summaryrefslogtreecommitdiff
path: root/common/Switch.v
blob: 179d4d2ee675539c1c1482efb306ef10b018b0f6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
(* *********************************************************************)
(*                                                                     *)
(*              The Compcert verified compiler                         *)
(*                                                                     *)
(*          Xavier Leroy, INRIA Paris-Rocquencourt                     *)
(*                                                                     *)
(*  Copyright Institut National de Recherche en Informatique et en     *)
(*  Automatique.  All rights reserved.  This file is distributed       *)
(*  under the terms of the GNU General Public License as published by  *)
(*  the Free Software Foundation, either version 2 of the License, or  *)
(*  (at your option) any later version.  This file is also distributed *)
(*  under the terms of the INRIA Non-Commercial License Agreement.     *)
(*                                                                     *)
(* *********************************************************************)

(** Multi-way branches (``[switch]'') and their compilation
    to 2-way comparison trees. *)

Require Import EqNat.
Require Import Coqlib.
Require Import Integers.

(** A multi-way branch is composed of a list of (key, action) pairs,
  plus a default action.  *)

Definition table : Type := list (int * nat).

Fixpoint switch_target (n: int) (dfl: nat) (cases: table)
                       {struct cases} : nat :=
  match cases with
  | nil => dfl
  | (key, action) :: rem =>
      if Int.eq n key then action else switch_target n dfl rem
  end.

(** Multi-way branches are translated to a 2-way comparison tree.
    Each node of the tree performs an equality test or a less-than
    test against one of the keys. *)

Inductive comptree : Type :=
  | CTaction: nat -> comptree
  | CTifeq: int -> nat -> comptree -> comptree
  | CTiflt: int -> comptree -> comptree -> comptree.

Fixpoint comptree_match (n: int) (t: comptree) {struct t}: nat :=
  match t with
  | CTaction act => act
  | CTifeq key act t' =>
      if Int.eq n key then act else comptree_match n t'
  | CTiflt key t1 t2 =>
      if Int.ltu n key then comptree_match n t1 else comptree_match n t2
  end.

(** The translation from a table to a comparison tree is performed
  by untrusted Caml code (function [compile_switch] in
  file [RTLgenaux.ml]).  In Coq, we validate a posteriori the
  result of this function.  In other terms, we now develop
  and prove correct Coq functions that take a table and a comparison
  tree, and check that their semantics are equivalent. *)

Fixpoint split_lt (pivot: int) (cases: table)
                  {struct cases} : table * table :=
  match cases with
  | nil => (nil, nil)
  | (key, act) :: rem =>
      let (l, r) := split_lt pivot rem in
      if Int.ltu key pivot
      then ((key, act) :: l, r)
      else (l, (key, act) :: r)
  end.

Fixpoint split_eq (pivot: int) (cases: table)
                  {struct cases} : option nat * table :=
  match cases with
  | nil => (None, nil)
  | (key, act) :: rem =>
      let (same, others) := split_eq pivot rem in
      if Int.eq key pivot
      then (Some act, others)
      else (same, (key, act) :: others)
  end.

Definition refine_low_bound (v lo: Z) :=
  if zeq v lo then lo + 1 else lo.

Definition refine_high_bound (v hi: Z) :=
  if zeq v hi then hi - 1 else hi.

Fixpoint validate (default: nat) (cases: table) (t: comptree)
                  (lo hi: Z) {struct t} : bool :=
  match t with
  | CTaction act =>
      match cases with
      | nil =>
          beq_nat act default
      | (key1, act1) :: _ =>
          zeq (Int.unsigned key1) lo && zeq lo hi && beq_nat act act1
      end
  | CTifeq pivot act t' =>
      match split_eq pivot cases with
      | (None, _) =>
          false
      | (Some act', others) =>
          beq_nat act act' 
          && validate default others t'
                      (refine_low_bound (Int.unsigned pivot) lo)
                      (refine_high_bound (Int.unsigned pivot) hi)
      end
  | CTiflt pivot t1 t2 =>
      match split_lt pivot cases with
      | (lcases, rcases) =>
          validate default lcases t1 lo (Int.unsigned pivot - 1)
          && validate default rcases t2 (Int.unsigned pivot) hi
      end
  end.

Definition validate_switch (default: nat) (cases: table) (t: comptree) :=
  validate default cases t 0 Int.max_unsigned.

(** Correctness proof for validation. *)

Lemma split_eq_prop:
  forall v default n cases optact cases',
  split_eq n cases = (optact, cases') ->
  switch_target v default cases =
   (if Int.eq v n
    then match optact with Some act => act | None => default end
    else switch_target v default cases').
Proof.
  induction cases; simpl; intros until cases'.
  intros. inversion H; subst. simpl. 
  destruct (Int.eq v n); auto.
  destruct a as [key act]. 
  case_eq (split_eq n cases). intros same other SEQ.
  rewrite (IHcases _ _ SEQ).
  predSpec Int.eq Int.eq_spec key n; intro EQ; inversion EQ; simpl.
  subst n. destruct (Int.eq v key). auto. auto.
  predSpec Int.eq Int.eq_spec v key. 
  subst v. predSpec Int.eq Int.eq_spec key n. congruence. auto.
  auto.
Qed.

Lemma split_lt_prop:
  forall v default n cases lcases rcases,
  split_lt n cases = (lcases, rcases) ->
  switch_target v default cases =
    (if Int.ltu v n
     then switch_target v default lcases
     else switch_target v default rcases).
Proof.
  induction cases; intros until rcases; simpl.
  intro. inversion H; subst. simpl.
  destruct (Int.ltu v n); auto.
  destruct a as [key act]. 
  case_eq (split_lt n cases). intros lc rc SEQ.
  rewrite (IHcases _ _ SEQ).
  case_eq (Int.ltu key n); intros; inv H0; simpl.
  predSpec Int.eq Int.eq_spec v key. 
  subst v. rewrite H. auto.
  auto.
  predSpec Int.eq Int.eq_spec v key. 
  subst v. rewrite H. auto.
  auto.
Qed.

Lemma validate_correct_rec:
  forall default v t cases lo hi,
  validate default cases t lo hi = true ->
  lo <= Int.unsigned v <= hi ->
  switch_target v default cases = comptree_match v t.
Proof.
  induction t; simpl; intros until hi.
  (* base case *)
  destruct cases as [ | [key1 act1] cases1]; intros.
  replace n with default. reflexivity. 
  symmetry. apply beq_nat_eq. auto.
  destruct (andb_prop _ _ H). destruct (andb_prop _ _ H1). clear H H1.
  assert (Int.unsigned key1 = lo). eapply proj_sumbool_true; eauto.
  assert (lo = hi). eapply proj_sumbool_true; eauto.
  assert (Int.unsigned v = Int.unsigned key1). omega.
  replace n with act1.
  simpl. unfold Int.eq. rewrite H5. rewrite zeq_true. auto.
  symmetry. apply beq_nat_eq. auto.
  (* eq node *)
  case_eq (split_eq i cases). intros optact cases' EQ. 
  destruct optact as [ act | ]. 2: congruence.
  intros. destruct (andb_prop _ _ H). clear H.
  rewrite (split_eq_prop v default _ _ _ _ EQ).
  predSpec Int.eq Int.eq_spec v i.
  symmetry. apply beq_nat_eq; auto.
  eapply IHt. eauto.
  assert (Int.unsigned v <> Int.unsigned i).
    rewrite <- (Int.repr_unsigned v) in H.
    rewrite <- (Int.repr_unsigned i) in H.
    congruence.
  split.
  unfold refine_low_bound. destruct (zeq (Int.unsigned i) lo); omega.
  unfold refine_high_bound. destruct (zeq (Int.unsigned i) hi); omega.
  (* lt node *)
  case_eq (split_lt i cases). intros lcases rcases EQ V RANGE.
  destruct (andb_prop _ _ V). clear V.
  rewrite (split_lt_prop v default _ _ _ _ EQ). 
  unfold Int.ltu. destruct (zlt (Int.unsigned v) (Int.unsigned i)).
  eapply IHt1. eauto. omega.
  eapply IHt2. eauto. omega.
Qed.

Definition table_tree_agree
    (default: nat) (cases: table) (t: comptree) : Prop :=
  forall v, switch_target v default cases = comptree_match v t.

Theorem validate_switch_correct:
  forall default t cases,
  validate_switch default cases t = true ->
  table_tree_agree default cases t.
Proof.
  unfold validate_switch, table_tree_agree; intros.
  eapply validate_correct_rec; eauto. 
  apply Int.unsigned_range_2.
Qed.