1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
|
(* *********************************************************************)
(* *)
(* The Compcert verified compiler *)
(* *)
(* Xavier Leroy, INRIA Paris-Rocquencourt *)
(* *)
(* Copyright Institut National de Recherche en Informatique et en *)
(* Automatique. All rights reserved. This file is distributed *)
(* under the terms of the INRIA Non-Commercial License Agreement. *)
(* *)
(* *********************************************************************)
(** Constructions of semi-lattices. *)
Require Import Coqlib.
Require Import Maps.
Require Import FSets.
(** * Signatures of semi-lattices *)
(** A semi-lattice is a type [t] equipped with an equivalence relation [eq],
a boolean equivalence test [beq], a partial order [ge], a smallest element
[bot], and an upper bound operation [lub].
Note that we do not demand that [lub] computes the least upper bound. *)
Module Type SEMILATTICE.
Variable t: Type.
Variable eq: t -> t -> Prop.
Hypothesis eq_refl: forall x, eq x x.
Hypothesis eq_sym: forall x y, eq x y -> eq y x.
Hypothesis eq_trans: forall x y z, eq x y -> eq y z -> eq x z.
Variable beq: t -> t -> bool.
Hypothesis beq_correct: forall x y, beq x y = true -> eq x y.
Variable ge: t -> t -> Prop.
Hypothesis ge_refl: forall x y, eq x y -> ge x y.
Hypothesis ge_trans: forall x y z, ge x y -> ge y z -> ge x z.
Variable bot: t.
Hypothesis ge_bot: forall x, ge x bot.
Variable lub: t -> t -> t.
Hypothesis ge_lub_left: forall x y, ge (lub x y) x.
Hypothesis ge_lub_right: forall x y, ge (lub x y) y.
End SEMILATTICE.
(** A semi-lattice ``with top'' is similar, but also has a greatest
element [top]. *)
Module Type SEMILATTICE_WITH_TOP.
Include Type SEMILATTICE.
Variable top: t.
Hypothesis ge_top: forall x, ge top x.
End SEMILATTICE_WITH_TOP.
(** * Semi-lattice over maps *)
Set Implicit Arguments.
(** Given a semi-lattice with top [L], the following functor implements
a semi-lattice structure over finite maps from positive numbers to [L.t].
The default value for these maps is either [L.top] or [L.bot]. *)
Module LPMap(L: SEMILATTICE_WITH_TOP) <: SEMILATTICE_WITH_TOP.
Inductive t' : Type :=
| Bot_except: PTree.t L.t -> t'
| Top_except: PTree.t L.t -> t'.
Definition t: Type := t'.
Definition get (p: positive) (x: t) : L.t :=
match x with
| Bot_except m =>
match m!p with None => L.bot | Some x => x end
| Top_except m =>
match m!p with None => L.top | Some x => x end
end.
Definition set (p: positive) (v: L.t) (x: t) : t :=
match x with
| Bot_except m =>
Bot_except (if L.beq v L.bot then PTree.remove p m else PTree.set p v m)
| Top_except m =>
Top_except (if L.beq v L.top then PTree.remove p m else PTree.set p v m)
end.
Lemma gss:
forall p v x,
L.eq (get p (set p v x)) v.
Proof.
intros. destruct x; simpl.
case_eq (L.beq v L.bot); intros.
rewrite PTree.grs. apply L.eq_sym. apply L.beq_correct; auto.
rewrite PTree.gss. apply L.eq_refl.
case_eq (L.beq v L.top); intros.
rewrite PTree.grs. apply L.eq_sym. apply L.beq_correct; auto.
rewrite PTree.gss. apply L.eq_refl.
Qed.
Lemma gso:
forall p q v x,
p <> q -> get p (set q v x) = get p x.
Proof.
intros. destruct x; simpl.
destruct (L.beq v L.bot). rewrite PTree.gro; auto. rewrite PTree.gso; auto.
destruct (L.beq v L.top). rewrite PTree.gro; auto. rewrite PTree.gso; auto.
Qed.
Definition eq (x y: t) : Prop :=
forall p, L.eq (get p x) (get p y).
Lemma eq_refl: forall x, eq x x.
Proof.
unfold eq; intros. apply L.eq_refl.
Qed.
Lemma eq_sym: forall x y, eq x y -> eq y x.
Proof.
unfold eq; intros. apply L.eq_sym; auto.
Qed.
Lemma eq_trans: forall x y z, eq x y -> eq y z -> eq x z.
Proof.
unfold eq; intros. eapply L.eq_trans; eauto.
Qed.
Definition beq (x y: t) : bool :=
match x, y with
| Bot_except m, Bot_except n => PTree.beq L.beq m n
| Top_except m, Top_except n => PTree.beq L.beq m n
| _, _ => false
end.
Lemma beq_correct: forall x y, beq x y = true -> eq x y.
Proof.
destruct x; destruct y; simpl; intro; try congruence.
red; intro; simpl.
generalize (PTree.beq_correct L.eq L.beq L.beq_correct t0 t1 H p).
destruct (t0!p); destruct (t1!p); intuition. apply L.eq_refl.
red; intro; simpl.
generalize (PTree.beq_correct L.eq L.beq L.beq_correct t0 t1 H p).
destruct (t0!p); destruct (t1!p); intuition. apply L.eq_refl.
Qed.
Definition ge (x y: t) : Prop :=
forall p, L.ge (get p x) (get p y).
Lemma ge_refl: forall x y, eq x y -> ge x y.
Proof.
unfold ge, eq; intros. apply L.ge_refl. auto.
Qed.
Lemma ge_trans: forall x y z, ge x y -> ge y z -> ge x z.
Proof.
unfold ge; intros. apply L.ge_trans with (get p y); auto.
Qed.
Definition bot := Bot_except (PTree.empty L.t).
Lemma get_bot: forall p, get p bot = L.bot.
Proof.
unfold bot; intros; simpl. rewrite PTree.gempty. auto.
Qed.
Lemma ge_bot: forall x, ge x bot.
Proof.
unfold ge; intros. rewrite get_bot. apply L.ge_bot.
Qed.
Definition top := Top_except (PTree.empty L.t).
Lemma get_top: forall p, get p top = L.top.
Proof.
unfold top; intros; simpl. rewrite PTree.gempty. auto.
Qed.
Lemma ge_top: forall x, ge top x.
Proof.
unfold ge; intros. rewrite get_top. apply L.ge_top.
Qed.
(** A [combine] operation over the type [PTree.t L.t] that attempts
to share its result with its arguments. *)
Section COMBINE.
Variable f: option L.t -> option L.t -> option L.t.
Hypothesis f_none_none: f None None = None.
Definition opt_eq (ox oy: option L.t) : Prop :=
match ox, oy with
| None, None => True
| Some x, Some y => L.eq x y
| _, _ => False
end.
Lemma opt_eq_refl: forall ox, opt_eq ox ox.
Proof.
intros. unfold opt_eq. destruct ox. apply L.eq_refl. auto.
Qed.
Lemma opt_eq_sym: forall ox oy, opt_eq ox oy -> opt_eq oy ox.
Proof.
unfold opt_eq. destruct ox; destruct oy; auto. apply L.eq_sym.
Qed.
Lemma opt_eq_trans: forall ox oy oz, opt_eq ox oy -> opt_eq oy oz -> opt_eq ox oz.
Proof.
unfold opt_eq. destruct ox; destruct oy; destruct oz; intuition.
eapply L.eq_trans; eauto.
Qed.
Definition opt_beq (ox oy: option L.t) : bool :=
match ox, oy with
| None, None => true
| Some x, Some y => L.beq x y
| _, _ => false
end.
Lemma opt_beq_correct:
forall ox oy, opt_beq ox oy = true -> opt_eq ox oy.
Proof.
unfold opt_beq, opt_eq. destruct ox; destruct oy; try congruence.
intros. apply L.beq_correct; auto.
auto.
Qed.
Definition tree_eq (m1 m2: PTree.t L.t) : Prop :=
forall i, opt_eq (PTree.get i m1) (PTree.get i m2).
Lemma tree_eq_refl: forall m, tree_eq m m.
Proof. intros; red; intros; apply opt_eq_refl. Qed.
Lemma tree_eq_sym: forall m1 m2, tree_eq m1 m2 -> tree_eq m2 m1.
Proof. intros; red; intros; apply opt_eq_sym; auto. Qed.
Lemma tree_eq_trans: forall m1 m2 m3, tree_eq m1 m2 -> tree_eq m2 m3 -> tree_eq m1 m3.
Proof. intros; red; intros; apply opt_eq_trans with (PTree.get i m2); auto. Qed.
Lemma tree_eq_node:
forall l1 o1 r1 l2 o2 r2,
tree_eq l1 l2 -> tree_eq r1 r2 -> opt_eq o1 o2 ->
tree_eq (PTree.Node l1 o1 r1) (PTree.Node l2 o2 r2).
Proof.
intros; red; intros. destruct i; simpl; auto.
Qed.
Lemma tree_eq_node':
forall l1 o1 r1 l2 o2 r2,
tree_eq l1 l2 -> tree_eq r1 r2 -> opt_eq o1 o2 ->
tree_eq (PTree.Node l1 o1 r1) (PTree.Node' l2 o2 r2).
Proof.
intros; red; intros. rewrite PTree.gnode'. apply tree_eq_node; auto.
Qed.
Lemma tree_eq_node'':
forall l1 o1 r1 l2 o2 r2,
tree_eq l1 l2 -> tree_eq r1 r2 -> opt_eq o1 o2 ->
tree_eq (PTree.Node' l1 o1 r1) (PTree.Node' l2 o2 r2).
Proof.
intros; red; intros. repeat rewrite PTree.gnode'. apply tree_eq_node; auto.
Qed.
Hint Resolve opt_beq_correct opt_eq_refl opt_eq_sym
tree_eq_refl tree_eq_sym
tree_eq_node tree_eq_node' tree_eq_node'' : combine.
Inductive changed: Type := Unchanged | Changed (m: PTree.t L.t).
Fixpoint combine_l (m : PTree.t L.t) {struct m} : changed :=
match m with
| PTree.Leaf =>
Unchanged
| PTree.Node l o r =>
let o' := f o None in
match combine_l l, combine_l r with
| Unchanged, Unchanged => if opt_beq o' o then Unchanged else Changed (PTree.Node' l o' r)
| Unchanged, Changed r' => Changed (PTree.Node' l o' r')
| Changed l', Unchanged => Changed (PTree.Node' l' o' r)
| Changed l', Changed r' => Changed (PTree.Node' l' o' r')
end
end.
Lemma combine_l_eq:
forall m,
tree_eq (match combine_l m with Unchanged => m | Changed m' => m' end)
(PTree.xcombine_l f m).
Proof.
induction m; simpl.
auto with combine.
destruct (combine_l m1) as [ | l']; destruct (combine_l m2) as [ | r'];
auto with combine.
case_eq (opt_beq (f o None) o); auto with combine.
Qed.
Fixpoint combine_r (m : PTree.t L.t) {struct m} : changed :=
match m with
| PTree.Leaf =>
Unchanged
| PTree.Node l o r =>
let o' := f None o in
match combine_r l, combine_r r with
| Unchanged, Unchanged => if opt_beq o' o then Unchanged else Changed (PTree.Node' l o' r)
| Unchanged, Changed r' => Changed (PTree.Node' l o' r')
| Changed l', Unchanged => Changed (PTree.Node' l' o' r)
| Changed l', Changed r' => Changed (PTree.Node' l' o' r')
end
end.
Lemma combine_r_eq:
forall m,
tree_eq (match combine_r m with Unchanged => m | Changed m' => m' end)
(PTree.xcombine_r f m).
Proof.
induction m; simpl.
auto with combine.
destruct (combine_r m1) as [ | l']; destruct (combine_r m2) as [ | r'];
auto with combine.
case_eq (opt_beq (f None o) o); auto with combine.
Qed.
Inductive changed2 : Type :=
| Same
| Same1
| Same2
| CC(m: PTree.t L.t).
Fixpoint xcombine (m1 m2 : PTree.t L.t) {struct m1} : changed2 :=
match m1, m2 with
| PTree.Leaf, PTree.Leaf =>
Same
| PTree.Leaf, _ =>
match combine_r m2 with
| Unchanged => Same2
| Changed m => CC m
end
| _, PTree.Leaf =>
match combine_l m1 with
| Unchanged => Same1
| Changed m => CC m
end
| PTree.Node l1 o1 r1, PTree.Node l2 o2 r2 =>
let o := f o1 o2 in
match xcombine l1 l2, xcombine r1 r2 with
| Same, Same =>
match opt_beq o o1, opt_beq o o2 with
| true, true => Same
| true, false => Same1
| false, true => Same2
| false, false => CC(PTree.Node' l1 o r1)
end
| Same1, Same | Same, Same1 | Same1, Same1 =>
if opt_beq o o1 then Same1 else CC(PTree.Node' l1 o r1)
| Same2, Same | Same, Same2 | Same2, Same2 =>
if opt_beq o o2 then Same2 else CC(PTree.Node' l2 o r2)
| Same1, Same2 => CC(PTree.Node' l1 o r2)
| (Same|Same1), CC r => CC(PTree.Node' l1 o r)
| Same2, Same1 => CC(PTree.Node' l2 o r1)
| Same2, CC r => CC(PTree.Node' l2 o r)
| CC l, (Same|Same1) => CC(PTree.Node' l o r1)
| CC l, Same2 => CC(PTree.Node' l o r2)
| CC l, CC r => CC(PTree.Node' l o r)
end
end.
Lemma xcombine_eq:
forall m1 m2,
match xcombine m1 m2 with
| Same => tree_eq m1 (PTree.combine f m1 m2) /\ tree_eq m2 (PTree.combine f m1 m2)
| Same1 => tree_eq m1 (PTree.combine f m1 m2)
| Same2 => tree_eq m2 (PTree.combine f m1 m2)
| CC m => tree_eq m (PTree.combine f m1 m2)
end.
Proof.
Opaque combine_l combine_r PTree.xcombine_l PTree.xcombine_r.
induction m1; destruct m2; simpl.
split; apply tree_eq_refl.
generalize (combine_r_eq (PTree.Node m2_1 o m2_2)).
destruct (combine_r (PTree.Node m2_1 o m2_2)); auto.
generalize (combine_l_eq (PTree.Node m1_1 o m1_2)).
destruct (combine_l (PTree.Node m1_1 o m1_2)); auto.
generalize (IHm1_1 m2_1) (IHm1_2 m2_2).
destruct (xcombine m1_1 m2_1);
destruct (xcombine m1_2 m2_2); auto with combine;
intuition; case_eq (opt_beq (f o o0) o); case_eq (opt_beq (f o o0) o0); auto with combine.
Qed.
Definition combine (m1 m2: PTree.t L.t) : PTree.t L.t :=
match xcombine m1 m2 with
| Same|Same1 => m1
| Same2 => m2
| CC m => m
end.
Lemma gcombine:
forall m1 m2 i, opt_eq (PTree.get i (combine m1 m2)) (f (PTree.get i m1) (PTree.get i m2)).
Proof.
intros.
assert (tree_eq (combine m1 m2) (PTree.combine f m1 m2)).
unfold combine.
generalize (xcombine_eq m1 m2).
destruct (xcombine m1 m2); tauto.
eapply opt_eq_trans. apply H. rewrite PTree.gcombine; auto. apply opt_eq_refl.
Qed.
End COMBINE.
Definition opt_lub (x y: L.t) : option L.t :=
let z := L.lub x y in
if L.beq z L.top then None else Some z.
Definition lub (x y: t) : t :=
match x, y with
| Bot_except m, Bot_except n =>
Bot_except
(combine
(fun a b =>
match a, b with
| Some u, Some v => Some (L.lub u v)
| None, _ => b
| _, None => a
end)
m n)
| Bot_except m, Top_except n =>
Top_except
(combine
(fun a b =>
match a, b with
| Some u, Some v => opt_lub u v
| None, _ => b
| _, None => None
end)
m n)
| Top_except m, Bot_except n =>
Top_except
(combine
(fun a b =>
match a, b with
| Some u, Some v => opt_lub u v
| None, _ => None
| _, None => a
end)
m n)
| Top_except m, Top_except n =>
Top_except
(combine
(fun a b =>
match a, b with
| Some u, Some v => opt_lub u v
| _, _ => None
end)
m n)
end.
Lemma gcombine_top:
forall f t1 t2 p,
f None None = None ->
L.eq (get p (Top_except (combine f t1 t2)))
(match f t1!p t2!p with Some x => x | None => L.top end).
Proof.
intros. simpl. generalize (gcombine f H t1 t2 p). unfold opt_eq.
destruct ((combine f t1 t2)!p); destruct (f t1!p t2!p).
auto. contradiction. contradiction. intros; apply L.eq_refl.
Qed.
Lemma gcombine_bot:
forall f t1 t2 p,
f None None = None ->
L.eq (get p (Bot_except (combine f t1 t2)))
(match f t1!p t2!p with Some x => x | None => L.bot end).
Proof.
intros. simpl. generalize (gcombine f H t1 t2 p). unfold opt_eq.
destruct ((combine f t1 t2)!p); destruct (f t1!p t2!p).
auto. contradiction. contradiction. intros; apply L.eq_refl.
Qed.
Lemma ge_lub_left:
forall x y, ge (lub x y) x.
Proof.
assert (forall u v,
L.ge (match opt_lub u v with Some x => x | None => L.top end) u).
intros; unfold opt_lub.
case_eq (L.beq (L.lub u v) L.top); intros. apply L.ge_top. apply L.ge_lub_left.
unfold ge, lub; intros. destruct x; destruct y.
eapply L.ge_trans. apply L.ge_refl. apply gcombine_bot. auto.
simpl. destruct t0!p; destruct t1!p.
apply L.ge_lub_left.
apply L.ge_refl. apply L.eq_refl.
apply L.ge_bot.
apply L.ge_refl. apply L.eq_refl.
eapply L.ge_trans. apply L.ge_refl. apply gcombine_top. auto.
simpl. destruct t0!p; destruct t1!p.
auto.
apply L.ge_top.
apply L.ge_bot.
apply L.ge_top.
eapply L.ge_trans. apply L.ge_refl. apply gcombine_top. auto.
simpl. destruct t0!p; destruct t1!p.
auto.
apply L.ge_refl. apply L.eq_refl.
apply L.ge_top.
apply L.ge_top.
eapply L.ge_trans. apply L.ge_refl. apply gcombine_top. auto.
simpl. destruct t0!p; destruct t1!p.
auto.
apply L.ge_top.
apply L.ge_top.
apply L.ge_top.
Qed.
Lemma ge_lub_right:
forall x y, ge (lub x y) y.
Proof.
assert (forall u v,
L.ge (match opt_lub u v with Some x => x | None => L.top end) v).
intros; unfold opt_lub.
case_eq (L.beq (L.lub u v) L.top); intros. apply L.ge_top. apply L.ge_lub_right.
unfold ge, lub; intros. destruct x; destruct y.
eapply L.ge_trans. apply L.ge_refl. apply gcombine_bot. auto.
simpl. destruct t0!p; destruct t1!p.
apply L.ge_lub_right.
apply L.ge_bot.
apply L.ge_refl. apply L.eq_refl.
apply L.ge_refl. apply L.eq_refl.
eapply L.ge_trans. apply L.ge_refl. apply gcombine_top. auto.
simpl. destruct t0!p; destruct t1!p.
auto.
apply L.ge_top.
apply L.ge_refl. apply L.eq_refl.
apply L.ge_top.
eapply L.ge_trans. apply L.ge_refl. apply gcombine_top. auto.
simpl. destruct t0!p; destruct t1!p.
auto.
apply L.ge_bot.
apply L.ge_top.
apply L.ge_top.
eapply L.ge_trans. apply L.ge_refl. apply gcombine_top. auto.
simpl. destruct t0!p; destruct t1!p.
auto.
apply L.ge_top.
apply L.ge_top.
apply L.ge_top.
Qed.
End LPMap.
(** * Semi-lattice over a set. *)
(** Given a set [S: FSetInterface.S], the following functor
implements a semi-lattice over these sets, ordered by inclusion. *)
Module LFSet (S: FSetInterface.WS) <: SEMILATTICE.
Definition t := S.t.
Definition eq (x y: t) := S.Equal x y.
Definition eq_refl: forall x, eq x x := S.eq_refl.
Definition eq_sym: forall x y, eq x y -> eq y x := S.eq_sym.
Definition eq_trans: forall x y z, eq x y -> eq y z -> eq x z := S.eq_trans.
Definition beq: t -> t -> bool := S.equal.
Definition beq_correct: forall x y, beq x y = true -> eq x y := S.equal_2.
Definition ge (x y: t) := S.Subset y x.
Lemma ge_refl: forall x y, eq x y -> ge x y.
Proof.
unfold eq, ge, S.Equal, S.Subset; intros. firstorder.
Qed.
Lemma ge_trans: forall x y z, ge x y -> ge y z -> ge x z.
Proof.
unfold ge, S.Subset; intros. eauto.
Qed.
Definition bot: t := S.empty.
Lemma ge_bot: forall x, ge x bot.
Proof.
unfold ge, bot, S.Subset; intros. elim (S.empty_1 H).
Qed.
Definition lub: t -> t -> t := S.union.
Lemma ge_lub_left: forall x y, ge (lub x y) x.
Proof.
unfold lub, ge, S.Subset; intros. apply S.union_2; auto.
Qed.
Lemma ge_lub_right: forall x y, ge (lub x y) y.
Proof.
unfold lub, ge, S.Subset; intros. apply S.union_3; auto.
Qed.
End LFSet.
(** * Flat semi-lattice *)
(** Given a type with decidable equality [X], the following functor
returns a semi-lattice structure over [X.t] complemented with
a top and a bottom element. The ordering is the flat ordering
[Bot < Inj x < Top]. *)
Module LFlat(X: EQUALITY_TYPE) <: SEMILATTICE_WITH_TOP.
Inductive t' : Type :=
| Bot: t'
| Inj: X.t -> t'
| Top: t'.
Definition t : Type := t'.
Definition eq (x y: t) := (x = y).
Definition eq_refl: forall x, eq x x := (@refl_equal t).
Definition eq_sym: forall x y, eq x y -> eq y x := (@sym_equal t).
Definition eq_trans: forall x y z, eq x y -> eq y z -> eq x z := (@trans_equal t).
Definition beq (x y: t) : bool :=
match x, y with
| Bot, Bot => true
| Inj u, Inj v => if X.eq u v then true else false
| Top, Top => true
| _, _ => false
end.
Lemma beq_correct: forall x y, beq x y = true -> eq x y.
Proof.
unfold eq; destruct x; destruct y; simpl; try congruence; intro.
destruct (X.eq t0 t1); congruence.
Qed.
Definition ge (x y: t) : Prop :=
match x, y with
| Top, _ => True
| _, Bot => True
| Inj a, Inj b => a = b
| _, _ => False
end.
Lemma ge_refl: forall x y, eq x y -> ge x y.
Proof.
unfold eq, ge; intros; subst y; destruct x; auto.
Qed.
Lemma ge_trans: forall x y z, ge x y -> ge y z -> ge x z.
Proof.
unfold ge; destruct x; destruct y; try destruct z; intuition.
transitivity t1; auto.
Qed.
Definition bot: t := Bot.
Lemma ge_bot: forall x, ge x bot.
Proof.
destruct x; simpl; auto.
Qed.
Definition top: t := Top.
Lemma ge_top: forall x, ge top x.
Proof.
destruct x; simpl; auto.
Qed.
Definition lub (x y: t) : t :=
match x, y with
| Bot, _ => y
| _, Bot => x
| Top, _ => Top
| _, Top => Top
| Inj a, Inj b => if X.eq a b then Inj a else Top
end.
Lemma ge_lub_left: forall x y, ge (lub x y) x.
Proof.
destruct x; destruct y; simpl; auto.
case (X.eq t0 t1); simpl; auto.
Qed.
Lemma ge_lub_right: forall x y, ge (lub x y) y.
Proof.
destruct x; destruct y; simpl; auto.
case (X.eq t0 t1); simpl; auto.
Qed.
End LFlat.
(** * Boolean semi-lattice *)
(** This semi-lattice has only two elements, [bot] and [top], trivially
ordered. *)
Module LBoolean <: SEMILATTICE_WITH_TOP.
Definition t := bool.
Definition eq (x y: t) := (x = y).
Definition eq_refl: forall x, eq x x := (@refl_equal t).
Definition eq_sym: forall x y, eq x y -> eq y x := (@sym_equal t).
Definition eq_trans: forall x y z, eq x y -> eq y z -> eq x z := (@trans_equal t).
Definition beq : t -> t -> bool := eqb.
Lemma beq_correct: forall x y, beq x y = true -> eq x y.
Proof eqb_prop.
Definition ge (x y: t) : Prop := x = y \/ x = true.
Lemma ge_refl: forall x y, eq x y -> ge x y.
Proof. unfold ge; tauto. Qed.
Lemma ge_trans: forall x y z, ge x y -> ge y z -> ge x z.
Proof. unfold ge; intuition congruence. Qed.
Definition bot := false.
Lemma ge_bot: forall x, ge x bot.
Proof. destruct x; compute; tauto. Qed.
Definition top := true.
Lemma ge_top: forall x, ge top x.
Proof. unfold ge, top; tauto. Qed.
Definition lub (x y: t) := x || y.
Lemma ge_lub_left: forall x y, ge (lub x y) x.
Proof. destruct x; destruct y; compute; tauto. Qed.
Lemma ge_lub_right: forall x y, ge (lub x y) y.
Proof. destruct x; destruct y; compute; tauto. Qed.
End LBoolean.
|