1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
|
(* *********************************************************************)
(* *)
(* The Compcert verified compiler *)
(* *)
(* Xavier Leroy, INRIA Paris-Rocquencourt *)
(* *)
(* Copyright Institut National de Recherche en Informatique et en *)
(* Automatique. All rights reserved. This file is distributed *)
(* under the terms of the INRIA Non-Commercial License Agreement. *)
(* *)
(* *********************************************************************)
(** Correctness proof for IA32 generation: auxiliary results. *)
Require Import Coqlib.
Require Import Maps.
Require Import AST.
Require Import Errors.
Require Import Integers.
Require Import Floats.
Require Import Values.
Require Import Memory.
Require Import Globalenvs.
Require Import Op.
Require Import Locations.
Require Import Mach.
Require Import Machsem.
Require Import Machtyping.
Require Import Asm.
Require Import Asmgen.
Require Import Conventions.
Open Local Scope error_monad_scope.
(** * Correspondence between Mach registers and IA32 registers *)
Hint Extern 2 (_ <> _) => congruence: ppcgen.
Lemma preg_of_injective:
forall r1 r2, preg_of r1 = preg_of r2 -> r1 = r2.
Proof.
destruct r1; destruct r2; simpl; intros; reflexivity || discriminate.
Qed.
Lemma preg_of_not_ESP:
forall r, preg_of r <> ESP.
Proof.
destruct r; simpl; congruence.
Qed.
Lemma preg_of_not_PC:
forall r, preg_of r <> PC.
Proof.
destruct r; simpl; congruence.
Qed.
Hint Resolve preg_of_not_ESP preg_of_not_PC: ppcgen.
Lemma ireg_of_eq:
forall r r', ireg_of r = OK r' -> preg_of r = IR r'.
Proof.
unfold ireg_of; intros. destruct (preg_of r); inv H; auto.
Qed.
Lemma freg_of_eq:
forall r r', freg_of r = OK r' -> preg_of r = FR r'.
Proof.
unfold freg_of; intros. destruct (preg_of r); inv H; auto.
Qed.
(** Agreement between Mach register sets and IA32 register sets. *)
Record agree (ms: Mach.regset) (sp: val) (rs: Asm.regset) : Prop := mkagree {
agree_sp: rs#ESP = sp;
agree_sp_def: sp <> Vundef;
agree_mregs: forall r: mreg, Val.lessdef (ms r) (rs#(preg_of r))
}.
Lemma preg_val:
forall ms sp rs r,
agree ms sp rs -> Val.lessdef (ms r) rs#(preg_of r).
Proof.
intros. destruct H. auto.
Qed.
Lemma preg_vals:
forall ms sp rs, agree ms sp rs ->
forall l, Val.lessdef_list (map ms l) (map rs (map preg_of l)).
Proof.
induction l; simpl. constructor. constructor. eapply preg_val; eauto. auto.
Qed.
Lemma ireg_val:
forall ms sp rs r r',
agree ms sp rs ->
ireg_of r = OK r' ->
Val.lessdef (ms r) rs#r'.
Proof.
intros. rewrite <- (ireg_of_eq _ _ H0). eapply preg_val; eauto.
Qed.
Lemma freg_val:
forall ms sp rs r r',
agree ms sp rs ->
freg_of r = OK r' ->
Val.lessdef (ms r) (rs#r').
Proof.
intros. rewrite <- (freg_of_eq _ _ H0). eapply preg_val; eauto.
Qed.
Lemma sp_val:
forall ms sp rs,
agree ms sp rs ->
sp = rs#ESP.
Proof.
intros. destruct H; auto.
Qed.
Hint Resolve preg_val ireg_val freg_val sp_val: ppcgen.
Definition important_preg (r: preg) : bool :=
match r with
| PC => false
| IR _ => true
| FR _ => true
| ST0 => true
| CR _ => false
| RA => false
end.
Lemma preg_of_important:
forall r, important_preg (preg_of r) = true.
Proof.
intros. destruct r; reflexivity.
Qed.
Lemma important_diff:
forall r r',
important_preg r = true -> important_preg r' = false -> r <> r'.
Proof.
congruence.
Qed.
Hint Resolve important_diff: ppcgen.
Lemma agree_exten:
forall ms sp rs rs',
agree ms sp rs ->
(forall r, important_preg r = true -> rs'#r = rs#r) ->
agree ms sp rs'.
Proof.
intros. destruct H. split.
rewrite H0; auto. auto.
intros. rewrite H0; auto. apply preg_of_important.
Qed.
(** Preservation of register agreement under various assignments. *)
Lemma agree_set_mreg:
forall ms sp rs r v rs',
agree ms sp rs ->
Val.lessdef v (rs'#(preg_of r)) ->
(forall r', important_preg r' = true -> r' <> preg_of r -> rs'#r' = rs#r') ->
agree (Regmap.set r v ms) sp rs'.
Proof.
intros. destruct H. split.
rewrite H1; auto. apply sym_not_equal. apply preg_of_not_ESP.
auto.
intros. unfold Regmap.set. destruct (RegEq.eq r0 r). congruence.
rewrite H1. auto. apply preg_of_important.
red; intros; elim n. eapply preg_of_injective; eauto.
Qed.
Lemma agree_set_other:
forall ms sp rs r v,
agree ms sp rs ->
important_preg r = false ->
agree ms sp (rs#r <- v).
Proof.
intros. apply agree_exten with rs. auto.
intros. apply Pregmap.gso. congruence.
Qed.
Lemma agree_nextinstr:
forall ms sp rs,
agree ms sp rs -> agree ms sp (nextinstr rs).
Proof.
intros. unfold nextinstr. apply agree_set_other. auto. auto.
Qed.
Lemma agree_undef_unimportant_regs:
forall ms sp rl rs,
agree ms sp rs ->
(forall r, In r rl -> important_preg r = false) ->
agree ms sp (undef_regs rl rs).
Proof.
induction rl; simpl; intros. auto.
apply IHrl. apply agree_exten with rs; auto.
intros. apply Pregmap.gso. red; intros; subst.
assert (important_preg a = false) by auto. congruence.
intros. apply H0; auto.
Qed.
Lemma agree_nextinstr_nf:
forall ms sp rs,
agree ms sp rs -> agree ms sp (nextinstr_nf rs).
Proof.
intros. unfold nextinstr_nf. apply agree_nextinstr.
apply agree_undef_unimportant_regs. auto.
intro. simpl. ElimOrEq; auto.
Qed.
Definition nontemp_preg (r: preg) : bool :=
match r with
| PC => false
| IR ECX => false
| IR EDX => false
| IR _ => true
| FR XMM6 => false
| FR XMM7 => false
| FR _ => true
| ST0 => false
| CR _ => false
| RA => false
end.
Lemma nontemp_diff:
forall r r',
nontemp_preg r = true -> nontemp_preg r' = false -> r <> r'.
Proof.
congruence.
Qed.
Hint Resolve nontemp_diff: ppcgen.
Lemma agree_exten_temps:
forall ms sp rs rs',
agree ms sp rs ->
(forall r, nontemp_preg r = true -> rs'#r = rs#r) ->
agree (undef_temps ms) sp rs'.
Proof.
intros. destruct H. split.
rewrite H0; auto. auto.
intros. unfold undef_temps.
destruct (In_dec mreg_eq r temporary_regs).
rewrite Mach.undef_regs_same; auto.
rewrite Mach.undef_regs_other; auto. rewrite H0; auto.
simpl in n. destruct r; auto; intuition.
Qed.
Lemma agree_undef_move:
forall ms sp rs rs',
agree ms sp rs ->
(forall r, important_preg r = true -> r <> ST0 -> rs'#r = rs#r) ->
agree (undef_move ms) sp rs'.
Proof.
intros. destruct H. split.
rewrite H0; auto. congruence. auto.
intros. unfold undef_move.
destruct (In_dec mreg_eq r destroyed_at_move_regs).
rewrite Mach.undef_regs_same; auto.
rewrite Mach.undef_regs_other; auto.
assert (important_preg (preg_of r) = true /\ preg_of r <> ST0).
simpl in n. destruct r; simpl; auto; intuition congruence.
destruct H. rewrite H0; auto.
Qed.
Lemma agree_set_undef_mreg:
forall ms sp rs r v rs',
agree ms sp rs ->
Val.lessdef v (rs'#(preg_of r)) ->
(forall r', nontemp_preg r' = true -> r' <> preg_of r -> rs'#r' = rs#r') ->
agree (Regmap.set r v (undef_temps ms)) sp rs'.
Proof.
intros. apply agree_set_mreg with (rs'#(preg_of r) <- (rs#(preg_of r))); auto.
eapply agree_exten_temps; eauto.
intros. unfold Pregmap.set. destruct (PregEq.eq r0 (preg_of r)).
congruence. auto.
intros. rewrite Pregmap.gso; auto.
Qed.
Lemma agree_set_undef_move_mreg:
forall ms sp rs r v rs',
agree ms sp rs ->
Val.lessdef v (rs'#(preg_of r)) ->
(forall r', important_preg r' = true /\ r' <> ST0 -> r' <> preg_of r -> rs'#r' = rs#r') ->
agree (Regmap.set r v (undef_move ms)) sp rs'.
Proof.
intros. apply agree_set_mreg with (rs'#(preg_of r) <- (rs#(preg_of r))); auto.
eapply agree_undef_move; eauto.
intros. unfold Pregmap.set. destruct (PregEq.eq r0 (preg_of r)).
congruence. auto.
intros. rewrite Pregmap.gso; auto.
Qed.
(** Useful properties of the PC register. *)
Lemma nextinstr_inv:
forall r rs,
r <> PC ->
(nextinstr rs)#r = rs#r.
Proof.
intros. unfold nextinstr. apply Pregmap.gso. red; intro; subst. auto.
Qed.
Lemma nextinstr_inv2:
forall r rs,
nontemp_preg r = true ->
(nextinstr rs)#r = rs#r.
Proof.
intros. apply nextinstr_inv. red; intro; subst; discriminate.
Qed.
Lemma nextinstr_set_preg:
forall rs m v,
(nextinstr (rs#(preg_of m) <- v))#PC = Val.add rs#PC Vone.
Proof.
intros. unfold nextinstr. rewrite Pregmap.gss.
rewrite Pregmap.gso. auto. apply sym_not_eq. apply preg_of_not_PC.
Qed.
Lemma nextinstr_nf_inv:
forall r rs,
match r with PC => False | CR _ => False | _ => True end ->
(nextinstr_nf rs)#r = rs#r.
Proof.
intros. unfold nextinstr_nf. rewrite nextinstr_inv.
simpl. repeat rewrite Pregmap.gso; auto.
red; intro; subst; contradiction.
red; intro; subst; contradiction.
red; intro; subst; contradiction.
red; intro; subst; contradiction.
red; intro; subst; contradiction.
Qed.
Lemma nextinstr_nf_inv1:
forall r rs,
important_preg r = true -> (nextinstr_nf rs)#r = rs#r.
Proof.
intros. apply nextinstr_nf_inv. unfold important_preg in H.
destruct r; auto; congruence.
Qed.
Lemma nextinstr_nf_inv2:
forall r rs,
nontemp_preg r = true -> (nextinstr_nf rs)#r = rs#r.
Proof.
intros. apply nextinstr_nf_inv. unfold nontemp_preg in H.
destruct r; auto; congruence.
Qed.
Lemma nextinstr_nf_set_preg:
forall rs m v,
(nextinstr_nf (rs#(preg_of m) <- v))#PC = Val.add rs#PC Vone.
Proof.
intros. unfold nextinstr_nf.
transitivity (nextinstr (rs#(preg_of m) <- v) PC). auto.
apply nextinstr_set_preg.
Qed.
(** Connection between Mach and Asm calling conventions for external
functions. *)
Lemma extcall_arg_match:
forall ms sp rs m m' l v,
agree ms sp rs ->
Machsem.extcall_arg ms m sp l v ->
Mem.extends m m' ->
exists v', Asm.extcall_arg rs m' l v' /\ Val.lessdef v v'.
Proof.
intros. inv H0.
exists (rs#(preg_of r)); split. constructor. eauto with ppcgen.
unfold load_stack in H2.
exploit Mem.loadv_extends; eauto. intros [v' [A B]].
rewrite (sp_val _ _ _ H) in A.
exists v'; split; auto. destruct ty; econstructor; eauto.
Qed.
Lemma extcall_args_match:
forall ms sp rs m m', agree ms sp rs -> Mem.extends m m' ->
forall ll vl,
list_forall2 (Machsem.extcall_arg ms m sp) ll vl ->
exists vl', list_forall2 (Asm.extcall_arg rs m') ll vl' /\ Val.lessdef_list vl vl'.
Proof.
induction 3.
exists (@nil val); split; constructor.
exploit extcall_arg_match; eauto. intros [v1' [A B]].
destruct IHlist_forall2 as [vl' [C D]].
exists(v1' :: vl'); split. constructor; auto. constructor; auto.
Qed.
Lemma extcall_arguments_match:
forall ms m sp rs sg args m',
agree ms sp rs ->
Machsem.extcall_arguments ms m sp sg args ->
Mem.extends m m' ->
exists args', Asm.extcall_arguments rs m' sg args' /\ Val.lessdef_list args args'.
Proof.
unfold Machsem.extcall_arguments, Asm.extcall_arguments; intros.
eapply extcall_args_match; eauto.
Qed.
(** Translation of arguments to annotations. *)
Lemma annot_arg_match:
forall ms sp rs m m' p v,
agree ms sp rs ->
Mem.extends m m' ->
Machsem.annot_arg ms m sp p v ->
exists v', Asm.annot_arg rs m' (transl_annot_param p) v' /\ Val.lessdef v v'.
Proof.
intros. inv H1; simpl.
(* reg *)
exists (rs (preg_of r)); split.
unfold preg_of. destruct (mreg_type r); constructor.
eapply preg_val; eauto.
(* stack *)
exploit Mem.load_extends; eauto. intros [v' [A B]].
exists v'; split; auto.
inv H. econstructor; eauto.
Qed.
Lemma annot_arguments_match:
forall ms sp rs m m', agree ms sp rs -> Mem.extends m m' ->
forall pl vl,
Machsem.annot_arguments ms m sp pl vl ->
exists vl', Asm.annot_arguments rs m' (map transl_annot_param pl) vl'
/\ Val.lessdef_list vl vl'.
Proof.
induction 3; intros.
exists (@nil val); split. constructor. constructor.
exploit annot_arg_match; eauto. intros [v1' [A B]].
destruct IHlist_forall2 as [vl' [C D]].
exists (v1' :: vl'); split; constructor; auto.
Qed.
(** * Execution of straight-line code *)
Section STRAIGHTLINE.
Variable ge: genv.
Variable fn: code.
(** Straight-line code is composed of processor instructions that execute
in sequence (no branches, no function calls and returns).
The following inductive predicate relates the machine states
before and after executing a straight-line sequence of instructions.
Instructions are taken from the first list instead of being fetched
from memory. *)
Inductive exec_straight: code -> regset -> mem ->
code -> regset -> mem -> Prop :=
| exec_straight_one:
forall i1 c rs1 m1 rs2 m2,
exec_instr ge fn i1 rs1 m1 = Next rs2 m2 ->
rs2#PC = Val.add rs1#PC Vone ->
exec_straight (i1 :: c) rs1 m1 c rs2 m2
| exec_straight_step:
forall i c rs1 m1 rs2 m2 c' rs3 m3,
exec_instr ge fn i rs1 m1 = Next rs2 m2 ->
rs2#PC = Val.add rs1#PC Vone ->
exec_straight c rs2 m2 c' rs3 m3 ->
exec_straight (i :: c) rs1 m1 c' rs3 m3.
Lemma exec_straight_trans:
forall c1 rs1 m1 c2 rs2 m2 c3 rs3 m3,
exec_straight c1 rs1 m1 c2 rs2 m2 ->
exec_straight c2 rs2 m2 c3 rs3 m3 ->
exec_straight c1 rs1 m1 c3 rs3 m3.
Proof.
induction 1; intros.
apply exec_straight_step with rs2 m2; auto.
apply exec_straight_step with rs2 m2; auto.
Qed.
Lemma exec_straight_two:
forall i1 i2 c rs1 m1 rs2 m2 rs3 m3,
exec_instr ge fn i1 rs1 m1 = Next rs2 m2 ->
exec_instr ge fn i2 rs2 m2 = Next rs3 m3 ->
rs2#PC = Val.add rs1#PC Vone ->
rs3#PC = Val.add rs2#PC Vone ->
exec_straight (i1 :: i2 :: c) rs1 m1 c rs3 m3.
Proof.
intros. apply exec_straight_step with rs2 m2; auto.
apply exec_straight_one; auto.
Qed.
Lemma exec_straight_three:
forall i1 i2 i3 c rs1 m1 rs2 m2 rs3 m3 rs4 m4,
exec_instr ge fn i1 rs1 m1 = Next rs2 m2 ->
exec_instr ge fn i2 rs2 m2 = Next rs3 m3 ->
exec_instr ge fn i3 rs3 m3 = Next rs4 m4 ->
rs2#PC = Val.add rs1#PC Vone ->
rs3#PC = Val.add rs2#PC Vone ->
rs4#PC = Val.add rs3#PC Vone ->
exec_straight (i1 :: i2 :: i3 :: c) rs1 m1 c rs4 m4.
Proof.
intros. apply exec_straight_step with rs2 m2; auto.
eapply exec_straight_two; eauto.
Qed.
(** * Correctness of IA32 constructor functions *)
(** Smart constructor for moves. *)
Lemma mk_mov_correct:
forall rd rs k c rs1 m,
mk_mov rd rs k = OK c ->
exists rs2,
exec_straight c rs1 m k rs2 m
/\ rs2#rd = rs1#rs
/\ forall r, important_preg r = true -> r <> ST0 -> r <> rd -> rs2#r = rs1#r.
Proof.
unfold mk_mov; intros.
destruct rd; try (monadInv H); destruct rs; monadInv H.
(* mov *)
econstructor. split. apply exec_straight_one. simpl. eauto. auto.
split. rewrite nextinstr_inv; auto with ppcgen. apply Pregmap.gss.
intros. rewrite nextinstr_inv; auto with ppcgen. apply Pregmap.gso. auto.
(* movd *)
econstructor. split. apply exec_straight_one. simpl. eauto. auto.
split. rewrite nextinstr_inv; auto with ppcgen. apply Pregmap.gss.
intros. rewrite nextinstr_inv; auto with ppcgen. apply Pregmap.gso. auto.
(* getfp0 *)
econstructor. split. apply exec_straight_one. simpl. eauto. auto.
split. rewrite nextinstr_inv; auto with ppcgen.
rewrite Pregmap.gso; auto with ppcgen.
apply Pregmap.gss.
intros. rewrite nextinstr_inv; auto with ppcgen. rewrite Pregmap.gso; auto. rewrite Pregmap.gso; auto.
(* setfp0 *)
econstructor. split. apply exec_straight_one. simpl. eauto. auto.
split. auto.
intros. rewrite nextinstr_inv; auto with ppcgen. apply Pregmap.gso. auto.
Qed.
(** Smart constructor for shifts *)
Ltac SRes :=
match goal with
| [ |- nextinstr _ _ = _ ] => rewrite nextinstr_inv; [auto | auto with ppcgen]
| [ |- nextinstr_nf _ _ = _ ] => rewrite nextinstr_nf_inv; [auto | auto with ppcgen]
| [ |- Pregmap.get ?x (Pregmap.set ?x _ _) = _ ] => rewrite Pregmap.gss; auto
| [ |- Pregmap.set ?x _ _ ?x = _ ] => rewrite Pregmap.gss; auto
| [ |- Pregmap.get _ (Pregmap.set _ _ _) = _ ] => rewrite Pregmap.gso; [auto | auto with ppcgen]
| [ |- Pregmap.set _ _ _ _ = _ ] => rewrite Pregmap.gso; [auto | auto with ppcgen]
end.
Ltac SOther :=
match goal with
| [ |- nextinstr _ _ = _ ] => rewrite nextinstr_inv; [auto | auto with ppcgen]
| [ |- nextinstr_nf _ _ = _ ] => rewrite nextinstr_nf_inv2; [auto | auto with ppcgen]
| [ |- Pregmap.get ?x (Pregmap.set ?x _ _) = _ ] => rewrite Pregmap.gss; auto
| [ |- Pregmap.set ?x _ _ ?x = _ ] => rewrite Pregmap.gss; auto
| [ |- Pregmap.get _ (Pregmap.set _ _ _) = _ ] => rewrite Pregmap.gso; [auto | auto with ppcgen]
| [ |- Pregmap.set _ _ _ _ = _ ] => rewrite Pregmap.gso; [auto | auto with ppcgen]
end.
Lemma mk_shift_correct:
forall sinstr ssem r1 r2 k c rs1 m,
mk_shift sinstr r1 r2 k = OK c ->
(forall r c rs m,
exec_instr ge c (sinstr r) rs m = Next (nextinstr_nf (rs#r <- (ssem rs#r rs#ECX))) m) ->
exists rs2,
exec_straight c rs1 m k rs2 m
/\ rs2#r1 = ssem rs1#r1 rs1#r2
/\ forall r, nontemp_preg r = true -> r <> r1 -> rs2#r = rs1#r.
Proof.
unfold mk_shift; intros.
destruct (ireg_eq r2 ECX).
(* fast case *)
monadInv H.
econstructor. split. apply exec_straight_one. apply H0. auto.
split. repeat SRes.
intros. repeat SOther.
(* xchg case *)
destruct (ireg_eq r1 ECX); monadInv H.
econstructor. split. eapply exec_straight_three.
simpl; eauto.
apply H0.
simpl; eauto.
auto. auto. auto.
split. repeat SRes. repeat rewrite nextinstr_inv; auto with ppcgen.
rewrite Pregmap.gss. decEq. rewrite Pregmap.gso; auto with ppcgen. apply Pregmap.gss.
intros. destruct (preg_eq r r2). subst. repeat SRes. repeat SOther.
(* general case *)
econstructor. split. eapply exec_straight_two. simpl; eauto. apply H0.
auto. auto.
split. repeat SRes. repeat rewrite nextinstr_inv; auto with ppcgen.
rewrite Pregmap.gss. decEq. rewrite Pregmap.gso; auto. congruence.
intros. repeat SOther.
Qed.
(** Parallel move 2 *)
Lemma mk_mov2_correct:
forall src1 dst1 src2 dst2 k rs m,
dst1 <> dst2 ->
exists rs',
exec_straight (mk_mov2 src1 dst1 src2 dst2 k) rs m k rs' m
/\ rs'#dst1 = rs#src1
/\ rs'#dst2 = rs#src2
/\ forall r, r <> PC -> r <> dst1 -> r <> dst2 -> rs'#r = rs#r.
Proof.
intros. unfold mk_mov2.
(* single moves *)
destruct (ireg_eq src1 dst1). subst.
econstructor; split. apply exec_straight_one. simpl; eauto. auto.
split. repeat SRes. split. repeat SRes. intros; repeat SOther.
destruct (ireg_eq src2 dst2). subst.
econstructor; split. apply exec_straight_one. simpl; eauto. auto.
split. repeat SRes. split. repeat SRes. intros; repeat SOther.
(* xchg *)
destruct (ireg_eq src2 dst1). destruct (ireg_eq src1 dst2).
subst. econstructor; split. apply exec_straight_one. simpl; eauto. auto.
split. repeat SRes. split. repeat SRes. intros; repeat SOther.
(* move 2; move 1 *)
subst. econstructor; split. eapply exec_straight_two.
simpl; eauto. simpl; eauto. auto. auto.
split. repeat SRes. split. repeat SRes. intros; repeat SOther.
(* move 1; move 2*)
subst. econstructor; split. eapply exec_straight_two.
simpl; eauto. simpl; eauto. auto. auto.
split. repeat SRes. split. repeat SRes. intros; repeat SOther.
Qed.
(** Smart constructor for division *)
Lemma mk_div_correct:
forall mkinstr dsem msem r1 r2 k c (rs1: regset) m vq vr,
mk_div mkinstr r1 r2 k = OK c ->
(forall r c rs m,
exec_instr ge c (mkinstr r) rs m =
let vn := rs#EAX in let vd := (rs#EDX <- Vundef)#r in
match dsem vn vd, msem vn vd with
| Some vq, Some vr => Next (nextinstr_nf (rs#EAX <- vq #EDX <- vr)) m
| _, _ => Stuck
end) ->
dsem rs1#r1 rs1#r2 = Some vq ->
msem rs1#r1 rs1#r2 = Some vr ->
exists rs2,
exec_straight c rs1 m k rs2 m
/\ rs2#r1 = vq
/\ forall r, nontemp_preg r = true -> r <> r1 -> rs2#r = rs1#r.
Proof.
unfold mk_div; intros.
destruct (ireg_eq r1 EAX). destruct (ireg_eq r2 EDX); monadInv H.
(* r1=EAX r2=EDX *)
econstructor. split. eapply exec_straight_two. simpl; eauto.
rewrite H0.
change (nextinstr rs1 # ECX <- (rs1 EDX) EAX) with (rs1#EAX).
change ((nextinstr rs1 # ECX <- (rs1 EDX)) # EDX <- Vundef ECX) with (rs1#EDX).
rewrite H1. rewrite H2. eauto. auto. auto.
split. SRes.
intros. repeat SOther.
(* r1=EAX r2<>EDX *)
econstructor. split. eapply exec_straight_one. rewrite H0.
replace (rs1 # EDX <- Vundef r2) with (rs1 r2). rewrite H1; rewrite H2. eauto.
symmetry. SOther. auto.
split. SRes.
intros. repeat SOther.
(* r1 <> EAX *)
monadInv H.
set (rs2 := nextinstr (rs1#XMM7 <- (rs1#EAX))).
exploit (mk_mov2_correct r1 EAX r2 ECX). congruence. instantiate (1 := rs2).
intros [rs3 [A [B [C D]]]].
econstructor; split.
apply exec_straight_step with rs2 m; auto.
eapply exec_straight_trans. eexact A.
eapply exec_straight_three.
rewrite H0. replace (rs3 EAX) with (rs1 r1). replace (rs3 # EDX <- Vundef ECX) with (rs1 r2).
rewrite H1; rewrite H2. eauto.
simpl; eauto. simpl; eauto.
auto. auto. auto.
split. repeat SRes.
intros. destruct (preg_eq r EAX). subst.
repeat SRes. rewrite D; auto with ppcgen.
repeat SOther. rewrite D; auto with ppcgen. unfold rs2; repeat SOther.
Qed.
(** Smart constructor for modulus *)
Lemma mk_mod_correct:
forall mkinstr dsem msem r1 r2 k c (rs1: regset) m vq vr,
mk_mod mkinstr r1 r2 k = OK c ->
(forall r c rs m,
exec_instr ge c (mkinstr r) rs m =
let vn := rs#EAX in let vd := (rs#EDX <- Vundef)#r in
match dsem vn vd, msem vn vd with
| Some vq, Some vr => Next (nextinstr_nf (rs#EAX <- vq #EDX <- vr)) m
| _, _ => Stuck
end) ->
dsem rs1#r1 rs1#r2 = Some vq ->
msem rs1#r1 rs1#r2 = Some vr ->
exists rs2,
exec_straight c rs1 m k rs2 m
/\ rs2#r1 = vr
/\ forall r, nontemp_preg r = true -> r <> r1 -> rs2#r = rs1#r.
Proof.
unfold mk_mod; intros.
destruct (ireg_eq r1 EAX). destruct (ireg_eq r2 EDX); monadInv H.
(* r1=EAX r2=EDX *)
econstructor. split. eapply exec_straight_three.
simpl; eauto.
rewrite H0.
change (nextinstr rs1 # ECX <- (rs1 EDX) EAX) with (rs1#EAX).
change ((nextinstr rs1 # ECX <- (rs1 EDX)) # EDX <- Vundef ECX) with (rs1#EDX).
rewrite H1. rewrite H2. eauto.
simpl; eauto.
auto. auto. auto.
split. SRes.
intros. repeat SOther.
(* r1=EAX r2<>EDX *)
econstructor. split. eapply exec_straight_two. rewrite H0.
replace (rs1 # EDX <- Vundef r2) with (rs1 r2). rewrite H1; rewrite H2. eauto.
symmetry. SOther.
simpl; eauto.
auto. auto.
split. SRes.
intros. repeat SOther.
(* r1 <> EAX *)
monadInv H.
set (rs2 := nextinstr (rs1#XMM7 <- (rs1#EAX))).
exploit (mk_mov2_correct r1 EAX r2 ECX). congruence. instantiate (1 := rs2).
intros [rs3 [A [B [C D]]]].
econstructor; split.
apply exec_straight_step with rs2 m; auto.
eapply exec_straight_trans. eexact A.
eapply exec_straight_three.
rewrite H0. replace (rs3 EAX) with (rs1 r1). replace (rs3 # EDX <- Vundef ECX) with (rs1 r2).
rewrite H1; rewrite H2. eauto.
simpl; eauto. simpl; eauto.
auto. auto. auto.
split. repeat SRes.
intros. destruct (preg_eq r EAX). subst.
repeat SRes. rewrite D; auto with ppcgen.
repeat SOther. rewrite D; auto with ppcgen. unfold rs2; repeat SOther.
Qed.
Remark divs_mods_exist:
forall v1 v2,
match Val.divs v1 v2, Val.mods v1 v2 with
| Some _, Some _ => True
| None, None => True
| _, _ => False
end.
Proof.
intros. unfold Val.divs, Val.mods. destruct v1; auto. destruct v2; auto.
destruct (Int.eq i0 Int.zero); auto.
Qed.
Remark divu_modu_exist:
forall v1 v2,
match Val.divu v1 v2, Val.modu v1 v2 with
| Some _, Some _ => True
| None, None => True
| _, _ => False
end.
Proof.
intros. unfold Val.divu, Val.modu. destruct v1; auto. destruct v2; auto.
destruct (Int.eq i0 Int.zero); auto.
Qed.
(** Smart constructor for [shrx] *)
Lemma mk_shrximm_correct:
forall r1 n k c (rs1: regset) v m,
mk_shrximm r1 n k = OK c ->
Val.shrx (rs1#r1) (Vint n) = Some v ->
exists rs2,
exec_straight c rs1 m k rs2 m
/\ rs2#r1 = v
/\ forall r, nontemp_preg r = true -> r <> r1 -> rs2#r = rs1#r.
Proof.
unfold mk_shrximm; intros. inv H.
exploit Val.shrx_shr; eauto. intros [x [y [A [B C]]]].
inversion B; clear B; subst y; subst v; clear H0.
set (tmp := if ireg_eq r1 ECX then EDX else ECX).
assert (TMP1: tmp <> r1). unfold tmp; destruct (ireg_eq r1 ECX); congruence.
assert (TMP2: nontemp_preg tmp = false). unfold tmp; destruct (ireg_eq r1 ECX); auto.
set (tnm1 := Int.sub (Int.shl Int.one n) Int.one).
set (x' := Int.add x tnm1).
set (rs2 := nextinstr (compare_ints (Vint x) (Vint Int.zero) rs1 m)).
set (rs3 := nextinstr (rs2#tmp <- (Vint x'))).
set (rs4 := nextinstr (if Int.lt x Int.zero then rs3#r1 <- (Vint x') else rs3)).
set (rs5 := nextinstr_nf (rs4#r1 <- (Val.shr rs4#r1 (Vint n)))).
assert (rs3#r1 = Vint x). unfold rs3. SRes. SRes.
assert (rs3#tmp = Vint x'). unfold rs3. SRes. SRes.
exists rs5. split.
apply exec_straight_step with rs2 m. simpl. rewrite A. simpl. rewrite Int.and_idem. auto. auto.
apply exec_straight_step with rs3 m. simpl.
change (rs2 r1) with (rs1 r1). rewrite A. simpl.
rewrite (Int.add_commut Int.zero tnm1). rewrite Int.add_zero. auto. auto.
apply exec_straight_step with rs4 m. simpl.
change (rs3 SOF) with (rs2 SOF). unfold rs2. rewrite nextinstr_inv; auto with ppcgen.
unfold compare_ints. rewrite Pregmap.gso; auto with ppcgen. rewrite Pregmap.gss.
unfold Val.cmp. simpl. unfold rs4. destruct (Int.lt x Int.zero); simpl; auto. rewrite H0; auto.
unfold rs4. destruct (Int.lt x Int.zero); simpl; auto.
apply exec_straight_one. auto. auto.
split. unfold rs5. SRes. SRes. unfold rs4. rewrite nextinstr_inv; auto with ppcgen.
destruct (Int.lt x Int.zero). rewrite Pregmap.gss. rewrite A; auto. rewrite A; rewrite H; auto.
intros. unfold rs5. repeat SOther. unfold rs4. SOther.
transitivity (rs3#r). destruct (Int.lt x Int.zero). SOther. auto.
unfold rs3. repeat SOther. unfold rs2. repeat SOther.
unfold compare_ints. repeat SOther.
Qed.
(** Smart constructor for integer conversions *)
Lemma mk_intconv_correct:
forall mk sem rd rs k c rs1 m,
mk_intconv mk rd rs k = OK c ->
(forall c rd rs r m,
exec_instr ge c (mk rd rs) r m = Next (nextinstr (r#rd <- (sem r#rs))) m) ->
exists rs2,
exec_straight c rs1 m k rs2 m
/\ rs2#rd = sem rs1#rs
/\ forall r, nontemp_preg r = true -> r <> rd -> rs2#r = rs1#r.
Proof.
unfold mk_intconv; intros. destruct (low_ireg rs); monadInv H.
econstructor. split. apply exec_straight_one. rewrite H0. eauto. auto.
split. repeat SRes.
intros. repeat SOther.
econstructor. split. eapply exec_straight_two.
simpl. eauto. apply H0. auto. auto.
split. repeat SRes.
intros. repeat SOther.
Qed.
(** Smart constructor for small stores *)
Lemma addressing_mentions_correct:
forall a r (rs1 rs2: regset),
(forall (r': ireg), r' <> r -> rs1 r' = rs2 r') ->
addressing_mentions a r = false ->
eval_addrmode ge a rs1 = eval_addrmode ge a rs2.
Proof.
intros until rs2; intro AG. unfold addressing_mentions, eval_addrmode.
destruct a. intros. destruct (orb_false_elim _ _ H). unfold proj_sumbool in *.
decEq. destruct base; auto. apply AG. destruct (ireg_eq r i); congruence.
decEq. destruct ofs as [[r' sc] | ]; auto. rewrite AG; auto. destruct (ireg_eq r r'); congruence.
Qed.
Lemma mk_smallstore_correct:
forall chunk sto addr r k c rs1 m1 m2,
mk_smallstore sto addr r k = OK c ->
Mem.storev chunk m1 (eval_addrmode ge addr rs1) (rs1 r) = Some m2 ->
(forall c r addr rs m,
exec_instr ge c (sto addr r) rs m = exec_store ge chunk m addr rs r) ->
exists rs2,
exec_straight c rs1 m1 k rs2 m2
/\ forall r, nontemp_preg r = true -> rs2#r = rs1#r.
Proof.
unfold mk_smallstore; intros.
remember (low_ireg r) as low. destruct low.
(* low reg *)
monadInv H. econstructor; split. apply exec_straight_one. rewrite H1.
unfold exec_store. rewrite H0. eauto. auto.
intros. SOther.
(* high reg *)
remember (addressing_mentions addr ECX) as mentions. destruct mentions; monadInv H.
(* ECX is mentioned. *)
assert (r <> ECX). red; intros; subst r; discriminate.
set (rs2 := nextinstr (rs1#ECX <- (eval_addrmode ge addr rs1))).
set (rs3 := nextinstr (rs2#EDX <- (rs1 r))).
econstructor; split.
apply exec_straight_three with rs2 m1 rs3 m1.
simpl. auto.
simpl. replace (rs2 r) with (rs1 r). auto. symmetry. unfold rs2. repeat SRes.
rewrite H1. unfold exec_store. simpl. rewrite Int.add_zero.
change (rs3 EDX) with (rs1 r).
change (rs3 ECX) with (eval_addrmode ge addr rs1).
replace (Val.add (eval_addrmode ge addr rs1) (Vint Int.zero))
with (eval_addrmode ge addr rs1).
rewrite H0. eauto.
destruct (eval_addrmode ge addr rs1); simpl in H0; try discriminate.
simpl. rewrite Int.add_zero; auto.
auto. auto. auto.
intros. repeat SOther. unfold rs3. repeat SOther. unfold rs2. repeat SOther.
(* ECX is not mentioned *)
set (rs2 := nextinstr (rs1#ECX <- (rs1 r))).
econstructor; split.
apply exec_straight_two with rs2 m1.
simpl. auto.
rewrite H1. unfold exec_store.
rewrite (addressing_mentions_correct addr ECX rs2 rs1); auto.
change (rs2 ECX) with (rs1 r). rewrite H0. eauto.
intros. unfold rs2. rewrite nextinstr_inv; auto with ppcgen. apply Pregmap.gso; auto with ppcgen.
auto. auto.
intros. rewrite dec_eq_false. repeat SOther. unfold rs2. repeat SOther. congruence.
Qed.
(** Accessing slots in the stack frame *)
Lemma loadind_correct:
forall (base: ireg) ofs ty dst k (rs: regset) c m v,
loadind base ofs ty dst k = OK c ->
Mem.loadv (chunk_of_type ty) m (Val.add rs#base (Vint ofs)) = Some v ->
exists rs',
exec_straight c rs m k rs' m
/\ rs'#(preg_of dst) = v
/\ forall r, important_preg r = true -> r <> preg_of dst -> rs'#r = rs#r.
Proof.
unfold loadind; intros.
set (addr := Addrmode (Some base) None (inl (ident * int) ofs)) in *.
assert (eval_addrmode ge addr rs = Val.add rs#base (Vint ofs)).
unfold addr. simpl. rewrite Int.add_commut; rewrite Int.add_zero; auto.
destruct ty; simpl in H0.
(* int *)
monadInv H.
rewrite (ireg_of_eq _ _ EQ). econstructor.
split. apply exec_straight_one. simpl. unfold exec_load. rewrite H1. rewrite H0.
eauto. auto.
split. repeat SRes.
intros. rewrite nextinstr_nf_inv1; auto. SOther.
(* float *)
exists (nextinstr_nf (rs#(preg_of dst) <- v)).
split. destruct (preg_of dst); inv H; apply exec_straight_one; simpl; auto.
unfold exec_load. rewrite H1; rewrite H0; auto.
unfold exec_load. rewrite H1; rewrite H0; auto.
split. rewrite nextinstr_nf_inv1. SRes. apply preg_of_important.
intros. rewrite nextinstr_nf_inv1; auto. SOther.
Qed.
Lemma storeind_correct:
forall (base: ireg) ofs ty src k (rs: regset) c m m',
storeind src base ofs ty k = OK c ->
Mem.storev (chunk_of_type ty) m (Val.add rs#base (Vint ofs)) (rs#(preg_of src)) = Some m' ->
exists rs',
exec_straight c rs m k rs' m'
/\ forall r, important_preg r = true -> r <> ST0 -> rs'#r = rs#r.
Proof.
unfold storeind; intros.
set (addr := Addrmode (Some base) None (inl (ident * int) ofs)) in *.
assert (eval_addrmode ge addr rs = Val.add rs#base (Vint ofs)).
unfold addr. simpl. rewrite Int.add_commut; rewrite Int.add_zero; auto.
destruct ty; simpl in H0.
(* int *)
monadInv H.
rewrite (ireg_of_eq _ _ EQ) in H0. econstructor.
split. apply exec_straight_one. simpl. unfold exec_store. rewrite H1. rewrite H0.
eauto. auto.
intros. apply nextinstr_nf_inv1; auto.
(* float *)
destruct (preg_of src); inv H.
econstructor; split. apply exec_straight_one.
simpl. unfold exec_store. rewrite H1; rewrite H0. eauto. auto.
intros. apply nextinstr_nf_inv1; auto.
econstructor; split. apply exec_straight_one.
simpl. unfold exec_store. rewrite H1; rewrite H0. eauto. auto.
intros. rewrite nextinstr_nf_inv1; auto. rewrite dec_eq_true. apply Pregmap.gso; auto.
Qed.
(** Translation of addressing modes *)
Lemma transl_addressing_mode_correct:
forall addr args am (rs: regset) v,
transl_addressing addr args = OK am ->
eval_addressing ge (rs ESP) addr (List.map rs (List.map preg_of args)) = Some v ->
Val.lessdef v (eval_addrmode ge am rs).
Proof.
assert (A: forall n, Int.add Int.zero n = n).
intros. rewrite Int.add_commut. apply Int.add_zero.
assert (B: forall n i, (if Int.eq i Int.one then Vint n else Vint (Int.mul n i)) = Vint (Int.mul n i)).
intros. predSpec Int.eq Int.eq_spec i Int.one.
subst i. rewrite Int.mul_one. auto. auto.
assert (C: forall v i,
Val.lessdef (Val.mul v (Vint i))
(if Int.eq i Int.one then v else Val.mul v (Vint i))).
intros. predSpec Int.eq Int.eq_spec i Int.one.
subst i. destruct v; simpl; auto. rewrite Int.mul_one; auto.
destruct v; simpl; auto.
unfold transl_addressing; intros.
destruct addr; repeat (destruct args; try discriminate); simpl in H0; inv H0.
(* indexed *)
monadInv H. rewrite (ireg_of_eq _ _ EQ). simpl. rewrite A; auto.
(* indexed2 *)
monadInv H. rewrite (ireg_of_eq _ _ EQ); rewrite (ireg_of_eq _ _ EQ1). simpl.
rewrite Val.add_assoc; auto.
(* scaled *)
monadInv H. rewrite (ireg_of_eq _ _ EQ). unfold eval_addrmode.
rewrite Val.add_permut. simpl. rewrite A. apply Val.add_lessdef; auto.
(* indexed2scaled *)
monadInv H. rewrite (ireg_of_eq _ _ EQ); rewrite (ireg_of_eq _ _ EQ1); simpl.
apply Val.add_lessdef; auto. apply Val.add_lessdef; auto.
(* global *)
inv H. simpl. unfold symbol_address, symbol_offset.
destruct (Genv.find_symbol ge i); simpl; auto. repeat rewrite Int.add_zero. auto.
(* based *)
monadInv H. rewrite (ireg_of_eq _ _ EQ). simpl.
unfold symbol_address, symbol_offset. destruct (Genv.find_symbol ge i); simpl; auto.
rewrite Int.add_zero. rewrite Val.add_commut. auto.
(* basedscaled *)
monadInv H. rewrite (ireg_of_eq _ _ EQ). unfold eval_addrmode.
rewrite (Val.add_commut Vzero). rewrite Val.add_assoc. rewrite Val.add_permut.
apply Val.add_lessdef; auto. destruct (rs x); simpl; auto. rewrite B. simpl.
rewrite Int.add_zero. auto.
(* instack *)
inv H; simpl. rewrite A; auto.
Qed.
(** Processor conditions and comparisons *)
Lemma compare_ints_spec:
forall rs v1 v2 m,
let rs' := nextinstr (compare_ints v1 v2 rs m) in
rs'#ZF = Val.cmpu (Mem.valid_pointer m) Ceq v1 v2
/\ rs'#CF = Val.cmpu (Mem.valid_pointer m) Clt v1 v2
/\ rs'#SOF = Val.cmp Clt v1 v2
/\ (forall r, nontemp_preg r = true -> rs'#r = rs#r).
Proof.
intros. unfold rs'; unfold compare_ints.
split. auto.
split. auto.
split. auto.
intros. repeat SOther.
Qed.
Lemma int_signed_eq:
forall x y, Int.eq x y = zeq (Int.signed x) (Int.signed y).
Proof.
intros. unfold Int.eq. unfold proj_sumbool.
destruct (zeq (Int.unsigned x) (Int.unsigned y));
destruct (zeq (Int.signed x) (Int.signed y)); auto.
elim n. unfold Int.signed. rewrite e; auto.
elim n. apply Int.eqm_small_eq; auto with ints.
eapply Int.eqm_trans. apply Int.eqm_sym. apply Int.eqm_signed_unsigned.
rewrite e. apply Int.eqm_signed_unsigned.
Qed.
Lemma int_not_lt:
forall x y, negb (Int.lt y x) = (Int.lt x y || Int.eq x y).
Proof.
intros. unfold Int.lt. rewrite int_signed_eq. unfold proj_sumbool.
destruct (zlt (Int.signed y) (Int.signed x)).
rewrite zlt_false. rewrite zeq_false. auto. omega. omega.
destruct (zeq (Int.signed x) (Int.signed y)).
rewrite zlt_false. auto. omega.
rewrite zlt_true. auto. omega.
Qed.
Lemma int_lt_not:
forall x y, Int.lt y x = negb (Int.lt x y) && negb (Int.eq x y).
Proof.
intros. rewrite <- negb_orb. rewrite <- int_not_lt. rewrite negb_involutive. auto.
Qed.
Lemma int_not_ltu:
forall x y, negb (Int.ltu y x) = (Int.ltu x y || Int.eq x y).
Proof.
intros. unfold Int.ltu, Int.eq.
destruct (zlt (Int.unsigned y) (Int.unsigned x)).
rewrite zlt_false. rewrite zeq_false. auto. omega. omega.
destruct (zeq (Int.unsigned x) (Int.unsigned y)).
rewrite zlt_false. auto. omega.
rewrite zlt_true. auto. omega.
Qed.
Lemma int_ltu_not:
forall x y, Int.ltu y x = negb (Int.ltu x y) && negb (Int.eq x y).
Proof.
intros. rewrite <- negb_orb. rewrite <- int_not_ltu. rewrite negb_involutive. auto.
Qed.
Lemma testcond_for_signed_comparison_correct:
forall c v1 v2 rs m b,
Val.cmp_bool c v1 v2 = Some b ->
eval_testcond (testcond_for_signed_comparison c)
(nextinstr (compare_ints v1 v2 rs m)) = Some b.
Proof.
intros. generalize (compare_ints_spec rs v1 v2 m).
set (rs' := nextinstr (compare_ints v1 v2 rs m)).
intros [A [B [C D]]].
destruct v1; destruct v2; simpl in H; inv H.
unfold eval_testcond. rewrite A; rewrite B; rewrite C. unfold Val.cmp, Val.cmpu.
destruct c; simpl.
destruct (Int.eq i i0); auto.
destruct (Int.eq i i0); auto.
destruct (Int.lt i i0); auto.
rewrite int_not_lt. destruct (Int.lt i i0); simpl; destruct (Int.eq i i0); auto.
rewrite (int_lt_not i i0). destruct (Int.lt i i0); destruct (Int.eq i i0); reflexivity.
destruct (Int.lt i i0); reflexivity.
Qed.
Lemma testcond_for_unsigned_comparison_correct:
forall c v1 v2 rs m b,
Val.cmpu_bool (Mem.valid_pointer m) c v1 v2 = Some b ->
eval_testcond (testcond_for_unsigned_comparison c)
(nextinstr (compare_ints v1 v2 rs m)) = Some b.
Proof.
intros. generalize (compare_ints_spec rs v1 v2 m).
set (rs' := nextinstr (compare_ints v1 v2 rs m)).
intros [A [B [C D]]].
unfold eval_testcond. rewrite A; rewrite B; rewrite C. unfold Val.cmpu, Val.cmp.
destruct v1; destruct v2; simpl in H; inv H.
(* int int *)
destruct c; simpl; auto.
destruct (Int.eq i i0); reflexivity.
destruct (Int.eq i i0); auto.
destruct (Int.ltu i i0); auto.
rewrite int_not_ltu. destruct (Int.ltu i i0); simpl; destruct (Int.eq i i0); auto.
rewrite (int_ltu_not i i0). destruct (Int.ltu i i0); destruct (Int.eq i i0); reflexivity.
destruct (Int.ltu i i0); reflexivity.
(* int ptr *)
destruct (Int.eq i Int.zero) as []_eqn; try discriminate.
destruct c; simpl in *; inv H1.
rewrite Heqb1; reflexivity.
rewrite Heqb1; reflexivity.
(* ptr int *)
destruct (Int.eq i0 Int.zero) as []_eqn; try discriminate.
destruct c; simpl in *; inv H1.
rewrite Heqb1; reflexivity.
rewrite Heqb1; reflexivity.
(* ptr ptr *)
simpl.
destruct (Mem.valid_pointer m b0 (Int.unsigned i) &&
Mem.valid_pointer m b1 (Int.unsigned i0)); try discriminate.
destruct (zeq b0 b1).
inversion H1.
destruct c; simpl; auto.
destruct (Int.eq i i0); reflexivity.
destruct (Int.eq i i0); auto.
destruct (Int.ltu i i0); auto.
rewrite int_not_ltu. destruct (Int.ltu i i0); simpl; destruct (Int.eq i i0); auto.
rewrite (int_ltu_not i i0). destruct (Int.ltu i i0); destruct (Int.eq i i0); reflexivity.
destruct (Int.ltu i i0); reflexivity.
destruct c; simpl in *; inv H1; reflexivity.
Qed.
Lemma compare_floats_spec:
forall rs n1 n2,
let rs' := nextinstr (compare_floats (Vfloat n1) (Vfloat n2) rs) in
rs'#ZF = Val.of_bool (negb (Float.cmp Cne n1 n2))
/\ rs'#CF = Val.of_bool (negb (Float.cmp Cge n1 n2))
/\ rs'#PF = Val.of_bool (negb (Float.cmp Ceq n1 n2 || Float.cmp Clt n1 n2 || Float.cmp Cgt n1 n2))
/\ (forall r, nontemp_preg r = true -> rs'#r = rs#r).
Proof.
intros. unfold rs'; unfold compare_floats.
split. auto.
split. auto.
split. auto.
intros. repeat SOther.
Qed.
Definition eval_extcond (xc: extcond) (rs: regset) : option bool :=
match xc with
| Cond_base c =>
eval_testcond c rs
| Cond_and c1 c2 =>
match eval_testcond c1 rs, eval_testcond c2 rs with
| Some b1, Some b2 => Some (b1 && b2)
| _, _ => None
end
| Cond_or c1 c2 =>
match eval_testcond c1 rs, eval_testcond c2 rs with
| Some b1, Some b2 => Some (b1 || b2)
| _, _ => None
end
end.
(*******
Definition swap_floats {A: Type} (c: comparison) (n1 n2: A) : A :=
match c with
| Clt | Cle => n2
| Ceq | Cne | Cgt | Cge => n1
end.
Lemma testcond_for_float_comparison_correct:
forall c v1 v2 rs b,
Val.cmpf_bool c v1 v2 = Some b ->
eval_extcond (testcond_for_condition (Ccompf c))
(nextinstr (compare_floats (swap_floats c v1 v2)
(swap_floats c v2 v1) rs)) = Some b.
Proof.
intros. destruct v1; destruct v2; simpl in H; inv H.
assert (SWP: forall f1 f2, Vfloat (swap_floats c f1 f2) = swap_floats c (Vfloat f1) (Vfloat f2)).
destruct c; auto.
generalize (compare_floats_spec rs (swap_floats c f f0) (swap_floats c f0 f)).
repeat rewrite <- SWP.
set (rs' := nextinstr (compare_floats (Vfloat (swap_floats c f f0))
(Vfloat (swap_floats c f0 f)) rs)).
intros [A [B [C D]]].
unfold eval_extcond, eval_testcond. rewrite A; rewrite B; rewrite C.
destruct c; simpl.
(* eq *)
rewrite Float.cmp_ne_eq.
destruct (Float.cmp Ceq f f0). auto.
simpl. destruct (Float.cmp Clt f f0 || Float.cmp Cgt f f0); auto.
(* ne *)
rewrite Float.cmp_ne_eq.
destruct (Float.cmp Ceq f f0). auto.
simpl. destruct (Float.cmp Clt f f0 || Float.cmp Cgt f f0); auto.
(* lt *)
rewrite <- (Float.cmp_swap Cge f f0).
rewrite <- (Float.cmp_swap Cne f f0).
simpl.
rewrite Float.cmp_ne_eq. rewrite Float.cmp_le_lt_eq.
caseEq (Float.cmp Clt f f0); intros; simpl.
caseEq (Float.cmp Ceq f f0); intros; simpl.
elimtype False. eapply Float.cmp_lt_eq_false; eauto.
auto.
destruct (Float.cmp Ceq f f0); auto.
(* le *)
rewrite <- (Float.cmp_swap Cge f f0). simpl.
destruct (Float.cmp Cle f f0); auto.
(* gt *)
rewrite Float.cmp_ne_eq. rewrite Float.cmp_ge_gt_eq.
caseEq (Float.cmp Cgt f f0); intros; simpl.
caseEq (Float.cmp Ceq f f0); intros; simpl.
elimtype False. eapply Float.cmp_gt_eq_false; eauto.
auto.
destruct (Float.cmp Ceq f f0); auto.
(* ge *)
destruct (Float.cmp Cge f f0); auto.
Qed.
Lemma testcond_for_neg_float_comparison_correct:
forall c n1 n2 rs,
eval_extcond (testcond_for_condition (Cnotcompf c))
(nextinstr (compare_floats (Vfloat (swap_floats c n1 n2))
(Vfloat (swap_floats c n2 n1)) rs)) =
Some(negb(Float.cmp c n1 n2)).
Proof.
intros.
generalize (compare_floats_spec rs (swap_floats c n1 n2) (swap_floats c n2 n1)).
set (rs' := nextinstr (compare_floats (Vfloat (swap_floats c n1 n2))
(Vfloat (swap_floats c n2 n1)) rs)).
intros [A [B [C D]]].
unfold eval_extcond, eval_testcond. rewrite A; rewrite B; rewrite C.
destruct c; simpl.
(* eq *)
rewrite Float.cmp_ne_eq.
caseEq (Float.cmp Ceq n1 n2); intros.
auto.
simpl. destruct (Float.cmp Clt n1 n2 || Float.cmp Cgt n1 n2); auto.
(* ne *)
rewrite Float.cmp_ne_eq.
caseEq (Float.cmp Ceq n1 n2); intros.
auto.
simpl. destruct (Float.cmp Clt n1 n2 || Float.cmp Cgt n1 n2); auto.
(* lt *)
rewrite <- (Float.cmp_swap Cge n1 n2).
rewrite <- (Float.cmp_swap Cne n1 n2).
simpl.
rewrite Float.cmp_ne_eq. rewrite Float.cmp_le_lt_eq.
caseEq (Float.cmp Clt n1 n2); intros; simpl.
caseEq (Float.cmp Ceq n1 n2); intros; simpl.
elimtype False. eapply Float.cmp_lt_eq_false; eauto.
auto.
destruct (Float.cmp Ceq n1 n2); auto.
(* le *)
rewrite <- (Float.cmp_swap Cge n1 n2). simpl.
destruct (Float.cmp Cle n1 n2); auto.
(* gt *)
rewrite Float.cmp_ne_eq. rewrite Float.cmp_ge_gt_eq.
caseEq (Float.cmp Cgt n1 n2); intros; simpl.
caseEq (Float.cmp Ceq n1 n2); intros; simpl.
elimtype False. eapply Float.cmp_gt_eq_false; eauto.
auto.
destruct (Float.cmp Ceq n1 n2); auto.
(* ge *)
destruct (Float.cmp Cge n1 n2); auto.
Qed.
***************)
Definition swap_floats {A: Type} (c: comparison) (n1 n2: A) : A :=
match c with
| Clt | Cle => n2
| Ceq | Cne | Cgt | Cge => n1
end.
Lemma testcond_for_float_comparison_correct:
forall c n1 n2 rs,
eval_extcond (testcond_for_condition (Ccompf c))
(nextinstr (compare_floats (Vfloat (swap_floats c n1 n2))
(Vfloat (swap_floats c n2 n1)) rs)) =
Some(Float.cmp c n1 n2).
Proof.
intros.
generalize (compare_floats_spec rs (swap_floats c n1 n2) (swap_floats c n2 n1)).
set (rs' := nextinstr (compare_floats (Vfloat (swap_floats c n1 n2))
(Vfloat (swap_floats c n2 n1)) rs)).
intros [A [B [C D]]].
unfold eval_extcond, eval_testcond. rewrite A; rewrite B; rewrite C.
destruct c; simpl.
(* eq *)
rewrite Float.cmp_ne_eq.
caseEq (Float.cmp Ceq n1 n2); intros.
auto.
simpl. destruct (Float.cmp Clt n1 n2 || Float.cmp Cgt n1 n2); auto.
(* ne *)
rewrite Float.cmp_ne_eq.
caseEq (Float.cmp Ceq n1 n2); intros.
auto.
simpl. destruct (Float.cmp Clt n1 n2 || Float.cmp Cgt n1 n2); auto.
(* lt *)
rewrite <- (Float.cmp_swap Cge n1 n2).
rewrite <- (Float.cmp_swap Cne n1 n2).
simpl.
rewrite Float.cmp_ne_eq. rewrite Float.cmp_le_lt_eq.
caseEq (Float.cmp Clt n1 n2); intros; simpl.
caseEq (Float.cmp Ceq n1 n2); intros; simpl.
elimtype False. eapply Float.cmp_lt_eq_false; eauto.
auto.
destruct (Float.cmp Ceq n1 n2); auto.
(* le *)
rewrite <- (Float.cmp_swap Cge n1 n2). simpl.
destruct (Float.cmp Cle n1 n2); auto.
(* gt *)
rewrite Float.cmp_ne_eq. rewrite Float.cmp_ge_gt_eq.
caseEq (Float.cmp Cgt n1 n2); intros; simpl.
caseEq (Float.cmp Ceq n1 n2); intros; simpl.
elimtype False. eapply Float.cmp_gt_eq_false; eauto.
auto.
destruct (Float.cmp Ceq n1 n2); auto.
(* ge *)
destruct (Float.cmp Cge n1 n2); auto.
Qed.
Lemma testcond_for_neg_float_comparison_correct:
forall c n1 n2 rs,
eval_extcond (testcond_for_condition (Cnotcompf c))
(nextinstr (compare_floats (Vfloat (swap_floats c n1 n2))
(Vfloat (swap_floats c n2 n1)) rs)) =
Some(negb(Float.cmp c n1 n2)).
Proof.
intros.
generalize (compare_floats_spec rs (swap_floats c n1 n2) (swap_floats c n2 n1)).
set (rs' := nextinstr (compare_floats (Vfloat (swap_floats c n1 n2))
(Vfloat (swap_floats c n2 n1)) rs)).
intros [A [B [C D]]].
unfold eval_extcond, eval_testcond. rewrite A; rewrite B; rewrite C.
destruct c; simpl.
(* eq *)
rewrite Float.cmp_ne_eq.
caseEq (Float.cmp Ceq n1 n2); intros.
auto.
simpl. destruct (Float.cmp Clt n1 n2 || Float.cmp Cgt n1 n2); auto.
(* ne *)
rewrite Float.cmp_ne_eq.
caseEq (Float.cmp Ceq n1 n2); intros.
auto.
simpl. destruct (Float.cmp Clt n1 n2 || Float.cmp Cgt n1 n2); auto.
(* lt *)
rewrite <- (Float.cmp_swap Cge n1 n2).
rewrite <- (Float.cmp_swap Cne n1 n2).
simpl.
rewrite Float.cmp_ne_eq. rewrite Float.cmp_le_lt_eq.
caseEq (Float.cmp Clt n1 n2); intros; simpl.
caseEq (Float.cmp Ceq n1 n2); intros; simpl.
elimtype False. eapply Float.cmp_lt_eq_false; eauto.
auto.
destruct (Float.cmp Ceq n1 n2); auto.
(* le *)
rewrite <- (Float.cmp_swap Cge n1 n2). simpl.
destruct (Float.cmp Cle n1 n2); auto.
(* gt *)
rewrite Float.cmp_ne_eq. rewrite Float.cmp_ge_gt_eq.
caseEq (Float.cmp Cgt n1 n2); intros; simpl.
caseEq (Float.cmp Ceq n1 n2); intros; simpl.
elimtype False. eapply Float.cmp_gt_eq_false; eauto.
auto.
destruct (Float.cmp Ceq n1 n2); auto.
(* ge *)
destruct (Float.cmp Cge n1 n2); auto.
Qed.
Remark swap_floats_commut:
forall c x y, swap_floats c (Vfloat x) (Vfloat y) = Vfloat (swap_floats c x y).
Proof.
intros. destruct c; auto.
Qed.
Remark compare_floats_inv:
forall vx vy rs r,
r <> CR ZF -> r <> CR CF -> r <> CR PF -> r <> CR SOF ->
compare_floats vx vy rs r = rs r.
Proof.
intros.
assert (DFL: undef_regs (CR ZF :: CR CF :: CR PF :: CR SOF :: nil) rs r = rs r).
simpl. repeat SOther.
unfold compare_floats; destruct vx; destruct vy; auto. repeat SOther.
Qed.
Lemma transl_cond_correct:
forall cond args k c rs m,
transl_cond cond args k = OK c ->
exists rs',
exec_straight c rs m k rs' m
/\ match eval_condition cond (map rs (map preg_of args)) m with
| None => True
| Some b => eval_extcond (testcond_for_condition cond) rs' = Some b
end
/\ forall r, nontemp_preg r = true -> rs'#r = rs r.
Proof.
unfold transl_cond; intros.
destruct cond; repeat (destruct args; try discriminate); monadInv H.
(* comp *)
simpl. rewrite (ireg_of_eq _ _ EQ). rewrite (ireg_of_eq _ _ EQ1).
econstructor. split. apply exec_straight_one. simpl. eauto. auto.
split. destruct (Val.cmp_bool c0 (rs x) (rs x0)) as []_eqn; auto.
eapply testcond_for_signed_comparison_correct; eauto.
intros. unfold compare_ints. repeat SOther.
(* compu *)
simpl. rewrite (ireg_of_eq _ _ EQ). rewrite (ireg_of_eq _ _ EQ1).
econstructor. split. apply exec_straight_one. simpl. eauto. auto.
split. destruct (Val.cmpu_bool (Mem.valid_pointer m) c0 (rs x) (rs x0)) as []_eqn; auto.
eapply testcond_for_unsigned_comparison_correct; eauto.
intros. unfold compare_ints. repeat SOther.
(* compimm *)
simpl. rewrite (ireg_of_eq _ _ EQ). destruct (Int.eq_dec i Int.zero).
econstructor; split. apply exec_straight_one. simpl; eauto. auto.
split. destruct (rs x); simpl; auto. subst. rewrite Int.and_idem.
eapply testcond_for_signed_comparison_correct; eauto.
intros. unfold compare_ints. repeat SOther.
econstructor; split. apply exec_straight_one. simpl; eauto. auto.
split. destruct (Val.cmp_bool c0 (rs x) (Vint i)) as []_eqn; auto.
eapply testcond_for_signed_comparison_correct; eauto.
intros. unfold compare_ints. repeat SOther.
(* compuimm *)
simpl. rewrite (ireg_of_eq _ _ EQ).
econstructor. split. apply exec_straight_one. simpl. eauto. auto.
split. destruct (Val.cmpu_bool (Mem.valid_pointer m) c0 (rs x) (Vint i)) as []_eqn; auto.
eapply testcond_for_unsigned_comparison_correct; eauto.
intros. unfold compare_ints. repeat SOther.
(* compf *)
simpl. rewrite (freg_of_eq _ _ EQ). rewrite (freg_of_eq _ _ EQ1).
exists (nextinstr (compare_floats (swap_floats c0 (rs x) (rs x0)) (swap_floats c0 (rs x0) (rs x)) rs)).
split. apply exec_straight_one.
destruct c0; simpl; auto.
unfold nextinstr. rewrite Pregmap.gss. rewrite compare_floats_inv; auto with ppcgen.
split. destruct (rs x); destruct (rs x0); simpl; auto.
repeat rewrite swap_floats_commut. apply testcond_for_float_comparison_correct.
intros. SOther. apply compare_floats_inv; auto with ppcgen.
(* notcompf *)
simpl. rewrite (freg_of_eq _ _ EQ). rewrite (freg_of_eq _ _ EQ1).
exists (nextinstr (compare_floats (swap_floats c0 (rs x) (rs x0)) (swap_floats c0 (rs x0) (rs x)) rs)).
split. apply exec_straight_one.
destruct c0; simpl; auto.
unfold nextinstr. rewrite Pregmap.gss. rewrite compare_floats_inv; auto with ppcgen.
split. destruct (rs x); destruct (rs x0); simpl; auto.
repeat rewrite swap_floats_commut. apply testcond_for_neg_float_comparison_correct.
intros. SOther. apply compare_floats_inv; auto with ppcgen.
(* maskzero *)
simpl. rewrite (ireg_of_eq _ _ EQ).
econstructor. split. apply exec_straight_one. simpl; eauto. auto.
split. destruct (rs x); simpl; auto.
generalize (compare_ints_spec rs (Vint (Int.and i0 i)) Vzero m).
intros [A B]. rewrite A. unfold Val.cmpu; simpl. destruct (Int.eq (Int.and i0 i) Int.zero); auto.
intros. unfold compare_ints. repeat SOther.
(* masknotzero *)
simpl. rewrite (ireg_of_eq _ _ EQ).
econstructor. split. apply exec_straight_one. simpl; eauto. auto.
split. destruct (rs x); simpl; auto.
generalize (compare_ints_spec rs (Vint (Int.and i0 i)) Vzero m).
intros [A B]. rewrite A. unfold Val.cmpu; simpl. destruct (Int.eq (Int.and i0 i) Int.zero); auto.
intros. unfold compare_ints. repeat SOther.
Qed.
Remark eval_testcond_nextinstr:
forall c rs, eval_testcond c (nextinstr rs) = eval_testcond c rs.
Proof.
intros. unfold eval_testcond. repeat rewrite nextinstr_inv; auto with ppcgen.
Qed.
Remark eval_testcond_set_ireg:
forall c rs r v, eval_testcond c (rs#(IR r) <- v) = eval_testcond c rs.
Proof.
intros. unfold eval_testcond. repeat rewrite Pregmap.gso; auto with ppcgen.
Qed.
Lemma mk_setcc_correct:
forall cond rd k rs1 m,
exists rs2,
exec_straight (mk_setcc cond rd k) rs1 m k rs2 m
/\ rs2#rd = Val.of_optbool(eval_extcond cond rs1)
/\ forall r, nontemp_preg r = true -> r <> rd -> rs2#r = rs1#r.
Proof.
intros. destruct cond; simpl in *.
(* base *)
econstructor; split.
apply exec_straight_one. simpl; eauto. auto.
split. SRes. SRes.
intros; repeat SOther.
(* or *)
assert (Val.of_optbool
match eval_testcond c1 rs1 with
| Some b1 =>
match eval_testcond c2 rs1 with
| Some b2 => Some (b1 || b2)
| None => None
end
| None => None
end =
Val.or (Val.of_optbool (eval_testcond c1 rs1)) (Val.of_optbool (eval_testcond c2 rs1))).
destruct (eval_testcond c1 rs1). destruct (eval_testcond c2 rs1).
destruct b; destruct b0; auto.
destruct b; auto.
auto.
rewrite H; clear H.
destruct (ireg_eq rd EDX).
subst rd. econstructor; split.
eapply exec_straight_three.
simpl; eauto.
simpl. rewrite eval_testcond_nextinstr. repeat rewrite eval_testcond_set_ireg. eauto.
simpl; eauto.
auto. auto. auto.
split. SRes.
intros. repeat SOther.
econstructor; split.
eapply exec_straight_three.
simpl; eauto.
simpl. rewrite eval_testcond_nextinstr. repeat rewrite eval_testcond_set_ireg. eauto.
simpl. eauto.
auto. auto. auto.
split. repeat SRes. rewrite Val.or_commut. decEq; repeat SRes.
intros. repeat SOther.
(* and *)
assert (Val.of_optbool
match eval_testcond c1 rs1 with
| Some b1 =>
match eval_testcond c2 rs1 with
| Some b2 => Some (b1 && b2)
| None => None
end
| None => None
end =
Val.and (Val.of_optbool (eval_testcond c1 rs1)) (Val.of_optbool (eval_testcond c2 rs1))).
destruct (eval_testcond c1 rs1). destruct (eval_testcond c2 rs1).
destruct b; destruct b0; auto.
destruct b; auto.
auto.
rewrite H; clear H.
destruct (ireg_eq rd EDX).
subst rd. econstructor; split.
eapply exec_straight_three.
simpl; eauto.
simpl. rewrite eval_testcond_nextinstr. repeat rewrite eval_testcond_set_ireg. eauto.
simpl; eauto.
auto. auto. auto.
split. SRes.
intros. repeat SOther.
econstructor; split.
eapply exec_straight_three.
simpl; eauto.
simpl. rewrite eval_testcond_nextinstr. repeat rewrite eval_testcond_set_ireg. eauto.
simpl. eauto.
auto. auto. auto.
split. repeat SRes. rewrite Val.and_commut. decEq; repeat SRes.
intros. repeat SOther.
Qed.
(** Translation of arithmetic operations. *)
Ltac ArgsInv :=
match goal with
| [ H: Error _ = OK _ |- _ ] => discriminate
| [ H: match ?args with nil => _ | _ :: _ => _ end = OK _ |- _ ] => destruct args; ArgsInv
| [ H: bind _ _ = OK _ |- _ ] => monadInv H; ArgsInv
| [ H: assertion _ = OK _ |- _ ] => monadInv H; subst; ArgsInv
| [ H: ireg_of _ = OK _ |- _ ] => simpl in *; rewrite (ireg_of_eq _ _ H) in *; clear H; ArgsInv
| [ H: freg_of _ = OK _ |- _ ] => simpl in *; rewrite (freg_of_eq _ _ H) in *; clear H; ArgsInv
| _ => idtac
end.
Ltac TranslOp :=
econstructor; split;
[ apply exec_straight_one; [ simpl; eauto | auto ]
| split; [ repeat SRes | intros; repeat SOther ]].
Lemma transl_op_correct:
forall op args res k c (rs: regset) m v,
transl_op op args res k = OK c ->
eval_operation ge (rs#ESP) op (map rs (map preg_of args)) m = Some v ->
exists rs',
exec_straight c rs m k rs' m
/\ Val.lessdef v rs'#(preg_of res)
/\ forall r,
match op with Omove => important_preg r = true /\ r <> ST0 | _ => nontemp_preg r = true end ->
r <> preg_of res -> rs' r = rs r.
Proof.
intros until v; intros TR EV.
assert (SAME:
(exists rs',
exec_straight c rs m k rs' m
/\ rs'#(preg_of res) = v
/\ forall r,
match op with Omove => important_preg r = true /\ r <> ST0 | _ => nontemp_preg r = true end ->
r <> preg_of res -> rs' r = rs r) ->
exists rs',
exec_straight c rs m k rs' m
/\ Val.lessdef v rs'#(preg_of res)
/\ forall r,
match op with Omove => important_preg r = true /\ r <> ST0 | _ => nontemp_preg r = true end ->
r <> preg_of res -> rs' r = rs r).
intros [rs' [A [B C]]]. subst v. exists rs'; auto.
destruct op; simpl in TR; ArgsInv; simpl in EV; try (inv EV); try (apply SAME; TranslOp; fail).
(* move *)
exploit mk_mov_correct; eauto. intros [rs2 [A [B C]]].
apply SAME. exists rs2. split. eauto. split. simpl. auto. intros. destruct H; auto.
(* intconst *)
apply SAME. destruct (Int.eq_dec i Int.zero). subst i. TranslOp. TranslOp.
(* floatconst *)
apply SAME. destruct (Float.eq_dec f Float.zero). subst f. TranslOp. TranslOp.
(* cast8signed *)
apply SAME. eapply mk_intconv_correct; eauto.
(* cast8unsigned *)
apply SAME. eapply mk_intconv_correct; eauto.
(* cast16signed *)
apply SAME. eapply mk_intconv_correct; eauto.
(* cast16unsigned *)
apply SAME. eapply mk_intconv_correct; eauto.
(* div *)
apply SAME.
specialize (divs_mods_exist (rs x0) (rs x1)). rewrite H0.
destruct (Val.mods (rs x0) (rs x1)) as [vr|]_eqn; intros; try contradiction.
eapply mk_div_correct with (dsem := Val.divs) (msem := Val.mods); eauto.
(* divu *)
apply SAME.
specialize (divu_modu_exist (rs x0) (rs x1)). rewrite H0.
destruct (Val.modu (rs x0) (rs x1)) as [vr|]_eqn; intros; try contradiction.
eapply mk_div_correct with (dsem := Val.divu) (msem := Val.modu); eauto.
(* mod *)
apply SAME.
specialize (divs_mods_exist (rs x0) (rs x1)). rewrite H0.
destruct (Val.divs (rs x0) (rs x1)) as [vq|]_eqn; intros; try contradiction.
eapply mk_mod_correct with (dsem := Val.divs) (msem := Val.mods); eauto.
(* modu *)
apply SAME.
specialize (divu_modu_exist (rs x0) (rs x1)). rewrite H0.
destruct (Val.divu (rs x0) (rs x1)) as [vq|]_eqn; intros; try contradiction.
eapply mk_mod_correct with (dsem := Val.divu) (msem := Val.modu); eauto.
(* shl *)
apply SAME. eapply mk_shift_correct; eauto.
(* shr *)
apply SAME. eapply mk_shift_correct; eauto.
(* shrximm *)
apply SAME. eapply mk_shrximm_correct; eauto.
(* shru *)
apply SAME. eapply mk_shift_correct; eauto.
(* lea *)
exploit transl_addressing_mode_correct; eauto. intros EA.
TranslOp. rewrite nextinstr_inv; auto with ppcgen. rewrite Pregmap.gss; auto.
(* intoffloat *)
apply SAME. TranslOp. rewrite H0; auto.
(* floatofint *)
apply SAME. TranslOp. rewrite H0; auto.
(* condition *)
exploit transl_cond_correct; eauto. intros [rs2 [P [Q R]]].
exploit mk_setcc_correct; eauto. intros [rs3 [S [T U]]].
exists rs3.
split. eapply exec_straight_trans. eexact P. eexact S.
split. rewrite T. destruct (eval_condition c0 rs ## (preg_of ## args) m).
rewrite Q. auto.
simpl; auto.
intros. transitivity (rs2 r); auto.
Qed.
(** Translation of memory loads. *)
Lemma transl_load_correct:
forall chunk addr args dest k c (rs: regset) m a v,
transl_load chunk addr args dest k = OK c ->
eval_addressing ge (rs#ESP) addr (map rs (map preg_of args)) = Some a ->
Mem.loadv chunk m a = Some v ->
exists rs',
exec_straight c rs m k rs' m
/\ rs'#(preg_of dest) = v
/\ forall r, nontemp_preg r = true -> r <> preg_of dest -> rs'#r = rs#r.
Proof.
unfold transl_load; intros. monadInv H.
exploit transl_addressing_mode_correct; eauto. intro EA.
assert (EA': eval_addrmode ge x rs = a). destruct a; simpl in H1; try discriminate; inv EA; auto.
set (rs2 := nextinstr_nf (rs#(preg_of dest) <- v)).
assert (exec_load ge chunk m x rs (preg_of dest) = Next rs2 m).
unfold exec_load. rewrite EA'. rewrite H1. auto.
assert (rs2 PC = Val.add (rs PC) Vone).
transitivity (Val.add ((rs#(preg_of dest) <- v) PC) Vone).
auto. decEq. apply Pregmap.gso; auto with ppcgen.
exists rs2. split.
destruct chunk; ArgsInv; apply exec_straight_one; simpl; auto.
split. unfold rs2. rewrite nextinstr_nf_inv1. SRes. apply preg_of_important.
intros. unfold rs2. repeat SOther.
Qed.
Lemma transl_store_correct:
forall chunk addr args src k c (rs: regset) m a m',
transl_store chunk addr args src k = OK c ->
eval_addressing ge (rs#ESP) addr (map rs (map preg_of args)) = Some a ->
Mem.storev chunk m a (rs (preg_of src)) = Some m' ->
exists rs',
exec_straight c rs m k rs' m'
/\ forall r, nontemp_preg r = true -> rs'#r = rs#r.
Proof.
unfold transl_store; intros. monadInv H.
exploit transl_addressing_mode_correct; eauto. intro EA.
assert (EA': eval_addrmode ge x rs = a). destruct a; simpl in H1; try discriminate; inv EA; auto.
rewrite <- EA' in H1. destruct chunk; ArgsInv.
(* int8signed *)
eapply mk_smallstore_correct; eauto.
intros. simpl. unfold exec_store.
destruct (eval_addrmode ge addr0 rs0); simpl; auto. rewrite Mem.store_signed_unsigned_8; auto.
(* int8unsigned *)
eapply mk_smallstore_correct; eauto.
(* int16signed *)
econstructor; split.
apply exec_straight_one. simpl. unfold exec_store.
replace (Mem.storev Mint16unsigned m (eval_addrmode ge x rs) (rs x0))
with (Mem.storev Mint16signed m (eval_addrmode ge x rs) (rs x0)).
rewrite H1. eauto.
destruct (eval_addrmode ge x rs); simpl; auto. rewrite Mem.store_signed_unsigned_16; auto.
auto.
intros. SOther.
(* int16unsigned *)
econstructor; split.
apply exec_straight_one. simpl. unfold exec_store. rewrite H1. eauto. auto.
intros. SOther.
(* int32 *)
econstructor; split.
apply exec_straight_one. simpl. unfold exec_store. rewrite H1. eauto. auto.
intros. SOther.
(* float32 *)
econstructor; split.
apply exec_straight_one. simpl. unfold exec_store. rewrite H1. eauto. auto.
intros. SOther.
(* float64 *)
econstructor; split.
apply exec_straight_one. simpl. unfold exec_store. rewrite H1. eauto. auto.
intros. SOther.
Qed.
End STRAIGHTLINE.
|