1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
|
(* *********************************************************************)
(* *)
(* The Compcert verified compiler *)
(* *)
(* Xavier Leroy, INRIA Paris-Rocquencourt *)
(* *)
(* Copyright Institut National de Recherche en Informatique et en *)
(* Automatique. All rights reserved. This file is distributed *)
(* under the terms of the INRIA Non-Commercial License Agreement. *)
(* *)
(* *********************************************************************)
(* Printing IA32 assembly code in asm syntax *)
open Printf
open Datatypes
open Camlcoq
open Sections
open AST
open Memdata
open Asm
(* Recognition of target ABI and asm syntax *)
type target = ELF | MacOS | Cygwin
let target =
match Configuration.system with
| "macosx" -> MacOS
| "linux" -> ELF
| "bsd" -> ELF
| "cygwin" -> Cygwin
| _ -> invalid_arg ("System " ^ Configuration.system ^ " not supported")
(* On-the-fly label renaming *)
let next_label = ref 100
let new_label() =
let lbl = !next_label in incr next_label; lbl
let current_function_labels = (Hashtbl.create 39 : (label, int) Hashtbl.t)
let transl_label lbl =
try
Hashtbl.find current_function_labels lbl
with Not_found ->
let lbl' = new_label() in
Hashtbl.add current_function_labels lbl lbl';
lbl'
(* Basic printing functions *)
let coqint oc n =
fprintf oc "%ld" (camlint_of_coqint n)
let raw_symbol oc s =
match target with
| ELF -> fprintf oc "%s" s
| MacOS | Cygwin -> fprintf oc "_%s" s
let re_variadic_stub = Str.regexp "\\(.*\\)\\$[if]*$"
let symbol oc symb =
let s = extern_atom symb in
if Str.string_match re_variadic_stub s 0
then raw_symbol oc (Str.matched_group 1 s)
else raw_symbol oc s
let symbol_offset oc (symb, ofs) =
symbol oc symb;
if ofs <> 0l then fprintf oc " + %ld" ofs
let label oc lbl =
match target with
| ELF -> fprintf oc ".L%d" lbl
| MacOS | Cygwin -> fprintf oc "L%d" lbl
let comment = "#"
let int_reg_name = function
| EAX -> "%eax" | EBX -> "%ebx" | ECX -> "%ecx" | EDX -> "%edx"
| ESI -> "%esi" | EDI -> "%edi" | EBP -> "%ebp" | ESP -> "%esp"
let int8_reg_name = function
| EAX -> "%al" | EBX -> "%bl" | ECX -> "%cl" | EDX -> "%dl"
| _ -> assert false
let high_int8_reg_name = function
| EAX -> "%ah" | EBX -> "%bh" | ECX -> "%ch" | EDX -> "%dh"
| _ -> assert false
let int16_reg_name = function
| EAX -> "%ax" | EBX -> "%bx" | ECX -> "%cx" | EDX -> "%dx"
| ESI -> "%si" | EDI -> "%di" | EBP -> "%bp" | ESP -> "%sp"
let float_reg_name = function
| XMM0 -> "%xmm0" | XMM1 -> "%xmm1" | XMM2 -> "%xmm2" | XMM3 -> "%xmm3"
| XMM4 -> "%xmm4" | XMM5 -> "%xmm5" | XMM6 -> "%xmm6" | XMM7 -> "%xmm7"
let ireg oc r = output_string oc (int_reg_name r)
let ireg8 oc r = output_string oc (int8_reg_name r)
let high_ireg8 oc r = output_string oc (high_int8_reg_name r)
let ireg16 oc r = output_string oc (int16_reg_name r)
let freg oc r = output_string oc (float_reg_name r)
let preg oc = function
| IR r -> ireg oc r
| FR r -> freg oc r
| _ -> assert false
let addressing oc (Addrmode(base, shift, cst)) =
begin match cst with
| Coq_inl n ->
let n = camlint_of_coqint n in
fprintf oc "%ld" n
| Coq_inr(id, ofs) ->
let ofs = camlint_of_coqint ofs in
if ofs = 0l
then symbol oc id
else fprintf oc "(%a + %ld)" symbol id ofs
end;
begin match base, shift with
| None, None -> ()
| Some r1, None -> fprintf oc "(%a)" ireg r1
| None, Some(r2,sc) -> fprintf oc "(,%a,%a)" ireg r2 coqint sc
| Some r1, Some(r2,sc) -> fprintf oc "(%a,%a,%a)" ireg r1 ireg r2 coqint sc
end
let name_of_condition = function
| Cond_e -> "e" | Cond_ne -> "ne"
| Cond_b -> "b" | Cond_be -> "be" | Cond_ae -> "ae" | Cond_a -> "a"
| Cond_l -> "l" | Cond_le -> "le" | Cond_ge -> "ge" | Cond_g -> "g"
| Cond_p -> "p" | Cond_np -> "np"
let name_of_neg_condition = function
| Cond_e -> "ne" | Cond_ne -> "e"
| Cond_b -> "ae" | Cond_be -> "a" | Cond_ae -> "b" | Cond_a -> "be"
| Cond_l -> "ge" | Cond_le -> "g" | Cond_ge -> "l" | Cond_g -> "le"
| Cond_p -> "np" | Cond_np -> "p"
(* Names of sections *)
let name_of_section_ELF = function
| Section_text -> ".text"
| Section_data i | Section_small_data i -> if i then ".data" else ".bss"
| Section_const | Section_small_const -> ".section .rodata"
| Section_string -> ".section .rodata"
| Section_literal -> ".section .rodata.cst8,\"aM\",@progbits,8"
| Section_jumptable -> ".text"
| Section_user(s, wr, ex) ->
sprintf ".section %s,\"a%s%s\",@progbits"
s (if wr then "w" else "") (if ex then "x" else "")
let name_of_section_MacOS = function
| Section_text -> ".text"
| Section_data _ | Section_small_data _ -> ".data"
| Section_const | Section_small_const -> ".const"
| Section_string -> ".const"
| Section_literal -> ".literal8"
| Section_jumptable -> ".const"
| Section_user(s, wr, ex) ->
sprintf ".section %s, %s, %s"
(if wr then "__DATA" else "__TEXT") s
(if ex then "regular, pure_instructions" else "regular")
let name_of_section_Cygwin = function
| Section_text -> ".text"
| Section_data _ | Section_small_data _ -> ".data"
| Section_const | Section_small_const -> ".section .rdata,\"dr\""
| Section_string -> ".section .rdata,\"dr\""
| Section_literal -> ".section .rdata,\"dr\""
| Section_jumptable -> ".text"
| Section_user(s, wr, ex) ->
sprintf ".section %s, \"%s\"\n"
s (if ex then "xr" else if wr then "d" else "dr")
let name_of_section =
match target with
| ELF -> name_of_section_ELF
| MacOS -> name_of_section_MacOS
| Cygwin -> name_of_section_Cygwin
let section oc sec =
fprintf oc " %s\n" (name_of_section sec)
(* SP adjustment to allocate or free a stack frame *)
let stack_alignment =
match target with
| ELF | Cygwin -> 8 (* minimum is 4, 8 is better for perfs *)
| MacOS -> 16 (* mandatory *)
let int32_align n a =
if n >= 0l
then Int32.logand (Int32.add n (Int32.of_int (a-1))) (Int32.of_int (-a))
else Int32.logand n (Int32.of_int (-a))
let sp_adjustment sz =
let sz = camlint_of_coqint sz in
(* Preserve proper alignment of the stack *)
let sz = int32_align sz stack_alignment in
(* The top 4 bytes have already been allocated by the "call" instruction. *)
let sz = Int32.sub sz 4l in
assert (sz >= 0l);
sz
(* Base-2 log of a Caml integer *)
let rec log2 n =
assert (n > 0);
if n = 1 then 0 else 1 + log2 (n lsr 1)
(* Emit a align directive *)
let print_align oc n =
match target with
| ELF | Cygwin -> fprintf oc " .align %d\n" n
| MacOS -> fprintf oc " .align %d\n" (log2 n)
let need_masks = ref false
(* Built-in functions *)
(* Built-ins. They come in two flavors:
- annotation statements: take their arguments in registers or stack
locations; generate no code;
- inlined by the compiler: take their arguments in arbitrary
registers; preserve all registers except ECX, EDX, XMM6 and XMM7. *)
(* Handling of annotations *)
let re_annot_param = Str.regexp "%%\\|%[1-9][0-9]*"
let print_annot_text print_arg oc txt args =
fprintf oc "%s annotation: " comment;
let print_fragment = function
| Str.Text s ->
output_string oc s
| Str.Delim "%%" ->
output_char oc '%'
| Str.Delim s ->
let n = int_of_string (String.sub s 1 (String.length s - 1)) in
try
print_arg oc (List.nth args (n-1))
with Failure _ ->
fprintf oc "<bad parameter %s>" s in
List.iter print_fragment (Str.full_split re_annot_param txt);
fprintf oc "\n"
let print_annot_stmt oc txt args =
let print_annot_param oc = function
| APreg r -> preg oc r
| APstack(chunk, ofs) ->
fprintf oc "mem(ESP + %a, %a)" coqint ofs coqint (size_chunk chunk) in
print_annot_text print_annot_param oc txt args
let print_annot_val oc txt args res =
print_annot_text preg oc txt args;
match args, res with
| IR src :: _, IR dst ->
if dst <> src then fprintf oc " movl %a, %a\n" ireg src ireg dst
| FR src :: _, FR dst ->
if dst <> src then fprintf oc " movsd %a, %a\n" freg src freg dst
| _, _ -> assert false
(* Handling of memcpy *)
(* Unaligned memory accesses are quite fast on IA32, so use large
memory accesses regardless of alignment. *)
let print_builtin_memcpy_small oc sz al src dst =
let tmp =
if src <> ECX && dst <> ECX then ECX
else if src <> EDX && dst <> EDX then EDX
else EAX in
let need_tmp =
sz mod 4 <> 0 || not !Clflags.option_fsse in
let rec copy ofs sz =
if sz >= 8 && !Clflags.option_fsse then begin
fprintf oc " movq %d(%a), %a\n" ofs ireg src freg XMM6;
fprintf oc " movq %a, %d(%a)\n" freg XMM6 ofs ireg dst;
copy (ofs + 8) (sz - 8)
end else if sz >= 4 then begin
if !Clflags.option_fsse then begin
fprintf oc " movd %d(%a), %a\n" ofs ireg src freg XMM6;
fprintf oc " movd %a, %d(%a)\n" freg XMM6 ofs ireg dst
end else begin
fprintf oc " movl %d(%a), %a\n" ofs ireg src ireg tmp;
fprintf oc " movl %a, %d(%a)\n" ireg tmp ofs ireg dst
end;
copy (ofs + 4) (sz - 4)
end else if sz >= 2 then begin
fprintf oc " movw %d(%a), %a\n" ofs ireg src ireg16 tmp;
fprintf oc " movw %a, %d(%a)\n" ireg16 tmp ofs ireg dst;
copy (ofs + 2) (sz - 2)
end else if sz >= 1 then begin
fprintf oc " movb %d(%a), %a\n" ofs ireg src ireg8 tmp;
fprintf oc " movb %a, %d(%a)\n" ireg8 tmp ofs ireg dst;
copy (ofs + 1) (sz - 1)
end in
if need_tmp && tmp = EAX then
fprintf oc " pushl %a\n" ireg EAX;
copy 0 sz;
if need_tmp && tmp = EAX then
fprintf oc " popl %a\n" ireg EAX
let print_mov2 oc src1 dst1 src2 dst2 =
if src1 = dst1 then
if src2 = dst2
then ()
else fprintf oc " movl %a, %a\n" ireg src2 ireg dst2
else if src2 = dst2 then
fprintf oc " movl %a, %a\n" ireg src1 ireg dst1
else if src2 = dst1 then
if src1 = dst2 then
fprintf oc " xchgl %a, %a\n" ireg src1 ireg src2
else begin
fprintf oc " movl %a, %a\n" ireg src2 ireg dst2;
fprintf oc " movl %a, %a\n" ireg src1 ireg dst1
end
else begin
fprintf oc " movl %a, %a\n" ireg src1 ireg dst1;
fprintf oc " movl %a, %a\n" ireg src2 ireg dst2
end
let print_builtin_memcpy_big oc sz al src dst =
fprintf oc " pushl %a\n" ireg ESI;
fprintf oc " pushl %a\n" ireg EDI;
print_mov2 oc src ESI dst EDI;
fprintf oc " movl $%d, %a\n" (sz / 4) ireg ECX;
fprintf oc " rep movsl\n";
if sz mod 4 >= 2 then fprintf oc " movsw\n";
if sz mod 2 >= 1 then fprintf oc " movsb\n";
fprintf oc " popl %a\n" ireg EDI;
fprintf oc " popl %a\n" ireg ESI
let print_builtin_memcpy oc sz al args =
let (dst, src) =
match args with [IR d; IR s] -> (d, s) | _ -> assert false in
fprintf oc "%s begin builtin __builtin_memcpy_aligned, size = %d, alignment = %d\n"
comment sz al;
if sz <= 64
then print_builtin_memcpy_small oc sz al src dst
else print_builtin_memcpy_big oc sz al src dst;
fprintf oc "%s end builtin __builtin_memcpy_aligned\n" comment
(* Handling of volatile reads and writes *)
let print_builtin_vload_common oc chunk addr res =
match chunk, res with
| Mint8unsigned, IR res ->
fprintf oc " movzbl %a, %a\n" addressing addr ireg res
| Mint8signed, IR res ->
fprintf oc " movsbl %a, %a\n" addressing addr ireg res
| Mint16unsigned, IR res ->
fprintf oc " movzwl %a, %a\n" addressing addr ireg res
| Mint16signed, IR res ->
fprintf oc " movswl %a, %a\n" addressing addr ireg res
| Mint32, IR res ->
fprintf oc " movl %a, %a\n" addressing addr ireg res
| Mfloat32, FR res ->
fprintf oc " cvtss2sd %a, %a\n" addressing addr freg res
| Mfloat64, FR res ->
fprintf oc " movsd %a, %a\n" addressing addr freg res
| _ ->
assert false
let print_builtin_vload oc chunk args res =
fprintf oc "%s begin builtin __builtin_volatile_read\n" comment;
begin match args with
| [IR addr] ->
print_builtin_vload_common oc chunk
(Addrmode(Some addr, None, Coq_inl Integers.Int.zero)) res
| _ ->
assert false
end;
fprintf oc "%s end builtin __builtin_volatile_read\n" comment
let print_builtin_vload_global oc chunk id ofs args res =
fprintf oc "%s begin builtin __builtin_volatile_read\n" comment;
print_builtin_vload_common oc chunk
(Addrmode(None, None, Coq_inr(id,ofs))) res;
fprintf oc "%s end builtin __builtin_volatile_read\n" comment
let print_builtin_vstore_common oc chunk addr src =
match chunk, src with
| (Mint8signed | Mint8unsigned), IR src ->
if Asmgen.low_ireg src then
fprintf oc " movb %a, %a\n" ireg8 src addressing addr
else begin
fprintf oc " movl %a, %%ecx\n" ireg src;
fprintf oc " movb %%cl, %a\n" addressing addr
end
| (Mint16signed | Mint16unsigned), IR src ->
if Asmgen.low_ireg src then
fprintf oc " movw %a, %a\n" ireg16 src addressing addr
else begin
fprintf oc " movl %a, %%ecx\n" ireg src;
fprintf oc " movw %%cx, %a\n" addressing addr
end
| Mint32, IR src ->
fprintf oc " movl %a, %a\n" ireg src addressing addr
| Mfloat32, FR src ->
fprintf oc " cvtsd2ss %a, %%xmm7\n" freg src;
fprintf oc " movss %%xmm7, %a\n" addressing addr
| Mfloat64, FR src ->
fprintf oc " movsd %a, %a\n" freg src addressing addr
| _ ->
assert false
let print_builtin_vstore oc chunk args =
fprintf oc "%s begin builtin __builtin_volatile_write\n" comment;
begin match args with
| [IR addr; src] ->
print_builtin_vstore_common oc chunk
(Addrmode(Some addr, None, Coq_inl Integers.Int.zero)) src
| _ ->
assert false
end;
fprintf oc "%s end builtin __builtin_volatile_write\n" comment
let print_builtin_vstore_global oc chunk id ofs args =
fprintf oc "%s begin builtin __builtin_volatile_write\n" comment;
begin match args with
| [src] ->
print_builtin_vstore_common oc chunk
(Addrmode(None, None, Coq_inr(id,ofs))) src
| _ ->
assert false
end;
fprintf oc "%s end builtin __builtin_volatile_write\n" comment
(* Handling of compiler-inlined builtins *)
let print_builtin_inline oc name args res =
fprintf oc "%s begin builtin %s\n" comment name;
begin match name, args, res with
(* Memory accesses *)
| "__builtin_read16_reversed", [IR a1], IR res ->
let tmp = if Asmgen.low_ireg res then res else ECX in
fprintf oc " movzwl 0(%a), %a\n" ireg a1 ireg tmp;
fprintf oc " xchg %a, %a\n" ireg8 tmp high_ireg8 tmp;
if tmp <> res then
fprintf oc " movl %a, %a\n" ireg tmp ireg res
| "__builtin_read32_reversed", [IR a1], IR res ->
fprintf oc " movl 0(%a), %a\n" ireg a1 ireg res;
fprintf oc " bswap %a\n" ireg res
| "__builtin_write16_reversed", [IR a1; IR a2], _ ->
let tmp = if a1 = ECX then EDX else ECX in
if a2 <> tmp then
fprintf oc " movl %a, %a\n" ireg a2 ireg tmp;
fprintf oc " xchg %a, %a\n" ireg8 tmp high_ireg8 tmp;
fprintf oc " movw %a, 0(%a)\n" ireg16 tmp ireg a1
| "__builtin_write32_reversed", [IR a1; IR a2], _ ->
let tmp = if a1 = ECX then EDX else ECX in
if a2 <> tmp then
fprintf oc " movl %a, %a\n" ireg a2 ireg tmp;
fprintf oc " bswap %a\n" ireg tmp;
fprintf oc " movl %a, 0(%a)\n" ireg tmp ireg a1
(* Integer arithmetic *)
| "__builtin_bswap", [IR a1], IR res ->
if a1 <> res then
fprintf oc " movl %a, %a\n" ireg a1 ireg res;
fprintf oc " bswap %a\n" ireg res
(* Float arithmetic *)
| "__builtin_fabs", [FR a1], FR res ->
need_masks := true;
if a1 <> res then
fprintf oc " movsd %a, %a\n" freg a1 freg res;
fprintf oc " andpd %a, %a\n" raw_symbol "__absd_mask" freg res
| "__builtin_fsqrt", [FR a1], FR res ->
fprintf oc " sqrtsd %a, %a\n" freg a1 freg res
| "__builtin_fmax", [FR a1; FR a2], FR res ->
if res = a1 then
fprintf oc " maxsd %a, %a\n" freg a2 freg res
else if res = a2 then
fprintf oc " maxsd %a, %a\n" freg a1 freg res
else begin
fprintf oc " movsd %a, %a\n" freg a1 freg res;
fprintf oc " maxsd %a, %a\n" freg a2 freg res
end
| "__builtin_fmin", [FR a1; FR a2], FR res ->
if res = a1 then
fprintf oc " minsd %a, %a\n" freg a2 freg res
else if res = a2 then
fprintf oc " minsd %a, %a\n" freg a1 freg res
else begin
fprintf oc " movsd %a, %a\n" freg a1 freg res;
fprintf oc " minsd %a, %a\n" freg a2 freg res
end
(* Catch-all *)
| _ ->
invalid_arg ("unrecognized builtin " ^ name)
end;
fprintf oc "%s end builtin %s\n" comment name
(* Printing of instructions *)
let float_literals : (int * int64) list ref = ref []
let jumptables : (int * label list) list ref = ref []
(* Reminder on AT&T syntax: op source, dest *)
let print_instruction oc = function
(* Moves *)
| Pmov_rr(rd, r1) ->
fprintf oc " movl %a, %a\n" ireg r1 ireg rd
| Pmov_ri(rd, n) ->
fprintf oc " movl $%ld, %a\n" (camlint_of_coqint n) ireg rd
| Pmov_rm(rd, a) ->
fprintf oc " movl %a, %a\n" addressing a ireg rd
| Pmov_mr(a, r1) ->
fprintf oc " movl %a, %a\n" ireg r1 addressing a
| Pmovd_fr(rd, r1) ->
fprintf oc " movd %a, %a\n" ireg r1 freg rd
| Pmovd_rf(rd, r1) ->
fprintf oc " movd %a, %a\n" freg r1 ireg rd
| Pmovsd_ff(rd, r1) ->
fprintf oc " movapd %a, %a\n" freg r1 freg rd
| Pmovsd_fi(rd, n) ->
let b = camlint64_of_coqint (Floats.Float.bits_of_double n) in
let lbl = new_label() in
fprintf oc " movsd %a, %a %s %.18g\n" label lbl freg rd comment (camlfloat_of_coqfloat n);
float_literals := (lbl, b) :: !float_literals
| Pmovsd_fm(rd, a) ->
fprintf oc " movsd %a, %a\n" addressing a freg rd
| Pmovsd_mf(a, r1) ->
fprintf oc " movsd %a, %a\n" freg r1 addressing a
| Pfld_f(r1) ->
fprintf oc " subl $8, %%esp\n";
fprintf oc " movsd %a, 0(%%esp)\n" freg r1;
fprintf oc " fldl 0(%%esp)\n";
fprintf oc " addl $8, %%esp\n"
| Pfld_m(a) ->
fprintf oc " fldl %a\n" addressing a
| Pfstp_f(rd) ->
fprintf oc " subl $8, %%esp\n";
fprintf oc " fstpl 0(%%esp)\n";
fprintf oc " movsd 0(%%esp), %a\n" freg rd;
fprintf oc " addl $8, %%esp\n"
| Pfstp_m(a) ->
fprintf oc " fstpl %a\n" addressing a
| Pxchg_rr(r1, r2) ->
fprintf oc " xchgl %a, %a\n" ireg r1 ireg r2
(** Moves with conversion *)
| Pmovb_mr(a, r1) ->
fprintf oc " movb %a, %a\n" ireg8 r1 addressing a
| Pmovw_mr(a, r1) ->
fprintf oc " movw %a, %a\n" ireg16 r1 addressing a
| Pmovzb_rr(rd, r1) ->
fprintf oc " movzbl %a, %a\n" ireg8 r1 ireg rd
| Pmovzb_rm(rd, a) ->
fprintf oc " movzbl %a, %a\n" addressing a ireg rd
| Pmovsb_rr(rd, r1) ->
fprintf oc " movsbl %a, %a\n" ireg8 r1 ireg rd
| Pmovsb_rm(rd, a) ->
fprintf oc " movsbl %a, %a\n" addressing a ireg rd
| Pmovzw_rr(rd, r1) ->
fprintf oc " movzwl %a, %a\n" ireg16 r1 ireg rd
| Pmovzw_rm(rd, a) ->
fprintf oc " movzwl %a, %a\n" addressing a ireg rd
| Pmovsw_rr(rd, r1) ->
fprintf oc " movswl %a, %a\n" ireg16 r1 ireg rd
| Pmovsw_rm(rd, a) ->
fprintf oc " movswl %a, %a\n" addressing a ireg rd
| Pcvtss2sd_fm(rd, a) ->
fprintf oc " cvtss2sd %a, %a\n" addressing a freg rd
| Pcvtsd2ss_ff(rd, r1) ->
fprintf oc " cvtsd2ss %a, %a\n" freg r1 freg rd;
fprintf oc " cvtss2sd %a, %a\n" freg rd freg rd
| Pcvtsd2ss_mf(a, r1) ->
fprintf oc " cvtsd2ss %a, %%xmm7\n" freg r1;
fprintf oc " movss %%xmm7, %a\n" addressing a
| Pcvttsd2si_rf(rd, r1) ->
fprintf oc " cvttsd2si %a, %a\n" freg r1 ireg rd
| Pcvtsi2sd_fr(rd, r1) ->
fprintf oc " cvtsi2sd %a, %a\n" ireg r1 freg rd
(** Arithmetic and logical operations over integers *)
| Plea(rd, a) ->
fprintf oc " leal %a, %a\n" addressing a ireg rd
| Pneg(rd) ->
fprintf oc " negl %a\n" ireg rd
| Psub_rr(rd, r1) ->
fprintf oc " subl %a, %a\n" ireg r1 ireg rd
| Pimul_rr(rd, r1) ->
fprintf oc " imull %a, %a\n" ireg r1 ireg rd
| Pimul_ri(rd, n) ->
fprintf oc " imull $%a, %a\n" coqint n ireg rd
| Pdiv(r1) ->
fprintf oc " xorl %%edx, %%edx\n";
fprintf oc " divl %a\n" ireg r1
| Pidiv(r1) ->
fprintf oc " cltd\n";
fprintf oc " idivl %a\n" ireg r1
| Pand_rr(rd, r1) ->
fprintf oc " andl %a, %a\n" ireg r1 ireg rd
| Pand_ri(rd, n) ->
fprintf oc " andl $%a, %a\n" coqint n ireg rd
| Por_rr(rd, r1) ->
fprintf oc " orl %a, %a\n" ireg r1 ireg rd
| Por_ri(rd, n) ->
fprintf oc " orl $%a, %a\n" coqint n ireg rd
| Pxor_r(rd) ->
fprintf oc " xorl %a, %a\n" ireg rd ireg rd
| Pxor_rr(rd, r1) ->
fprintf oc " xorl %a, %a\n" ireg r1 ireg rd
| Pxor_ri(rd, n) ->
fprintf oc " xorl $%a, %a\n" coqint n ireg rd
| Psal_rcl(rd) ->
fprintf oc " sall %%cl, %a\n" ireg rd
| Psal_ri(rd, n) ->
fprintf oc " sall $%a, %a\n" coqint n ireg rd
| Pshr_rcl(rd) ->
fprintf oc " shrl %%cl, %a\n" ireg rd
| Pshr_ri(rd, n) ->
fprintf oc " shrl $%a, %a\n" coqint n ireg rd
| Psar_rcl(rd) ->
fprintf oc " sarl %%cl, %a\n" ireg rd
| Psar_ri(rd, n) ->
fprintf oc " sarl $%a, %a\n" coqint n ireg rd
| Pror_ri(rd, n) ->
fprintf oc " rorl $%a, %a\n" coqint n ireg rd
| Pcmp_rr(r1, r2) ->
fprintf oc " cmpl %a, %a\n" ireg r2 ireg r1
| Pcmp_ri(r1, n) ->
fprintf oc " cmpl $%a, %a\n" coqint n ireg r1
| Ptest_rr(r1, r2) ->
fprintf oc " testl %a, %a\n" ireg r2 ireg r1
| Ptest_ri(r1, n) ->
fprintf oc " testl $%a, %a\n" coqint n ireg r1
| Pcmov(c, rd, r1) ->
fprintf oc " cmov%s %a, %a\n" (name_of_condition c) ireg r1 ireg rd
| Psetcc(c, rd) ->
fprintf oc " set%s %%cl\n" (name_of_condition c);
fprintf oc " movzbl %%cl, %a\n" ireg rd
(** Arithmetic operations over floats *)
| Paddd_ff(rd, r1) ->
fprintf oc " addsd %a, %a\n" freg r1 freg rd
| Psubd_ff(rd, r1) ->
fprintf oc " subsd %a, %a\n" freg r1 freg rd
| Pmuld_ff(rd, r1) ->
fprintf oc " mulsd %a, %a\n" freg r1 freg rd
| Pdivd_ff(rd, r1) ->
fprintf oc " divsd %a, %a\n" freg r1 freg rd
| Pnegd (rd) ->
need_masks := true;
fprintf oc " xorpd %a, %a\n" raw_symbol "__negd_mask" freg rd
| Pabsd (rd) ->
need_masks := true;
fprintf oc " andpd %a, %a\n" raw_symbol "__absd_mask" freg rd
| Pcomisd_ff(r1, r2) ->
fprintf oc " comisd %a, %a\n" freg r2 freg r1
| Pxorpd_f (rd) ->
fprintf oc " xorpd %a, %a\n" freg rd freg rd
(** Branches and calls *)
| Pjmp_l(l) ->
fprintf oc " jmp %a\n" label (transl_label l)
| Pjmp_s(f) ->
fprintf oc " jmp %a\n" symbol f
| Pjmp_r(r) ->
fprintf oc " jmp *%a\n" ireg r
| Pjcc(c, l) ->
let l = transl_label l in
fprintf oc " j%s %a\n" (name_of_condition c) label l
| Pjcc2(c1, c2, l) ->
let l = transl_label l in
let l' = new_label() in
fprintf oc " j%s %a\n" (name_of_neg_condition c1) label l';
fprintf oc " j%s %a\n" (name_of_condition c2) label l;
fprintf oc "%a:\n" label l'
| Pjmptbl(r, tbl) ->
let l = new_label() in
fprintf oc " jmp *%a(, %a, 4)\n" label l ireg r;
jumptables := (l, tbl) :: !jumptables
| Pcall_s(f) ->
fprintf oc " call %a\n" symbol f
| Pcall_r(r) ->
fprintf oc " call *%a\n" ireg r
| Pret ->
fprintf oc " ret\n"
(** Pseudo-instructions *)
| Plabel(l) ->
fprintf oc "%a:\n" label (transl_label l)
| Pallocframe(sz, ofs_ra, ofs_link) ->
let sz = sp_adjustment sz in
let ofs_link = camlint_of_coqint ofs_link in
fprintf oc " subl $%ld, %%esp\n" sz;
fprintf oc " leal %ld(%%esp), %%edx\n" (Int32.add sz 4l);
fprintf oc " movl %%edx, %ld(%%esp)\n" ofs_link
| Pfreeframe(sz, ofs_ra, ofs_link) ->
let sz = sp_adjustment sz in
fprintf oc " addl $%ld, %%esp\n" sz
| Pbuiltin(ef, args, res) ->
begin match ef with
| EF_builtin(name, sg) ->
print_builtin_inline oc (extern_atom name) args res
| EF_vload chunk ->
print_builtin_vload oc chunk args res
| EF_vstore chunk ->
print_builtin_vstore oc chunk args
| EF_vload_global(chunk, id, ofs) ->
print_builtin_vload_global oc chunk id ofs args res
| EF_vstore_global(chunk, id, ofs) ->
print_builtin_vstore_global oc chunk id ofs args
| EF_memcpy(sz, al) ->
print_builtin_memcpy oc (Int32.to_int (camlint_of_coqint sz))
(Int32.to_int (camlint_of_coqint al)) args
| EF_annot_val(txt, targ) ->
print_annot_val oc (extern_atom txt) args res
| _ ->
assert false
end
| Pannot(ef, args) ->
begin match ef with
| EF_annot(txt, targs) ->
print_annot_stmt oc (extern_atom txt) args
| _ ->
assert false
end
let print_literal oc (lbl, n) =
fprintf oc "%a: .quad 0x%Lx\n" label lbl n
let print_jumptable oc (lbl, tbl) =
fprintf oc "%a:" label lbl;
List.iter
(fun l -> fprintf oc " .long %a\n" label (transl_label l))
tbl
let print_function oc name code =
Hashtbl.clear current_function_labels;
float_literals := [];
jumptables := [];
let (text, lit, jmptbl) =
match C2C.atom_sections name with
| [t;l;j] -> (t, l, j)
| _ -> (Section_text, Section_literal, Section_jumptable) in
section oc text;
let alignment =
match !Clflags.option_falignfunctions with Some n -> n | None -> 16 in
print_align oc alignment;
if not (C2C.atom_is_static name) then
fprintf oc " .globl %a\n" symbol name;
fprintf oc "%a:\n" symbol name;
List.iter (print_instruction oc) code;
if target = ELF then begin
fprintf oc " .type %a, @function\n" symbol name;
fprintf oc " .size %a, . - %a\n" symbol name symbol name
end;
if !float_literals <> [] then begin
section oc lit;
print_align oc 8;
List.iter (print_literal oc) !float_literals;
float_literals := []
end;
if !jumptables <> [] then begin
section oc jmptbl;
print_align oc 4;
List.iter (print_jumptable oc) !jumptables;
jumptables := []
end
let print_fundef oc (name, defn) =
match defn with
| Internal code -> print_function oc name code
| External ef -> ()
let print_init oc = function
| Init_int8 n ->
fprintf oc " .byte %ld\n" (camlint_of_coqint n)
| Init_int16 n ->
fprintf oc " .short %ld\n" (camlint_of_coqint n)
| Init_int32 n ->
fprintf oc " .long %ld\n" (camlint_of_coqint n)
| Init_float32 n ->
fprintf oc " .long %ld %s %.18g\n"
(camlint_of_coqint (Floats.Float.bits_of_single n))
comment (camlfloat_of_coqfloat n)
| Init_float64 n ->
fprintf oc " .quad %Ld %s %.18g\n"
(camlint64_of_coqint (Floats.Float.bits_of_double n))
comment (camlfloat_of_coqfloat n)
| Init_space n ->
let n = camlint_of_z n in
if n > 0l then fprintf oc " .space %ld\n" n
| Init_addrof(symb, ofs) ->
fprintf oc " .long %a\n"
symbol_offset (symb, camlint_of_coqint ofs)
let print_init_data oc name id =
if Str.string_match PrintCsyntax.re_string_literal (extern_atom name) 0
&& List.for_all (function Init_int8 _ -> true | _ -> false) id
then
fprintf oc " .ascii \"%s\"\n" (PrintCsyntax.string_of_init id)
else
List.iter (print_init oc) id
let print_var oc (name, v) =
match v.gvar_init with
| [] -> ()
| _ ->
let sec =
match C2C.atom_sections name with
| [s] -> s
| _ -> Section_data true
and align =
match C2C.atom_alignof name with
| Some a -> a
| None -> 8 (* 8-alignment is a safe default *)
in
section oc sec;
print_align oc align;
if not (C2C.atom_is_static name) then
fprintf oc " .globl %a\n" symbol name;
fprintf oc "%a:\n" symbol name;
print_init_data oc name v.gvar_init;
if target = ELF then begin
fprintf oc " .type %a, @object\n" symbol name;
fprintf oc " .size %a, . - %a\n" symbol name symbol name
end
let print_program oc p =
need_masks := false;
List.iter (print_var oc) p.prog_vars;
List.iter (print_fundef oc) p.prog_funct;
if !need_masks then begin
section oc Section_const; (* not Section_literal because not 8-bytes *)
print_align oc 16;
fprintf oc "%a: .quad 0x8000000000000000, 0\n"
raw_symbol "__negd_mask";
fprintf oc "%a: .quad 0x7FFFFFFFFFFFFFFF, 0xFFFFFFFFFFFFFFFF\n"
raw_symbol "__absd_mask"
end
|