruence.
Qed.
Lemma repr_res_none:
forall (a: elt), M.get (repr a) uf.(m) = None.
Proof.
intros. functional induction (repr a). auto. auto.
Qed.
Lemma repr_canonical:
forall (a: elt), repr (repr a) = repr a.
Proof.
intros. apply repr_none. apply repr_res_none.
Qed.
Lemma repr_some_diff:
forall a a', M.get a uf.(m) = Some a' -> a <> repr a'.
Proof.
intros; red; intros.
assert (repr a = a). rewrite (repr_some a a'); auto.
assert (M.get a uf.(m) = None). rewrite <- H1. apply repr_res_none.
congruence.
Qed.
End REPR.
Definition sameclass (uf: t) (a b: elt) : Prop :=
repr uf a = repr uf b.
Lemma sameclass_refl:
forall uf a, sameclass uf a a.
Proof.
intros. red. auto.
Qed.
Lemma sameclass_sym:
forall uf a b, sameclass uf a b -> sameclass uf b a.
Proof.
intros. red. symmetry. exact H.
Qed.
Lemma sameclass_trans:
forall uf a b c,
sameclass uf a b -> sameclass uf b c -> sameclass uf a c.
Proof.
intros. red. transitivity (repr uf b). exact H. exact H0.
Qed.
Lemma sameclass_repr:
forall uf a, sameclass uf a (repr uf a).
Proof.
intros. red. symmetry. rewrite repr_canonical. auto.
Qed.
(* The empty unionfind structure (each element in its own class) *)
Lemma wf_empty:
well_founded (order (M.empty elt)).
Proof.
red. intros. apply Acc_intro. intros b RO. red in RO.
rewrite M.gempty in RO. discriminate.
Qed.
Definition empty : t := mk (M.empty elt) wf_empty.
Lemma repr_empty:
forall a, repr empty a = a.
Proof.
intros. apply repr_none. simpl. apply M.gempty.
Qed.
Lemma sameclass_empty:
forall a b, sameclass empty a b -> a = b.
Proof.
intros. red in H. repeat rewrite repr_empty in H. auto.
Qed.
(* Merging two equivalence classes *)
Section IDENTIFY.
Variable uf: t.
Variables a b: elt.
Hypothesis a_canon: M.get a uf.(m) = None.
Hypothesis not_same_class: repr uf b <> a.
Lemma identify_order:
forall x y,
order (M.set a b uf.(m)) y x <->
order uf.(m) y x \/ (x = a /\ y = b).
Proof.
intros until y. unfold order. rewrite M.gsspec.
destruct (M.elt_eq x a). intuition congruence. intuition congruence.
Qed.
Remark identify_Acc_b:
forall x,
Acc (order uf.(m)) x -> repr uf x <> a -> Acc (order (M.set a b uf.(m))) x.
Proof.
induction 1; intros. constructor; intros.
rewrite identify_order in H2. destruct H2 as [A | [A B]].
apply H0; auto. rewrite <- (repr_some uf _ _ A). auto.
subst. elim H1. apply repr_none. auto.
Qed.
Remark identify_Acc:
forall x,
Acc (order uf.(m)) x -> Acc (order (M.set a b uf.(m))) x.
Proof.
induction 1. constructor; intros.
rewrite identify_order in H1. destruct H1 as [A | [A B]].
auto.
subst. apply identify_Acc_b; auto. apply uf.(mwf).
Qed.
Lemma identify_wf:
well_founded (order (M.set a b uf.(m))).
Proof.
red; intros. apply identify_Acc. apply uf.(mwf).
Qed.
Definition identify := mk (M.set a b uf.(m)) identify_wf.
Lemma repr_identify_1:
forall x, repr uf x <> a -> repr identify x = repr uf x.
Proof.
intros. functional induction (repr uf x).
rewrite <- IHe; auto. apply repr_some. simpl. rewrite M.gsspec.
destruct (M.elt_eq a0 a). congruence. auto.
apply repr_none. simpl. rewrite M.gsspec. rewrite dec_eq_false; auto.
Qed.
Lemma repr_identify_2:
forall x, repr uf x = a -> repr identify x = repr uf b.
Proof.
intros. functional induction (repr uf x).
rewrite <- IHe; auto. apply repr_some. simpl. rewrite M.gsspec.
rewrite dec_eq_false; auto. congruence.
transitivity (repr identify b). apply repr_some. simpl.
rewrite M.gsspec. apply dec_eq_true.
apply repr_identify_1. auto.
Qed.
End IDENTIFY.
(* Union *)
Remark union_not_same_class:
forall uf a b, repr uf a <> repr uf b -> repr uf (repr uf b) <> repr uf a.
Proof.
intros. rewrite repr_canonical. auto.
Qed.
Definition union (uf: t) (a b: elt) : t :=
let a' := repr uf a in
let b' := repr uf b in
match M.elt_eq a' b' with
| left EQ => uf
| right NEQ => identify uf a' b' (repr_res_none uf a) (union_not_same_class uf a b NEQ)
end.
Lemma repr_union_1:
forall uf a b x, repr uf x <> repr uf a -> repr (union uf a b) x = repr uf x.
Proof.
intros. unfold union. destruct (M.elt_eq (repr uf a) (repr uf b)).
auto.
apply repr_identify_1. auto.
Qed.
Lemma repr_union_2:
forall uf a b x, repr uf x = repr uf a -> repr (union uf a b) x = repr uf b.
Proof.
intros. unfold union. destruct (M.elt_eq (repr uf a) (repr uf b)).
congruence.
rewrite <- (repr_canonical uf b). apply repr_identify_2. auto.
Qed.
Lemma repr_union_3:
forall uf a b, repr (union uf a b) b = repr uf b.
Proof.
intros. unfold union. destruct (M.elt_eq (repr uf a) (repr uf b)).
auto. apply repr_identify_1. auto.
Qed.
Lemma sameclass_union_1:
forall uf a b, sameclass (union uf a b) a b.
Proof.
intros; red. rewrite repr_union_2; auto. rewrite repr_union_3. auto.
Qed.
Lemma sameclass_union_2:
forall uf a b x y, sameclass uf x y -> sameclass (union uf a b) x y.
Proof.
unfold sameclass; intros.
destruct (M.elt_eq (repr uf x) (repr uf a));
destruct (M.elt_eq (repr uf y) (repr uf a)).
repeat rewrite repr_union_2; auto.
congruence. congruence.
repeat rewrite repr_union_1; auto.
Qed.
Lemma sameclass_union_3:
forall uf a b x y,
sameclass (union uf a b) x y ->
sameclass uf x y
\/ sameclass uf x a /\ sameclass uf y b
\/ sameclass uf x b /\ sameclass uf y a.
Proof.
intros until y. unfold sameclass.
destruct (M.elt_eq (repr uf x) (repr uf a));
destruct (M.elt_eq (repr uf y) (repr uf a)).
intro. left. congruence.
rewrite repr_union_2; auto. rewrite repr_union_1; auto.
rewrite repr_union_1; auto. rewrite repr_union_2; auto.
repeat rewrite repr_union_1; auto.
Qed.
(* Merge *)
Definition merge (uf: t) (a b: elt) : t :=
let a' := repr uf a in
let b' := repr uf b in
match M.elt_eq a' b' with
| left EQ => uf
| right NEQ => identify uf a' b (repr_res_none uf a) (sym_not_equal NEQ)
end.
Lemma repr_merge:
forall uf a b x, repr (merge uf a b) x = repr (union uf a b) x.
Proof.
intros. unfold merge, union. destruct (M.elt_eq (repr uf a) (repr uf b)).
auto.
destruct (M.elt_eq (repr uf x) (repr uf a)).
repeat rewrite repr_identify_2; auto. rewrite repr_canonical; auto.
repeat rewrite repr_identify_1; auto.
Qed.
Lemma sameclass_merge:
forall uf a b x y, sameclass (merge uf a b) x y <-> sameclass (union uf a b) x y.
Proof.
unfold sameclass; intros. repeat rewrite repr_merge. tauto.
Qed.
(* Path order and merge *)
Definition path_ord (uf: t) : elt -> elt -> Prop := order uf.(m).
Lemma path_ord_wellfounded:
forall uf, well_founded (path_ord uf).
Proof.
intros. apply mwf.
Qed.
Lemma path_ord_canonical:
forall uf x y, repr uf x = x -> ~path_ord uf y x.
Proof.
intros; red; intros. hnf in H0.
assert (M.get x (m uf) = None). rewrite <- H. apply repr_res_none.
congruence.
Qed.
Lemma path_ord_merge_1:
forall uf a b x y,
path_ord uf x y -> path_ord (merge uf a b) x y.
Proof.
intros. unfold merge.
destruct (M.elt_eq (repr uf a) (repr uf b)).
auto.
red. simpl. red. rewrite M.gsspec. rewrite dec_eq_false. apply H.
red; intros. hnf in H. generalize (repr_res_none uf a). congruence.
Qed.
Lemma path_ord_merge_2:
forall uf a b,
repr uf a <> repr uf b -> path_ord (merge uf a b) b (repr uf a).
Proof.
intros. unfold merge.
destruct (M.elt_eq (repr uf a) (repr uf b)).
congruence.
red. simpl. red. rewrite M.gsspec. rewrite dec_eq_true; auto.
Qed.
(* Path length and merge *)
Section PATHLEN.
Variable uf: t.
Function pathlen (a: elt) {wf (order uf.(m)) a} : nat :=
match M.get a uf.(m) with
| Some a' => S (pathlen a')
| None => O
end.
Proof.
intros. auto.
apply mwf.
Qed.
Lemma pathlen_none:
forall a,
M.get a uf.(m) = None ->
pathlen a = 0.
Proof.
intros.
functional induction (pathlen a). congruence. auto.
Qed.
Lemma pathlen_some:
forall a a',
M.get a uf.(m) = Some a' ->
pathlen a = S (pathlen a').
Proof.
intros.
functional induction (pathlen a). congruence. congruence.
Qed.
Lemma pathlen_zero:
forall a, repr uf a = a <-> pathlen a = O.
Proof.
intros; split; intros.
apply pathlen_none. rewrite <- H. apply repr_res_none.
functional induction (pathlen a).
congruence.
apply repr_none. auto.
Qed.
End PATHLEN.
(* Path length and merge *)
Lemma pathlen_merge:
forall uf a b x,
pathlen (merge uf a b) x =
if M.elt_eq (repr uf a) (repr uf b) then
pathlen uf x
else if M.elt_eq (repr uf x) (repr uf a) then
pathlen uf x + pathlen uf b + 1
else
pathlen uf x.
Proof.
intros. unfold merge.
destruct (M.elt_eq (repr uf a) (repr uf b)).
auto.
functional induction (pathlen (identify uf (repr uf a) b (repr_res_none uf a) (sym_not_equal n)) x).
simpl in e. rewrite M.gsspec in e.
destruct (M.elt_eq a0 (repr uf a)).
inversion e; subst a'; clear e.
replace (repr uf a0) with (repr uf a). rewrite dec_eq_true.
rewrite IHn0. rewrite dec_eq_false; auto.
rewrite (pathlen_none uf a0). omega. subst a0. apply repr_res_none.
subst a0. rewrite repr_canonical; auto.
rewrite (pathlen_some uf a0 a'); auto.
rewrite IHn0.
replace (repr uf a0) with (repr uf a').
destruct (M.elt_eq (repr uf a') (repr uf a)); omega.
symmetry. apply repr_some; auto.
simpl in e. rewrite M.gsspec in e. destruct (M.elt_eq a0 (repr uf a)).
congruence. rewrite (repr_none uf a0); auto.
rewrite dec_eq_false; auto. symmetry. apply pathlen_none; auto.
Qed.
Lemma pathlen_gt_merge:
forall uf a b x y,
repr uf x = repr uf y ->
pathlen uf x > pathlen uf y ->
pathlen (merge uf a b) x > pathlen (merge uf a b) y.
Proof.
intros. repeat rewrite pathlen_merge.
destruct (M.elt_eq (repr uf a) (repr uf b)). auto.
rewrite H. destruct (M.elt_eq (repr uf y) (repr uf a)).
omega. auto.
Qed.
(* Path compression *)
Section COMPRESS.
Variable uf: t.
Variable a b: elt.
Hypothesis a_diff_b: a <> b.
Hypothesis a_repr_b: repr uf a = b.
Lemma compress_order:
forall x y,
order (M.set a b uf.(m)) y x ->
order uf.(m) y x \/ (x = a /\ y = b).
Proof.
intros until y. unfold order. rewrite M.gsspec.
destruct (M.elt_eq x a).
intuition congruence.
auto.
Qed.
Remark compress_Acc:
forall x,
Acc (order uf.(m)) x -> Acc (order (M.set a b uf.(m))) x.
Proof.
induction 1. constructor; intros.
destruct (compress_order _ _ H1) as [A | [A B]].
auto.
subst x y. constructor; intros.
destruct (compress_order _ _ H2) as [A | [A B]].
red in A. generalize (repr_res_none uf a). congruence.
congruence.
Qed.
Lemma compress_wf:
well_founded (order (M.set a b uf.(m))).
Proof.
red; intros. apply compress_Acc. apply uf.(mwf).
Qed.
Definition compress := mk (M.set a b uf.(m)) compress_wf.
Lemma repr_compress:
forall x, repr compress x = repr uf x.
Proof.
intros. functional induction (repr compress x).
simpl in e. rewrite M.gsspec in e. destruct (M.elt_eq a0 a).
subst a0. injection e; intros. subst a'. rewrite IHe. rewrite <- a_repr_b.
apply repr_canonical.
rewrite IHe. symmetry. apply repr_some; auto.
simpl in e. rewrite M.gsspec in e. destruct (M.elt_eq a0 a).
congruence. symmetry. apply repr_none. auto.
Qed.
End COMPRESS.
(* Find with path compression *)
Section FIND.
Variable uf: t.
Program Fixpoint find_x (a: elt) {wf (order uf.(m)) a} :
{ r: elt * t | fst r = repr uf a /\ forall x, repr (snd r) x = repr uf x } :=
match M.get a uf.(m) with
| Some a' =>
match find_x a' with
| pair b uf' => (b, compress uf' a b _ _)
end
| None => (a, uf)
end.
Next Obligation.
red. auto.
Qed.
Next Obligation.
(* a <> b*)
destruct (find_x a')
as [[b' uf''] [A B]]. simpl in *. inv Heq_anonymous0.
apply repr_some_diff. auto.
Qed.
Next Obligation.
destruct (find_x a') as [[b' uf''] [A B]]. simpl in *. inv Heq_anonymous0.
rewrite B. apply repr_some. auto.
Qed.
Next Obligation.
split.
destruct (find_x a')
as [[b' uf''] [A B]]. simpl in *. inv Heq_anonymous0.
symmetry. apply repr_some. auto.
intros. rewrite repr_compress.
destruct (find_x a')
as [[b' uf''] [A B]]. simpl in *. inv Heq_anonymous0. auto.
Qed.
Next Obligation.
split; auto. symmetry. apply repr_none. auto.
Qed.
Next Obligation.
apply mwf.
Defined.
Definition find (a: elt) : elt * t := proj1_sig (find_x a).
Lemma find_repr:
forall a, fst (find a) = repr uf a.
Proof.
unfold find; intros. destruct (find_x a) as [[b uf'] [A B]]. simpl. auto.
Qed.
Lemma find_unchanged:
forall a x, repr (snd (find a)) x = repr uf x.
Proof.
unfold find; intros. destruct (find_x a) as [[b uf'] [A B]]. simpl. auto.
Qed.
Lemma sameclass_find_1:
forall a x y, sameclass (snd (find a)) x y <-> sameclass uf x y.
Proof.
unfold sameclass; intros. repeat rewrite find_unchanged. tauto.
Qed.
Lemma sameclass_find_2:
forall a, sameclass uf a (fst (find a)).
Proof.
intros. rewrite find_repr. apply sameclass_repr.
Qed.
Lemma sameclass_find_3:
forall a, sameclass (snd (find a)) a (fst (find a)).
Proof.
intros. rewrite sameclass_find_1. apply sameclass_find_2.
Qed.
End FIND.
End UF.
|