summaryrefslogtreecommitdiff
path: root/cparser/validator/Validator_safe.v
blob: 119f73372ad463fd86f6503312dc46f96161813a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
(* *********************************************************************)
(*                                                                     *)
(*              The Compcert verified compiler                         *)
(*                                                                     *)
(*          Jacques-Henri Jourdan, INRIA Paris-Rocquencourt            *)
(*                                                                     *)
(*  Copyright Institut National de Recherche en Informatique et en     *)
(*  Automatique.  All rights reserved.  This file is distributed       *)
(*  under the terms of the GNU General Public License as published by  *)
(*  the Free Software Foundation, either version 2 of the License, or  *)
(*  (at your option) any later version.  This file is also distributed *)
(*  under the terms of the INRIA Non-Commercial License Agreement.     *)
(*                                                                     *)
(* *********************************************************************)

Require Automaton.
Require Import Alphabet.
Require Import List.
Require Import Syntax.

Module Make(Import A:Automaton.T).

(** The singleton predicate for states **)
Definition singleton_state_pred (state:state) :=
  (fun state' => match compare state state' with Eq => true |_ => false end).

(** [past_state_of_non_init_state], extended for all states. **)
Definition past_state_of_state (state:state) :=
  match state with
    | Init _ => []
    | Ninit nis => past_state_of_non_init_state nis
  end.

(** Concatenations of last and past **)
Definition head_symbs_of_state (state:state) :=
  match state with
    | Init _ => []
    | Ninit s =>
      last_symb_of_non_init_state s::past_symb_of_non_init_state s
  end.
Definition head_states_of_state (state:state) :=
  singleton_state_pred state::past_state_of_state state.

(** * Validation for correctness **)

(** Prefix predicate between two lists of symbols. **)
Inductive prefix: list symbol -> list symbol -> Prop :=
  | prefix_nil: forall l, prefix [] l
  | prefix_cons: forall l1 l2 x, prefix l1 l2 -> prefix (x::l1) (x::l2).

Fixpoint is_prefix (l1 l2:list symbol):=
  match l1, l2 with
    | [], _ => true
    | t1::q1, t2::q2 => (compare_eqb t1 t2 && is_prefix q1 q2)%bool
    | _::_, [] => false
  end.

Property is_prefix_correct (l1 l2:list symbol):
  is_prefix l1 l2 = true -> prefix l1 l2.
Proof.
revert l2.
induction l1; intros.
apply prefix_nil.
unfold is_prefix in H.
destruct l2; intuition; try discriminate.
rewrite Bool.andb_true_iff in H.
destruct H.
rewrite compare_eqb_iff in H.
destruct H.
apply prefix_cons.
apply IHl1; intuition.
Qed.

(** If we shift, then the known top symbols of the destination state is
    a prefix of the known top symbols of the source state, with the new
    symbol added. **)
Definition shift_head_symbs :=
  forall s,
    match action_table s with
      | Lookahead_act awp =>
        forall t, match awp t with
          | Shift_act s2 _ =>
            prefix (past_symb_of_non_init_state s2) (head_symbs_of_state s)
          | _ => True
        end
      | _ => True
    end.

Definition is_shift_head_symbs (_:unit) :=
  forallb (fun s:state =>
    match action_table s with
      | Lookahead_act awp =>
        forallb (fun t =>
          match awp t with
            | Shift_act s2 _ =>
              is_prefix (past_symb_of_non_init_state s2) (head_symbs_of_state s)
            | _ => true
          end)
          all_list
      | _ => true
    end)
    all_list.

Property is_shift_head_symbs_correct:
  is_shift_head_symbs () = true -> shift_head_symbs.
Proof.
unfold is_shift_head_symbs, shift_head_symbs.
intros.
rewrite forallb_forall in H.
specialize (H s (all_list_forall s)).
destruct (action_table s); intuition.
rewrite forallb_forall in H.
specialize (H t (all_list_forall t)).
destruct (l t); intuition.
apply is_prefix_correct; intuition.
Qed.

(** When a goto happens, then the known top symbols of the destination state
    is a prefix of the known top symbols of the source state, with the new
    symbol added. **)
Definition goto_head_symbs :=
  forall s nt,
    match goto_table s nt with
      | Some (exist s2 _) => 
        prefix (past_symb_of_non_init_state s2) (head_symbs_of_state s)
      | None => True
    end.

Definition is_goto_head_symbs (_:unit) :=
  forallb (fun s:state =>
    forallb (fun nt =>
      match goto_table s nt with
        | Some (exist s2 _) =>
          is_prefix (past_symb_of_non_init_state s2) (head_symbs_of_state s)
        | None => true
      end)
      all_list)
    all_list.

Property is_goto_head_symbs_correct:
  is_goto_head_symbs () = true -> goto_head_symbs.
Proof.
unfold is_goto_head_symbs, goto_head_symbs.
intros.
rewrite forallb_forall in H.
specialize (H s (all_list_forall s)).
rewrite forallb_forall in H.
specialize (H nt (all_list_forall nt)).
destruct (goto_table s nt); intuition.
destruct s0.
apply is_prefix_correct; intuition.
Qed.

(** We have to say the same kind of checks for the assumptions about the
    states stack. However, theses assumptions are predicates. So we define
    a notion of "prefix" over predicates lists, that means, basically, that
    an assumption entails another **)
Inductive prefix_pred: list (state->bool) -> list (state->bool) -> Prop :=
  | prefix_pred_nil: forall l, prefix_pred [] l
  | prefix_pred_cons: forall l1 l2 f1 f2,
     (forall x, implb (f2 x) (f1 x) = true) ->
     prefix_pred l1 l2 -> prefix_pred (f1::l1) (f2::l2).

Fixpoint is_prefix_pred (l1 l2:list (state->bool)) :=
  match l1, l2 with
    | [], _ => true
    | f1::q1, f2::q2 =>
      (forallb (fun x => implb (f2 x) (f1 x)) all_list
        && is_prefix_pred q1 q2)%bool
    | _::_, [] => false
  end.

Property is_prefix_pred_correct (l1 l2:list (state->bool)) :
  is_prefix_pred l1 l2 = true -> prefix_pred l1 l2.
Proof.
revert l2.
induction l1.
intros.
apply prefix_pred_nil.
intros.
destruct l2; intuition; try discriminate.
unfold is_prefix_pred in H.
rewrite Bool.andb_true_iff in H.
rewrite forallb_forall in H.
apply prefix_pred_cons; intuition.
apply H0.
apply all_list_forall.
Qed.

(** The assumptions about state stack is conserved when we shift **)
Definition shift_past_state :=
  forall s,
    match action_table s with
      | Lookahead_act awp =>
        forall t, match awp t with
          | Shift_act s2 _ =>
            prefix_pred (past_state_of_non_init_state s2)
                        (head_states_of_state s)
          | _ => True
        end
      | _ => True
    end.

Definition is_shift_past_state (_:unit) :=
  forallb (fun s:state =>
    match action_table s with
      | Lookahead_act awp =>
        forallb (fun t =>
          match awp t with
            | Shift_act s2 _ =>
              is_prefix_pred
                (past_state_of_non_init_state s2) (head_states_of_state s)
            | _ => true
          end)
          all_list
      | _ => true
    end)
    all_list.

Property is_shift_past_state_correct:
 is_shift_past_state () = true -> shift_past_state.
Proof.
unfold is_shift_past_state, shift_past_state.
intros.
rewrite forallb_forall in H.
specialize (H s (all_list_forall s)).
destruct (action_table s); intuition.
rewrite forallb_forall in H.
specialize (H t (all_list_forall t)).
destruct (l t); intuition.
apply is_prefix_pred_correct; intuition.
Qed.

(** The assumptions about state stack is conserved when we do a goto **)
Definition goto_past_state :=
  forall s nt,
    match goto_table s nt with
      | Some (exist s2 _) =>
        prefix_pred (past_state_of_non_init_state s2)
                    (head_states_of_state s)
      | None => True
    end.

Definition is_goto_past_state (_:unit) :=
  forallb (fun s:state =>
    forallb (fun nt =>
      match goto_table s nt with
        | Some (exist s2 _) =>
          is_prefix_pred
            (past_state_of_non_init_state s2) (head_states_of_state s)
        | None => true
      end)
      all_list)
    all_list.

Property is_goto_past_state_correct :
  is_goto_past_state () = true -> goto_past_state.
Proof.
unfold is_goto_past_state, goto_past_state.
intros.
rewrite forallb_forall in H.
specialize (H s (all_list_forall s)).
rewrite forallb_forall in H.
specialize (H nt (all_list_forall nt)).
destruct (goto_table s nt); intuition.
destruct s0.
apply is_prefix_pred_correct; intuition.
Qed.

(** What states are possible after having popped these symbols from the
    stack, given the annotation of the current state ? **)
Inductive state_valid_after_pop (s:state):
  list symbol -> list (state -> bool) -> Prop :=
  | state_valid_after_pop_nil1:
    forall p pl, p s = true -> state_valid_after_pop s [] (p::pl)
  | state_valid_after_pop_nil2:
    forall sl, state_valid_after_pop s sl []
  | state_valid_after_pop_cons:
    forall st sq p pl, state_valid_after_pop s sq pl ->
      state_valid_after_pop s (st::sq) (p::pl).

Fixpoint is_state_valid_after_pop
  (state:state) (to_pop:list symbol) annot :=
  match annot, to_pop with
    | [], _ => true
    | p::_, [] => p state
    | p::pl, s::sl => is_state_valid_after_pop state sl pl
  end.

Property is_state_valid_after_pop_complete state sl pl :
  state_valid_after_pop state sl pl -> is_state_valid_after_pop state sl pl = true.
Proof.
intro.
induction H; intuition.
destruct sl; intuition.
Qed.

(** A state is valid for reducing a production when :
      - The assumptions on the state are such that we will find the right hand
        side of the production on the stack.
      - We will be able to do a goto after having popped the right hand side.
**)
Definition valid_for_reduce (state:state) prod :=
    prefix (prod_rhs_rev prod) (head_symbs_of_state state) /\
    forall state_new,
    state_valid_after_pop state_new
      (prod_rhs_rev prod) (head_states_of_state state) ->
    goto_table state_new (prod_lhs prod) = None ->
    match state_new with
      | Init i => prod_lhs prod = start_nt i
      | Ninit _ => False
    end.

Definition is_valid_for_reduce (state:state) prod:=
  (is_prefix (prod_rhs_rev prod) (head_symbs_of_state state) &&
   forallb (fun state_new =>
     if is_state_valid_after_pop state_new (prod_rhs_rev prod)
                                           (head_states_of_state state) then
       match goto_table state_new (prod_lhs prod) with
         | Some _ => true
         | None =>
           match state_new with
             | Init i => compare_eqb (prod_lhs prod) (start_nt i)
             | Ninit _ => false
           end
       end
     else
       true)
     all_list)%bool.

Property is_valid_for_reduce_correct (state:state) prod:
  is_valid_for_reduce state prod = true -> valid_for_reduce state prod.
Proof.
unfold is_valid_for_reduce, valid_for_reduce.
intros.
rewrite Bool.andb_true_iff in H.
split.
apply is_prefix_correct.
intuition.
intros.
rewrite forallb_forall in H.
destruct H.
specialize (H2 state_new (all_list_forall state_new)).
rewrite is_state_valid_after_pop_complete, H1 in H2.
destruct state_new; intuition.
rewrite compare_eqb_iff in H2; intuition.
intuition.
Qed.

(** All the states that does a reduce are valid for reduction **)
Definition reduce_ok :=
  forall s,
    match action_table s with
      | Lookahead_act awp =>
        forall t, match awp t with
          | Reduce_act p => valid_for_reduce s p
          | _ => True
        end
      | Default_reduce_act p => valid_for_reduce s p
    end.

Definition is_reduce_ok (_:unit) :=
  forallb (fun s =>
    match action_table s with
      | Lookahead_act awp =>
        forallb (fun t =>
          match awp t with
            | Reduce_act p => is_valid_for_reduce s p
            | _ => true
          end)
          all_list
      | Default_reduce_act p => is_valid_for_reduce s p
    end)
    all_list.

Property is_reduce_ok_correct :
  is_reduce_ok () = true -> reduce_ok.
Proof.
unfold is_reduce_ok, reduce_ok.
intros.
rewrite forallb_forall in H.
specialize (H s (all_list_forall s)).
destruct (action_table s).
apply is_valid_for_reduce_correct; intuition.
intro.
rewrite forallb_forall in H.
specialize (H t (all_list_forall t)).
destruct (l t); intuition.
apply is_valid_for_reduce_correct; intuition.
Qed.

(** The automaton is safe **)
Definition safe :=
  shift_head_symbs /\ goto_head_symbs /\ shift_past_state /\
  goto_past_state /\ reduce_ok.

Definition is_safe (_:unit) :=
  (is_shift_head_symbs () && is_goto_head_symbs () && is_shift_past_state () &&
    is_goto_past_state () && is_reduce_ok ())%bool.

Property is_safe_correct:
  is_safe () = true -> safe.
Proof.
unfold safe, is_safe.
repeat rewrite Bool.andb_true_iff.
intuition.
apply is_shift_head_symbs_correct; assumption.
apply is_goto_head_symbs_correct; assumption.
apply is_shift_past_state_correct; assumption.
apply is_goto_past_state_correct; assumption.
apply is_reduce_ok_correct; assumption.
Qed.

End Make.