1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
|
(* *********************************************************************)
(* *)
(* The Compcert verified compiler *)
(* *)
(* Xavier Leroy, INRIA Paris-Rocquencourt *)
(* *)
(* Copyright Institut National de Recherche en Informatique et en *)
(* Automatique. All rights reserved. This file is distributed *)
(* under the terms of the INRIA Non-Commercial License Agreement. *)
(* *)
(* *********************************************************************)
(** Constructions of ordered types, for use with the [FSet] functors
for finite sets and the [FMap] functors for finite maps. *)
Require Import FSets.
Require Import Coqlib.
Require Import Maps.
Require Import Integers.
(** The ordered type of positive numbers *)
Module OrderedPositive <: OrderedType.
Definition t := positive.
Definition eq (x y: t) := x = y.
Definition lt := Plt.
Lemma eq_refl : forall x : t, eq x x.
Proof (@refl_equal t).
Lemma eq_sym : forall x y : t, eq x y -> eq y x.
Proof (@sym_equal t).
Lemma eq_trans : forall x y z : t, eq x y -> eq y z -> eq x z.
Proof (@trans_equal t).
Lemma lt_trans : forall x y z : t, lt x y -> lt y z -> lt x z.
Proof Plt_trans.
Lemma lt_not_eq : forall x y : t, lt x y -> ~ eq x y.
Proof Plt_ne.
Lemma compare : forall x y : t, Compare lt eq x y.
Proof.
intros. destruct (Pos.compare x y) as [] eqn:E.
apply EQ. red. apply Pos.compare_eq_iff. assumption.
apply LT. assumption.
apply GT. apply Pos.compare_gt_iff. assumption.
Defined.
Definition eq_dec : forall x y, { eq x y } + { ~ eq x y } := peq.
End OrderedPositive.
(** The ordered type of integers *)
Module OrderedZ <: OrderedType.
Definition t := Z.
Definition eq (x y: t) := x = y.
Definition lt := Zlt.
Lemma eq_refl : forall x : t, eq x x.
Proof (@refl_equal t).
Lemma eq_sym : forall x y : t, eq x y -> eq y x.
Proof (@sym_equal t).
Lemma eq_trans : forall x y z : t, eq x y -> eq y z -> eq x z.
Proof (@trans_equal t).
Lemma lt_trans : forall x y z : t, lt x y -> lt y z -> lt x z.
Proof Zlt_trans.
Lemma lt_not_eq : forall x y : t, lt x y -> ~ eq x y.
Proof. unfold lt, eq, t; intros. omega. Qed.
Lemma compare : forall x y : t, Compare lt eq x y.
Proof.
intros. destruct (Z.compare x y) as [] eqn:E.
apply EQ. red. apply Z.compare_eq_iff. assumption.
apply LT. assumption.
apply GT. apply Z.compare_gt_iff. assumption.
Defined.
Definition eq_dec : forall x y, { eq x y } + { ~ eq x y } := zeq.
End OrderedZ.
(** The ordered type of machine integers *)
Module OrderedInt <: OrderedType.
Definition t := int.
Definition eq (x y: t) := x = y.
Definition lt (x y: t) := Int.unsigned x < Int.unsigned y.
Lemma eq_refl : forall x : t, eq x x.
Proof (@refl_equal t).
Lemma eq_sym : forall x y : t, eq x y -> eq y x.
Proof (@sym_equal t).
Lemma eq_trans : forall x y z : t, eq x y -> eq y z -> eq x z.
Proof (@trans_equal t).
Lemma lt_trans : forall x y z : t, lt x y -> lt y z -> lt x z.
Proof.
unfold lt; intros. omega.
Qed.
Lemma lt_not_eq : forall x y : t, lt x y -> ~ eq x y.
Proof.
unfold lt,eq; intros; red; intros. subst. omega.
Qed.
Lemma compare : forall x y : t, Compare lt eq x y.
Proof.
intros. destruct (zlt (Int.unsigned x) (Int.unsigned y)).
apply LT. auto.
destruct (Int.eq_dec x y).
apply EQ. auto.
apply GT.
assert (Int.unsigned x <> Int.unsigned y).
red; intros. rewrite <- (Int.repr_unsigned x) in n. rewrite <- (Int.repr_unsigned y) in n. congruence.
red. omega.
Defined.
Definition eq_dec : forall x y, { eq x y } + { ~ eq x y } := Int.eq_dec.
End OrderedInt.
(** Indexed types (those that inject into [positive]) are ordered. *)
Module OrderedIndexed(A: INDEXED_TYPE) <: OrderedType.
Definition t := A.t.
Definition eq (x y: t) := x = y.
Definition lt (x y: t) := Plt (A.index x) (A.index y).
Lemma eq_refl : forall x : t, eq x x.
Proof (@refl_equal t).
Lemma eq_sym : forall x y : t, eq x y -> eq y x.
Proof (@sym_equal t).
Lemma eq_trans : forall x y z : t, eq x y -> eq y z -> eq x z.
Proof (@trans_equal t).
Lemma lt_trans : forall x y z : t, lt x y -> lt y z -> lt x z.
Proof.
unfold lt; intros. eapply Plt_trans; eauto.
Qed.
Lemma lt_not_eq : forall x y : t, lt x y -> ~ eq x y.
Proof.
unfold lt; unfold eq; intros.
red; intro. subst y. apply Plt_strict with (A.index x). auto.
Qed.
Lemma compare : forall x y : t, Compare lt eq x y.
Proof.
intros. case (OrderedPositive.compare (A.index x) (A.index y)); intro.
apply LT. exact l.
apply EQ. red; red in e. apply A.index_inj; auto.
apply GT. exact l.
Defined.
Lemma eq_dec : forall x y, { eq x y } + { ~ eq x y }.
Proof.
intros. case (peq (A.index x) (A.index y)); intros.
left. apply A.index_inj; auto.
right; red; unfold eq; intros; subst. congruence.
Defined.
End OrderedIndexed.
(** The product of two ordered types is ordered. *)
Module OrderedPair (A B: OrderedType) <: OrderedType.
Definition t := (A.t * B.t)%type.
Definition eq (x y: t) :=
A.eq (fst x) (fst y) /\ B.eq (snd x) (snd y).
Lemma eq_refl : forall x : t, eq x x.
Proof.
intros; split; auto.
Qed.
Lemma eq_sym : forall x y : t, eq x y -> eq y x.
Proof.
unfold eq; intros. intuition auto.
Qed.
Lemma eq_trans : forall x y z : t, eq x y -> eq y z -> eq x z.
Proof.
unfold eq; intros. intuition eauto.
Qed.
Definition lt (x y: t) :=
A.lt (fst x) (fst y) \/
(A.eq (fst x) (fst y) /\ B.lt (snd x) (snd y)).
Lemma lt_trans : forall x y z : t, lt x y -> lt y z -> lt x z.
Proof.
unfold lt; intros.
elim H; elim H0; intros.
left. apply A.lt_trans with (fst y); auto.
left. elim H1; intros.
case (A.compare (fst x) (fst z)); intro.
assumption.
generalize (A.lt_not_eq H2); intro. elim H5.
apply A.eq_trans with (fst z). auto. auto.
generalize (@A.lt_not_eq (fst z) (fst y)); intro.
elim H5. apply A.lt_trans with (fst x); auto.
apply A.eq_sym; auto.
left. elim H2; intros.
case (A.compare (fst x) (fst z)); intro.
assumption.
generalize (A.lt_not_eq H1); intro. elim H5.
apply A.eq_trans with (fst x).
apply A.eq_sym. auto. auto.
generalize (@A.lt_not_eq (fst y) (fst x)); intro.
elim H5. apply A.lt_trans with (fst z); auto.
apply A.eq_sym; auto.
right. elim H1; elim H2; intros.
split. apply A.eq_trans with (fst y); auto.
apply B.lt_trans with (snd y); auto.
Qed.
Lemma lt_not_eq : forall x y : t, lt x y -> ~ eq x y.
Proof.
unfold lt, eq, not; intros.
elim H0; intros.
elim H; intro.
apply (@A.lt_not_eq _ _ H3 H1).
elim H3; intros.
apply (@B.lt_not_eq _ _ H5 H2).
Qed.
Lemma compare : forall x y : t, Compare lt eq x y.
Proof.
intros.
case (A.compare (fst x) (fst y)); intro.
apply LT. red. left. auto.
case (B.compare (snd x) (snd y)); intro.
apply LT. red. right. tauto.
apply EQ. red. tauto.
apply GT. red. right. split. apply A.eq_sym. auto. auto.
apply GT. red. left. auto.
Defined.
Lemma eq_dec : forall x y, { eq x y } + { ~ eq x y }.
Proof.
unfold eq; intros.
case (A.eq_dec (fst x) (fst y)); intros.
case (B.eq_dec (snd x) (snd y)); intros.
left; auto.
right; intuition.
right; intuition.
Defined.
End OrderedPair.
|