1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
|
(** Constructions of semi-lattices. *)
Require Import Coqlib.
Require Import Maps.
(** * Signatures of semi-lattices *)
(** A semi-lattice is a type [t] equipped with a decidable equality [eq],
a partial order [ge], a smallest element [bot], and an upper
bound operation [lub]. Note that we do not demand that [lub] computes
the least upper bound. *)
Module Type SEMILATTICE.
Variable t: Set.
Variable eq: forall (x y: t), {x=y} + {x<>y}.
Variable ge: t -> t -> Prop.
Hypothesis ge_refl: forall x, ge x x.
Hypothesis ge_trans: forall x y z, ge x y -> ge y z -> ge x z.
Variable bot: t.
Hypothesis ge_bot: forall x, ge x bot.
Variable lub: t -> t -> t.
Hypothesis lub_commut: forall x y, lub x y = lub y x.
Hypothesis ge_lub_left: forall x y, ge (lub x y) x.
End SEMILATTICE.
(** A semi-lattice ``with top'' is similar, but also has a greatest
element [top]. *)
Module Type SEMILATTICE_WITH_TOP.
Variable t: Set.
Variable eq: forall (x y: t), {x=y} + {x<>y}.
Variable ge: t -> t -> Prop.
Hypothesis ge_refl: forall x, ge x x.
Hypothesis ge_trans: forall x y z, ge x y -> ge y z -> ge x z.
Variable bot: t.
Hypothesis ge_bot: forall x, ge x bot.
Variable top: t.
Hypothesis ge_top: forall x, ge top x.
Variable lub: t -> t -> t.
Hypothesis lub_commut: forall x y, lub x y = lub y x.
Hypothesis ge_lub_left: forall x y, ge (lub x y) x.
End SEMILATTICE_WITH_TOP.
(** * Semi-lattice over maps *)
(** Given a semi-lattice with top [L], the following functor implements
a semi-lattice structure over finite maps from positive numbers to [L.t].
The default value for these maps is either [L.top] or [L.bot]. *)
Module LPMap(L: SEMILATTICE_WITH_TOP) <: SEMILATTICE_WITH_TOP.
Inductive t_ : Set :=
| Bot_except: PTree.t L.t -> t_
| Top_except: PTree.t L.t -> t_.
Definition t: Set := t_.
Lemma eq: forall (x y: t), {x=y} + {x<>y}.
Proof.
assert (forall m1 m2: PTree.t L.t, {m1=m2} + {m1<>m2}).
apply PTree.eq. exact L.eq.
decide equality.
Qed.
Definition get (p: positive) (x: t) : L.t :=
match x with
| Bot_except m =>
match m!p with None => L.bot | Some x => x end
| Top_except m =>
match m!p with None => L.top | Some x => x end
end.
Definition set (p: positive) (v: L.t) (x: t) : t :=
match x with
| Bot_except m =>
Bot_except (PTree.set p v m)
| Top_except m =>
Top_except (PTree.set p v m)
end.
Lemma gss:
forall p v x,
get p (set p v x) = v.
Proof.
intros. destruct x; simpl; rewrite PTree.gss; auto.
Qed.
Lemma gso:
forall p q v x,
p <> q -> get p (set q v x) = get p x.
Proof.
intros. destruct x; simpl; rewrite PTree.gso; auto.
Qed.
Definition ge (x y: t) : Prop :=
forall p, L.ge (get p x) (get p y).
Lemma ge_refl: forall x, ge x x.
Proof.
unfold ge; intros. apply L.ge_refl.
Qed.
Lemma ge_trans: forall x y z, ge x y -> ge y z -> ge x z.
Proof.
unfold ge; intros. apply L.ge_trans with (get p y); auto.
Qed.
Definition bot := Bot_except (PTree.empty L.t).
Lemma get_bot: forall p, get p bot = L.bot.
Proof.
unfold bot; intros; simpl. rewrite PTree.gempty. auto.
Qed.
Lemma ge_bot: forall x, ge x bot.
Proof.
unfold ge; intros. rewrite get_bot. apply L.ge_bot.
Qed.
Definition top := Top_except (PTree.empty L.t).
Lemma get_top: forall p, get p top = L.top.
Proof.
unfold top; intros; simpl. rewrite PTree.gempty. auto.
Qed.
Lemma ge_top: forall x, ge top x.
Proof.
unfold ge; intros. rewrite get_top. apply L.ge_top.
Qed.
Definition lub (x y: t) : t :=
match x, y with
| Bot_except m, Bot_except n =>
Bot_except
(PTree.combine
(fun a b =>
match a, b with
| Some u, Some v => Some (L.lub u v)
| None, _ => b
| _, None => a
end)
m n)
| Bot_except m, Top_except n =>
Top_except
(PTree.combine
(fun a b =>
match a, b with
| Some u, Some v => Some (L.lub u v)
| None, _ => b
| _, None => None
end)
m n)
| Top_except m, Bot_except n =>
Top_except
(PTree.combine
(fun a b =>
match a, b with
| Some u, Some v => Some (L.lub u v)
| None, _ => None
| _, None => a
end)
m n)
| Top_except m, Top_except n =>
Top_except
(PTree.combine
(fun a b =>
match a, b with
| Some u, Some v => Some (L.lub u v)
| _, _ => None
end)
m n)
end.
Lemma lub_commut:
forall x y, lub x y = lub y x.
Proof.
destruct x; destruct y; unfold lub; decEq;
apply PTree.combine_commut; intros;
(destruct i; destruct j; auto; decEq; apply L.lub_commut).
Qed.
Lemma ge_lub_left:
forall x y, ge (lub x y) x.
Proof.
unfold ge, get, lub; intros; destruct x; destruct y.
rewrite PTree.gcombine.
destruct t0!p. destruct t1!p. apply L.ge_lub_left.
apply L.ge_refl. destruct t1!p. apply L.ge_bot. apply L.ge_refl.
auto.
rewrite PTree.gcombine.
destruct t0!p. destruct t1!p. apply L.ge_lub_left.
apply L.ge_top. destruct t1!p. apply L.ge_bot. apply L.ge_bot.
auto.
rewrite PTree.gcombine.
destruct t0!p. destruct t1!p. apply L.ge_lub_left.
apply L.ge_refl. apply L.ge_refl. auto.
rewrite PTree.gcombine.
destruct t0!p. destruct t1!p. apply L.ge_lub_left.
apply L.ge_top. apply L.ge_refl.
auto.
Qed.
End LPMap.
(** * Flat semi-lattice *)
(** Given a type with decidable equality [X], the following functor
returns a semi-lattice structure over [X.t] complemented with
a top and a bottom element. The ordering is the flat ordering
[Bot < Inj x < Top]. *)
Module LFlat(X: EQUALITY_TYPE) <: SEMILATTICE_WITH_TOP.
Inductive t_ : Set :=
| Bot: t_
| Inj: X.t -> t_
| Top: t_.
Definition t : Set := t_.
Lemma eq: forall (x y: t), {x=y} + {x<>y}.
Proof.
decide equality. apply X.eq.
Qed.
Definition ge (x y: t) : Prop :=
match x, y with
| Top, _ => True
| _, Bot => True
| Inj a, Inj b => a = b
| _, _ => False
end.
Lemma ge_refl: forall x, ge x x.
Proof.
unfold ge; destruct x; auto.
Qed.
Lemma ge_trans: forall x y z, ge x y -> ge y z -> ge x z.
Proof.
unfold ge; destruct x; destruct y; try destruct z; intuition.
transitivity t1; auto.
Qed.
Definition bot: t := Bot.
Lemma ge_bot: forall x, ge x bot.
Proof.
destruct x; simpl; auto.
Qed.
Definition top: t := Top.
Lemma ge_top: forall x, ge top x.
Proof.
destruct x; simpl; auto.
Qed.
Definition lub (x y: t) : t :=
match x, y with
| Bot, _ => y
| _, Bot => x
| Top, _ => Top
| _, Top => Top
| Inj a, Inj b => if X.eq a b then Inj a else Top
end.
Lemma lub_commut: forall x y, lub x y = lub y x.
Proof.
destruct x; destruct y; simpl; auto.
case (X.eq t0 t1); case (X.eq t1 t0); intros; congruence.
Qed.
Lemma ge_lub_left: forall x y, ge (lub x y) x.
Proof.
destruct x; destruct y; simpl; auto.
case (X.eq t0 t1); simpl; auto.
Qed.
End LFlat.
(** * Boolean semi-lattice *)
(** This semi-lattice has only two elements, [bot] and [top], trivially
ordered. *)
Module LBoolean <: SEMILATTICE_WITH_TOP.
Definition t := bool.
Lemma eq: forall (x y: t), {x=y} + {x<>y}.
Proof. decide equality. Qed.
Definition ge (x y: t) : Prop := x = y \/ x = true.
Lemma ge_refl: forall x, ge x x.
Proof. unfold ge; tauto. Qed.
Lemma ge_trans: forall x y z, ge x y -> ge y z -> ge x z.
Proof. unfold ge; intuition congruence. Qed.
Definition bot := false.
Lemma ge_bot: forall x, ge x bot.
Proof. destruct x; compute; tauto. Qed.
Definition top := true.
Lemma ge_top: forall x, ge top x.
Proof. unfold ge, top; tauto. Qed.
Definition lub (x y: t) := x || y.
Lemma lub_commut: forall x y, lub x y = lub y x.
Proof. intros; unfold lub. apply orb_comm. Qed.
Lemma ge_lub_left: forall x y, ge (lub x y) x.
Proof. destruct x; destruct y; compute; tauto. Qed.
End LBoolean.
|