1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
|
(* *********************************************************************)
(* *)
(* The Compcert verified compiler *)
(* *)
(* Xavier Leroy, INRIA Paris-Rocquencourt *)
(* Sandrine Blazy, ENSIIE and INRIA Paris-Rocquencourt *)
(* *)
(* Copyright Institut National de Recherche en Informatique et en *)
(* Automatique. All rights reserved. This file is distributed *)
(* under the terms of the GNU General Public License as published by *)
(* the Free Software Foundation, either version 2 of the License, or *)
(* (at your option) any later version. This file is also distributed *)
(* under the terms of the INRIA Non-Commercial License Agreement. *)
(* *)
(* *********************************************************************)
(** In-memory representation of values. *)
Require Import Coqlib.
Require Import AST.
Require Import Integers.
Require Import Floats.
Require Import Values.
(** * Properties of memory chunks *)
(** Memory reads and writes are performed by quantities called memory chunks,
encoding the type, size and signedness of the chunk being addressed.
The following functions extract the size information from a chunk. *)
Definition size_chunk (chunk: memory_chunk) : Z :=
match chunk with
| Mint8signed => 1
| Mint8unsigned => 1
| Mint16signed => 2
| Mint16unsigned => 2
| Mint32 => 4
| Mfloat32 => 4
| Mfloat64 => 8
| Mfloat64al32 => 8
end.
Lemma size_chunk_pos:
forall chunk, size_chunk chunk > 0.
Proof.
intros. destruct chunk; simpl; omega.
Qed.
Definition size_chunk_nat (chunk: memory_chunk) : nat :=
nat_of_Z(size_chunk chunk).
Lemma size_chunk_conv:
forall chunk, size_chunk chunk = Z_of_nat (size_chunk_nat chunk).
Proof.
intros. destruct chunk; reflexivity.
Qed.
Lemma size_chunk_nat_pos:
forall chunk, exists n, size_chunk_nat chunk = S n.
Proof.
intros.
generalize (size_chunk_pos chunk). rewrite size_chunk_conv.
destruct (size_chunk_nat chunk).
simpl; intros; omegaContradiction.
intros; exists n; auto.
Qed.
(** Memory reads and writes must respect alignment constraints:
the byte offset of the location being addressed should be an exact
multiple of the natural alignment for the chunk being addressed.
This natural alignment is defined by the following
[align_chunk] function. Some target architectures
(e.g. PowerPC and x86) have no alignment constraints, which we could
reflect by taking [align_chunk chunk = 1]. However, other architectures
have stronger alignment requirements. The following definition is
appropriate for PowerPC, ARM and x86. *)
Definition align_chunk (chunk: memory_chunk) : Z :=
match chunk with
| Mint8signed => 1
| Mint8unsigned => 1
| Mint16signed => 2
| Mint16unsigned => 2
| Mint32 => 4
| Mfloat32 => 4
| Mfloat64 => 8
| Mfloat64al32 => 4
end.
Lemma align_chunk_pos:
forall chunk, align_chunk chunk > 0.
Proof.
intro. destruct chunk; simpl; omega.
Qed.
Lemma align_size_chunk_divides:
forall chunk, (align_chunk chunk | size_chunk chunk).
Proof.
intros. destruct chunk; simpl; try apply Zdivide_refl. exists 2; auto.
Qed.
Lemma align_le_divides:
forall chunk1 chunk2,
align_chunk chunk1 <= align_chunk chunk2 -> (align_chunk chunk1 | align_chunk chunk2).
Proof.
intros. destruct chunk1; destruct chunk2; simpl in *;
solve [ omegaContradiction
| apply Zdivide_refl
| exists 2; reflexivity
| exists 4; reflexivity
| exists 8; reflexivity ].
Qed.
(** * Memory values *)
(** A ``memory value'' is a byte-sized quantity that describes the current
content of a memory cell. It can be either:
- a concrete 8-bit integer;
- a byte-sized fragment of an opaque pointer;
- the special constant [Undef] that represents uninitialized memory.
*)
(** Values stored in memory cells. *)
Inductive memval: Type :=
| Undef: memval
| Byte: byte -> memval
| Pointer: block -> int -> nat -> memval.
(** * Encoding and decoding integers *)
(** We define functions to convert between integers and lists of bytes
of a given length *)
Fixpoint bytes_of_int (n: nat) (x: Z) {struct n}: list byte :=
match n with
| O => nil
| S m => Byte.repr x :: bytes_of_int m (x / 256)
end.
Fixpoint int_of_bytes (l: list byte): Z :=
match l with
| nil => 0
| b :: l' => Byte.unsigned b + int_of_bytes l' * 256
end.
Parameter big_endian: bool.
Definition rev_if_be (l: list byte) : list byte :=
if big_endian then List.rev l else l.
Definition encode_int (sz: nat) (x: Z) : list byte :=
rev_if_be (bytes_of_int sz x).
Definition decode_int (b: list byte) : Z :=
int_of_bytes (rev_if_be b).
(** Length properties *)
Lemma length_bytes_of_int:
forall n x, length (bytes_of_int n x) = n.
Proof.
induction n; simpl; intros. auto. decEq. auto.
Qed.
Lemma rev_if_be_length:
forall l, length (rev_if_be l) = length l.
Proof.
intros; unfold rev_if_be; destruct big_endian.
apply List.rev_length.
auto.
Qed.
Lemma encode_int_length:
forall sz x, length(encode_int sz x) = sz.
Proof.
intros. unfold encode_int. rewrite rev_if_be_length. apply length_bytes_of_int.
Qed.
(** Decoding after encoding *)
Lemma int_of_bytes_of_int:
forall n x,
int_of_bytes (bytes_of_int n x) = x mod (two_p (Z_of_nat n * 8)).
Proof.
induction n; intros.
simpl. rewrite Zmod_1_r. auto.
Opaque Byte.wordsize.
rewrite inj_S. simpl.
replace (Zsucc (Z_of_nat n) * 8) with (Z_of_nat n * 8 + 8) by omega.
rewrite two_p_is_exp; try omega.
rewrite Zmod_recombine. rewrite IHn. rewrite Zplus_comm.
rewrite Byte.Z_mod_modulus_eq. reflexivity.
apply two_p_gt_ZERO. omega. apply two_p_gt_ZERO. omega.
Qed.
Lemma rev_if_be_involutive:
forall l, rev_if_be (rev_if_be l) = l.
Proof.
intros; unfold rev_if_be; destruct big_endian.
apply List.rev_involutive.
auto.
Qed.
Lemma decode_encode_int:
forall n x, decode_int (encode_int n x) = x mod (two_p (Z_of_nat n * 8)).
Proof.
unfold decode_int, encode_int; intros. rewrite rev_if_be_involutive.
apply int_of_bytes_of_int.
Qed.
Lemma decode_encode_int_1:
forall x, Int.repr (decode_int (encode_int 1 (Int.unsigned x))) = Int.zero_ext 8 x.
Proof.
intros. rewrite decode_encode_int.
rewrite <- (Int.repr_unsigned (Int.zero_ext 8 x)).
decEq. symmetry. apply Int.zero_ext_mod. compute. intuition congruence.
Qed.
Lemma decode_encode_int_2:
forall x, Int.repr (decode_int (encode_int 2 (Int.unsigned x))) = Int.zero_ext 16 x.
Proof.
intros. rewrite decode_encode_int.
rewrite <- (Int.repr_unsigned (Int.zero_ext 16 x)).
decEq. symmetry. apply Int.zero_ext_mod. compute; intuition congruence.
Qed.
Lemma decode_encode_int_4:
forall x, Int.repr (decode_int (encode_int 4 (Int.unsigned x))) = x.
Proof.
intros. rewrite decode_encode_int. transitivity (Int.repr (Int.unsigned x)).
decEq. apply Zmod_small. apply Int.unsigned_range. apply Int.repr_unsigned.
Qed.
Lemma decode_encode_int_8:
forall x, Int64.repr (decode_int (encode_int 8 (Int64.unsigned x))) = x.
Proof.
intros. rewrite decode_encode_int. transitivity (Int64.repr (Int64.unsigned x)).
decEq. apply Zmod_small. apply Int64.unsigned_range. apply Int64.repr_unsigned.
Qed.
(** A length-[n] encoding depends only on the low [8*n] bits of the integer. *)
Lemma bytes_of_int_mod:
forall n x y,
Int.eqmod (two_p (Z_of_nat n * 8)) x y ->
bytes_of_int n x = bytes_of_int n y.
Proof.
induction n.
intros; simpl; auto.
intros until y.
rewrite inj_S.
replace (Zsucc (Z_of_nat n) * 8) with (Z_of_nat n * 8 + 8) by omega.
rewrite two_p_is_exp; try omega.
intro EQM.
simpl; decEq.
apply Byte.eqm_samerepr. red.
eapply Int.eqmod_divides; eauto. apply Zdivide_factor_l.
apply IHn.
destruct EQM as [k EQ]. exists k. rewrite EQ.
rewrite <- Z_div_plus_full_l. decEq. change (two_p 8) with 256. ring. omega.
Qed.
Lemma encode_int_8_mod:
forall x y,
Int.eqmod (two_p 8) x y ->
encode_int 1%nat x = encode_int 1%nat y.
Proof.
intros. unfold encode_int. decEq. apply bytes_of_int_mod. auto.
Qed.
Lemma encode_int_16_mod:
forall x y,
Int.eqmod (two_p 16) x y ->
encode_int 2%nat x = encode_int 2%nat y.
Proof.
intros. unfold encode_int. decEq. apply bytes_of_int_mod. auto.
Qed.
(** * Encoding and decoding values *)
Definition inj_bytes (bl: list byte) : list memval :=
List.map Byte bl.
Fixpoint proj_bytes (vl: list memval) : option (list byte) :=
match vl with
| nil => Some nil
| Byte b :: vl' =>
match proj_bytes vl' with None => None | Some bl => Some(b :: bl) end
| _ => None
end.
Remark length_inj_bytes:
forall bl, length (inj_bytes bl) = length bl.
Proof.
intros. apply List.map_length.
Qed.
Remark proj_inj_bytes:
forall bl, proj_bytes (inj_bytes bl) = Some bl.
Proof.
induction bl; simpl. auto. rewrite IHbl. auto.
Qed.
Lemma inj_proj_bytes:
forall cl bl, proj_bytes cl = Some bl -> cl = inj_bytes bl.
Proof.
induction cl; simpl; intros.
inv H; auto.
destruct a; try congruence. destruct (proj_bytes cl); inv H.
simpl. decEq. auto.
Qed.
Fixpoint inj_pointer (n: nat) (b: block) (ofs: int) {struct n}: list memval :=
match n with
| O => nil
| S m => Pointer b ofs m :: inj_pointer m b ofs
end.
Fixpoint check_pointer (n: nat) (b: block) (ofs: int) (vl: list memval)
{struct n} : bool :=
match n, vl with
| O, nil => true
| S m, Pointer b' ofs' m' :: vl' =>
eq_block b b' && Int.eq_dec ofs ofs' && beq_nat m m' && check_pointer m b ofs vl'
| _, _ => false
end.
Definition proj_pointer (vl: list memval) : val :=
match vl with
| Pointer b ofs n :: vl' =>
if check_pointer 4%nat b ofs vl then Vptr b ofs else Vundef
| _ => Vundef
end.
Definition encode_val (chunk: memory_chunk) (v: val) : list memval :=
match v, chunk with
| Vint n, (Mint8signed | Mint8unsigned) => inj_bytes (encode_int 1%nat (Int.unsigned n))
| Vint n, (Mint16signed | Mint16unsigned) => inj_bytes (encode_int 2%nat (Int.unsigned n))
| Vint n, Mint32 => inj_bytes (encode_int 4%nat (Int.unsigned n))
| Vptr b ofs, Mint32 => inj_pointer 4%nat b ofs
| Vfloat n, Mfloat32 => inj_bytes (encode_int 4%nat (Int.unsigned (Float.bits_of_single n)))
| Vfloat n, (Mfloat64 | Mfloat64al32) => inj_bytes (encode_int 8%nat (Int64.unsigned (Float.bits_of_double n)))
| _, _ => list_repeat (size_chunk_nat chunk) Undef
end.
Definition decode_val (chunk: memory_chunk) (vl: list memval) : val :=
match proj_bytes vl with
| Some bl =>
match chunk with
| Mint8signed => Vint(Int.sign_ext 8 (Int.repr (decode_int bl)))
| Mint8unsigned => Vint(Int.zero_ext 8 (Int.repr (decode_int bl)))
| Mint16signed => Vint(Int.sign_ext 16 (Int.repr (decode_int bl)))
| Mint16unsigned => Vint(Int.zero_ext 16 (Int.repr (decode_int bl)))
| Mint32 => Vint(Int.repr(decode_int bl))
| Mfloat32 => Vfloat(Float.single_of_bits (Int.repr (decode_int bl)))
| Mfloat64 | Mfloat64al32 => Vfloat(Float.double_of_bits (Int64.repr (decode_int bl)))
end
| None =>
match chunk with
| Mint32 => proj_pointer vl
| _ => Vundef
end
end.
Lemma encode_val_length:
forall chunk v, length(encode_val chunk v) = size_chunk_nat chunk.
Proof.
intros. destruct v; simpl; destruct chunk;
solve [ reflexivity
| apply length_list_repeat
| rewrite length_inj_bytes; apply encode_int_length ].
Qed.
Lemma check_inj_pointer:
forall b ofs n, check_pointer n b ofs (inj_pointer n b ofs) = true.
Proof.
induction n; simpl. auto.
unfold proj_sumbool. rewrite dec_eq_true. rewrite dec_eq_true.
rewrite <- beq_nat_refl. simpl; auto.
Qed.
Definition decode_encode_val (v1: val) (chunk1 chunk2: memory_chunk) (v2: val) : Prop :=
match v1, chunk1, chunk2 with
| Vundef, _, _ => v2 = Vundef
| Vint n, Mint8signed, Mint8signed => v2 = Vint(Int.sign_ext 8 n)
| Vint n, Mint8unsigned, Mint8signed => v2 = Vint(Int.sign_ext 8 n)
| Vint n, Mint8signed, Mint8unsigned => v2 = Vint(Int.zero_ext 8 n)
| Vint n, Mint8unsigned, Mint8unsigned => v2 = Vint(Int.zero_ext 8 n)
| Vint n, Mint16signed, Mint16signed => v2 = Vint(Int.sign_ext 16 n)
| Vint n, Mint16unsigned, Mint16signed => v2 = Vint(Int.sign_ext 16 n)
| Vint n, Mint16signed, Mint16unsigned => v2 = Vint(Int.zero_ext 16 n)
| Vint n, Mint16unsigned, Mint16unsigned => v2 = Vint(Int.zero_ext 16 n)
| Vint n, Mint32, Mint32 => v2 = Vint n
| Vint n, Mint32, Mfloat32 => v2 = Vfloat(Float.single_of_bits n)
| Vint n, (Mfloat32 | Mfloat64 | Mfloat64al32), _ => v2 = Vundef
| Vint n, _, _ => True (**r nothing meaningful to say about v2 *)
| Vptr b ofs, Mint32, Mint32 => v2 = Vptr b ofs
| Vptr b ofs, _, _ => v2 = Vundef
| Vfloat f, Mfloat32, Mfloat32 => v2 = Vfloat(Float.singleoffloat f)
| Vfloat f, Mfloat32, Mint32 => v2 = Vint(Float.bits_of_single f)
| Vfloat f, (Mfloat64 | Mfloat64al32), (Mfloat64 | Mfloat64al32) => v2 = Vfloat f
| Vfloat f, (Mint8signed|Mint8unsigned|Mint16signed|Mint16unsigned|Mint32), _ => v2 = Vundef
| Vfloat f, _, _ => True (* nothing interesting to say about v2 *)
end.
Remark decode_val_undef:
forall bl chunk, decode_val chunk (Undef :: bl) = Vundef.
Proof.
intros. unfold decode_val. simpl. destruct chunk; auto.
Qed.
Lemma decode_encode_val_general:
forall v chunk1 chunk2,
decode_encode_val v chunk1 chunk2 (decode_val chunk2 (encode_val chunk1 v)).
Proof.
Opaque inj_pointer.
intros.
destruct v; destruct chunk1; simpl; try (apply decode_val_undef);
destruct chunk2; unfold decode_val; auto; try (rewrite proj_inj_bytes).
(* int-int *)
rewrite decode_encode_int_1. decEq. apply Int.sign_ext_zero_ext. omega.
rewrite decode_encode_int_1. decEq. apply Int.zero_ext_idem. omega.
rewrite decode_encode_int_1. decEq. apply Int.sign_ext_zero_ext. omega.
rewrite decode_encode_int_1. decEq. apply Int.zero_ext_idem. omega.
rewrite decode_encode_int_2. decEq. apply Int.sign_ext_zero_ext. omega.
rewrite decode_encode_int_2. decEq. apply Int.zero_ext_idem. omega.
rewrite decode_encode_int_2. decEq. apply Int.sign_ext_zero_ext. omega.
rewrite decode_encode_int_2. decEq. apply Int.zero_ext_idem. omega.
rewrite decode_encode_int_4. auto.
rewrite decode_encode_int_4. auto.
rewrite decode_encode_int_4. auto.
rewrite decode_encode_int_4. decEq. apply Float.single_of_bits_of_single.
rewrite decode_encode_int_8. decEq. apply Float.double_of_bits_of_double.
rewrite decode_encode_int_8. decEq. apply Float.double_of_bits_of_double.
rewrite decode_encode_int_8. decEq. apply Float.double_of_bits_of_double.
rewrite decode_encode_int_8. decEq. apply Float.double_of_bits_of_double.
change (proj_bytes (inj_pointer 4 b i)) with (@None (list byte)). simpl.
unfold proj_pointer. generalize (check_inj_pointer b i 4%nat).
Transparent inj_pointer.
simpl. intros EQ; rewrite EQ; auto.
Qed.
Lemma decode_encode_val_similar:
forall v1 chunk1 chunk2 v2,
type_of_chunk chunk1 = type_of_chunk chunk2 ->
size_chunk chunk1 = size_chunk chunk2 ->
decode_encode_val v1 chunk1 chunk2 v2 ->
v2 = Val.load_result chunk2 v1.
Proof.
intros until v2; intros TY SZ DE.
destruct chunk1; destruct chunk2; simpl in TY; try discriminate; simpl in SZ; try omegaContradiction;
destruct v1; auto.
Qed.
Lemma decode_val_type:
forall chunk cl,
Val.has_type (decode_val chunk cl) (type_of_chunk chunk).
Proof.
intros. unfold decode_val.
destruct (proj_bytes cl).
destruct chunk; simpl; auto.
destruct chunk; simpl; auto.
unfold proj_pointer. destruct cl; try (exact I).
destruct m; try (exact I).
destruct (check_pointer 4%nat b i (Pointer b i n :: cl));
exact I.
Qed.
Lemma encode_val_int8_signed_unsigned:
forall v, encode_val Mint8signed v = encode_val Mint8unsigned v.
Proof.
intros. destruct v; simpl; auto.
Qed.
Lemma encode_val_int16_signed_unsigned:
forall v, encode_val Mint16signed v = encode_val Mint16unsigned v.
Proof.
intros. destruct v; simpl; auto.
Qed.
Lemma encode_val_int8_zero_ext:
forall n, encode_val Mint8unsigned (Vint (Int.zero_ext 8 n)) = encode_val Mint8unsigned (Vint n).
Proof.
intros; unfold encode_val. decEq. apply encode_int_8_mod. apply Int.eqmod_zero_ext.
compute; intuition congruence.
Qed.
Lemma encode_val_int8_sign_ext:
forall n, encode_val Mint8signed (Vint (Int.sign_ext 8 n)) = encode_val Mint8signed (Vint n).
Proof.
intros; unfold encode_val. decEq. apply encode_int_8_mod. apply Int.eqmod_sign_ext'. compute; auto.
Qed.
Lemma encode_val_int16_zero_ext:
forall n, encode_val Mint16unsigned (Vint (Int.zero_ext 16 n)) = encode_val Mint16unsigned (Vint n).
Proof.
intros; unfold encode_val. decEq. apply encode_int_16_mod. apply Int.eqmod_zero_ext. compute; intuition congruence.
Qed.
Lemma encode_val_int16_sign_ext:
forall n, encode_val Mint16signed (Vint (Int.sign_ext 16 n)) = encode_val Mint16signed (Vint n).
Proof.
intros; unfold encode_val. decEq. apply encode_int_16_mod. apply Int.eqmod_sign_ext'. compute; auto.
Qed.
Lemma decode_val_cast:
forall chunk l,
let v := decode_val chunk l in
match chunk with
| Mint8signed => v = Val.sign_ext 8 v
| Mint8unsigned => v = Val.zero_ext 8 v
| Mint16signed => v = Val.sign_ext 16 v
| Mint16unsigned => v = Val.zero_ext 16 v
| Mfloat32 => v = Val.singleoffloat v
| _ => True
end.
Proof.
unfold decode_val; intros; destruct chunk; auto; destruct (proj_bytes l); auto.
unfold Val.sign_ext. rewrite Int.sign_ext_idem; auto. omega.
unfold Val.zero_ext. rewrite Int.zero_ext_idem; auto. omega.
unfold Val.sign_ext. rewrite Int.sign_ext_idem; auto. omega.
unfold Val.zero_ext. rewrite Int.zero_ext_idem; auto. omega.
simpl. rewrite Float.singleoffloat_of_bits. auto.
Qed.
(** Pointers cannot be forged. *)
Definition memval_valid_first (mv: memval) : Prop :=
match mv with
| Pointer b ofs n => n = 3%nat
| _ => True
end.
Definition memval_valid_cont (mv: memval) : Prop :=
match mv with
| Pointer b ofs n => n <> 3%nat
| _ => True
end.
Inductive encoding_shape: list memval -> Prop :=
| encoding_shape_intro: forall mv1 mvl,
memval_valid_first mv1 ->
(forall mv, In mv mvl -> memval_valid_cont mv) ->
encoding_shape (mv1 :: mvl).
Lemma encode_val_shape:
forall chunk v, encoding_shape (encode_val chunk v).
Proof.
intros.
destruct (size_chunk_nat_pos chunk) as [sz1 EQ].
assert (A: encoding_shape (list_repeat (size_chunk_nat chunk) Undef)).
rewrite EQ; simpl; constructor. exact I.
intros. replace mv with Undef. exact I. symmetry; eapply in_list_repeat; eauto.
assert (B: forall bl, length bl = size_chunk_nat chunk ->
encoding_shape (inj_bytes bl)).
intros. destruct bl; simpl in *. congruence.
constructor. exact I. unfold inj_bytes. intros.
exploit list_in_map_inv; eauto. intros [x [C D]]. subst mv. exact I.
destruct v; auto; destruct chunk; simpl; auto; try (apply B; apply encode_int_length).
constructor. red. auto.
simpl; intros. intuition; subst mv; red; simpl; congruence.
Qed.
Lemma check_pointer_inv:
forall b ofs n mv,
check_pointer n b ofs mv = true -> mv = inj_pointer n b ofs.
Proof.
induction n; destruct mv; simpl.
auto.
congruence.
congruence.
destruct m; try congruence. intro.
destruct (andb_prop _ _ H). destruct (andb_prop _ _ H0).
destruct (andb_prop _ _ H2).
decEq. decEq. symmetry; eapply proj_sumbool_true; eauto.
symmetry; eapply proj_sumbool_true; eauto.
symmetry; apply beq_nat_true; auto.
auto.
Qed.
Inductive decoding_shape: list memval -> Prop :=
| decoding_shape_intro: forall mv1 mvl,
memval_valid_first mv1 -> mv1 <> Undef ->
(forall mv, In mv mvl -> memval_valid_cont mv /\ mv <> Undef) ->
decoding_shape (mv1 :: mvl).
Lemma decode_val_shape:
forall chunk mvl,
List.length mvl = size_chunk_nat chunk ->
decode_val chunk mvl = Vundef \/ decoding_shape mvl.
Proof.
intros. destruct (size_chunk_nat_pos chunk) as [sz EQ].
unfold decode_val.
caseEq (proj_bytes mvl).
intros bl PROJ. right. exploit inj_proj_bytes; eauto. intros. subst mvl.
destruct bl; simpl in H. congruence. simpl. constructor.
red; auto. congruence.
unfold inj_bytes; intros. exploit list_in_map_inv; eauto. intros [b [A B]].
subst mv. split. red; auto. congruence.
intros. destruct chunk; auto. unfold proj_pointer.
destruct mvl; auto. destruct m; auto.
caseEq (check_pointer 4%nat b i (Pointer b i n :: mvl)); auto.
intros. right. exploit check_pointer_inv; eauto. simpl; intros; inv H2.
constructor. red. auto. congruence.
simpl; intros. intuition; subst mv; simpl; congruence.
Qed.
Lemma encode_val_pointer_inv:
forall chunk v b ofs n mvl,
encode_val chunk v = Pointer b ofs n :: mvl ->
chunk = Mint32 /\ v = Vptr b ofs /\ mvl = inj_pointer 3%nat b ofs.
Proof.
intros until mvl.
assert (A: list_repeat (size_chunk_nat chunk) Undef = Pointer b ofs n :: mvl ->
chunk = Mint32 /\ v = Vptr b ofs /\ mvl = inj_pointer 3 b ofs).
intros. destruct (size_chunk_nat_pos chunk) as [sz SZ]. rewrite SZ in H. simpl in H. discriminate.
assert (B: forall bl, length bl <> 0%nat -> inj_bytes bl = Pointer b ofs n :: mvl ->
chunk = Mint32 /\ v = Vptr b ofs /\ mvl = inj_pointer 3 b ofs).
intros. destruct bl; simpl in *; congruence.
unfold encode_val; destruct v; destruct chunk;
(apply A; assumption) ||
(apply B; rewrite encode_int_length; congruence) || idtac.
simpl. intros EQ; inv EQ; auto.
Qed.
Lemma decode_val_pointer_inv:
forall chunk mvl b ofs,
decode_val chunk mvl = Vptr b ofs ->
chunk = Mint32 /\ mvl = inj_pointer 4%nat b ofs.
Proof.
intros until ofs; unfold decode_val.
destruct (proj_bytes mvl).
destruct chunk; congruence.
destruct chunk; try congruence.
unfold proj_pointer. destruct mvl. congruence. destruct m; try congruence.
case_eq (check_pointer 4%nat b0 i (Pointer b0 i n :: mvl)); intros.
inv H0. split; auto. apply check_pointer_inv; auto.
congruence.
Qed.
Inductive pointer_encoding_shape: list memval -> Prop :=
| pointer_encoding_shape_intro: forall mv1 mvl,
~memval_valid_cont mv1 ->
(forall mv, In mv mvl -> ~memval_valid_first mv) ->
pointer_encoding_shape (mv1 :: mvl).
Lemma encode_pointer_shape:
forall b ofs, pointer_encoding_shape (encode_val Mint32 (Vptr b ofs)).
Proof.
intros. simpl. constructor.
unfold memval_valid_cont. red; intro. elim H. auto.
unfold memval_valid_first. simpl; intros; intuition; subst mv; congruence.
Qed.
Lemma decode_pointer_shape:
forall chunk mvl b ofs,
decode_val chunk mvl = Vptr b ofs ->
chunk = Mint32 /\ pointer_encoding_shape mvl.
Proof.
intros. exploit decode_val_pointer_inv; eauto. intros [A B].
split; auto. subst mvl. apply encode_pointer_shape.
Qed.
(** * Compatibility with memory injections *)
(** Relating two memory values according to a memory injection. *)
Inductive memval_inject (f: meminj): memval -> memval -> Prop :=
| memval_inject_byte:
forall n, memval_inject f (Byte n) (Byte n)
| memval_inject_ptr:
forall b1 ofs1 b2 ofs2 delta n,
f b1 = Some (b2, delta) ->
ofs2 = Int.add ofs1 (Int.repr delta) ->
memval_inject f (Pointer b1 ofs1 n) (Pointer b2 ofs2 n)
| memval_inject_undef:
forall mv, memval_inject f Undef mv.
Lemma memval_inject_incr:
forall f f' v1 v2, memval_inject f v1 v2 -> inject_incr f f' -> memval_inject f' v1 v2.
Proof.
intros. inv H; econstructor. rewrite (H0 _ _ _ H1). reflexivity. auto.
Qed.
(** [decode_val], applied to lists of memory values that are pairwise
related by [memval_inject], returns values that are related by [val_inject]. *)
Lemma proj_bytes_inject:
forall f vl vl',
list_forall2 (memval_inject f) vl vl' ->
forall bl,
proj_bytes vl = Some bl ->
proj_bytes vl' = Some bl.
Proof.
induction 1; simpl. congruence.
inv H; try congruence.
destruct (proj_bytes al); intros.
inv H. rewrite (IHlist_forall2 l); auto.
congruence.
Qed.
Lemma check_pointer_inject:
forall f vl vl',
list_forall2 (memval_inject f) vl vl' ->
forall n b ofs b' delta,
check_pointer n b ofs vl = true ->
f b = Some(b', delta) ->
check_pointer n b' (Int.add ofs (Int.repr delta)) vl' = true.
Proof.
induction 1; intros; destruct n; simpl in *; auto.
inv H; auto.
destruct (andb_prop _ _ H1). destruct (andb_prop _ _ H).
destruct (andb_prop _ _ H5).
assert (n = n0) by (apply beq_nat_true; auto).
assert (b = b0) by (eapply proj_sumbool_true; eauto).
assert (ofs = ofs1) by (eapply proj_sumbool_true; eauto).
subst. rewrite H3 in H2; inv H2.
unfold proj_sumbool. rewrite dec_eq_true. rewrite dec_eq_true.
rewrite <- beq_nat_refl. simpl. eauto.
congruence.
Qed.
Lemma proj_pointer_inject:
forall f vl1 vl2,
list_forall2 (memval_inject f) vl1 vl2 ->
val_inject f (proj_pointer vl1) (proj_pointer vl2).
Proof.
intros. unfold proj_pointer.
inversion H; subst. auto. inversion H0; subst; auto.
case_eq (check_pointer 4%nat b0 ofs1 (Pointer b0 ofs1 n :: al)); intros.
exploit check_pointer_inject. eexact H. eauto. eauto.
intro. rewrite H4. econstructor; eauto.
constructor.
Qed.
Lemma proj_bytes_not_inject:
forall f vl vl',
list_forall2 (memval_inject f) vl vl' ->
proj_bytes vl = None -> proj_bytes vl' <> None -> In Undef vl.
Proof.
induction 1; simpl; intros.
congruence.
inv H; try congruence.
right. apply IHlist_forall2.
destruct (proj_bytes al); congruence.
destruct (proj_bytes bl); congruence.
auto.
Qed.
Lemma check_pointer_undef:
forall n b ofs vl,
In Undef vl -> check_pointer n b ofs vl = false.
Proof.
induction n; intros; simpl.
destruct vl. elim H. auto.
destruct vl. auto.
destruct m; auto. simpl in H; destruct H. congruence.
rewrite IHn; auto. apply andb_false_r.
Qed.
Lemma proj_pointer_undef:
forall vl, In Undef vl -> proj_pointer vl = Vundef.
Proof.
intros; unfold proj_pointer.
destruct vl; auto. destruct m; auto.
rewrite check_pointer_undef. auto. auto.
Qed.
Theorem decode_val_inject:
forall f vl1 vl2 chunk,
list_forall2 (memval_inject f) vl1 vl2 ->
val_inject f (decode_val chunk vl1) (decode_val chunk vl2).
Proof.
intros. unfold decode_val.
case_eq (proj_bytes vl1); intros.
exploit proj_bytes_inject; eauto. intros. rewrite H1.
destruct chunk; constructor.
destruct chunk; auto.
case_eq (proj_bytes vl2); intros.
rewrite proj_pointer_undef. auto. eapply proj_bytes_not_inject; eauto. congruence.
apply proj_pointer_inject; auto.
Qed.
(** Symmetrically, [encode_val], applied to values related by [val_inject],
returns lists of memory values that are pairwise
related by [memval_inject]. *)
Lemma inj_bytes_inject:
forall f bl, list_forall2 (memval_inject f) (inj_bytes bl) (inj_bytes bl).
Proof.
induction bl; constructor; auto. constructor.
Qed.
Lemma repeat_Undef_inject_any:
forall f vl,
list_forall2 (memval_inject f) (list_repeat (length vl) Undef) vl.
Proof.
induction vl; simpl; constructor; auto. constructor.
Qed.
Lemma repeat_Undef_inject_self:
forall f n,
list_forall2 (memval_inject f) (list_repeat n Undef) (list_repeat n Undef).
Proof.
induction n; simpl; constructor; auto. constructor.
Qed.
Theorem encode_val_inject:
forall f v1 v2 chunk,
val_inject f v1 v2 ->
list_forall2 (memval_inject f) (encode_val chunk v1) (encode_val chunk v2).
Proof.
intros. inv H; simpl.
destruct chunk; apply inj_bytes_inject || apply repeat_Undef_inject_self.
destruct chunk; apply inj_bytes_inject || apply repeat_Undef_inject_self.
destruct chunk; try (apply repeat_Undef_inject_self).
repeat econstructor; eauto.
replace (size_chunk_nat chunk) with (length (encode_val chunk v2)).
apply repeat_Undef_inject_any. apply encode_val_length.
Qed.
Definition memval_lessdef: memval -> memval -> Prop := memval_inject inject_id.
Lemma memval_lessdef_refl:
forall mv, memval_lessdef mv mv.
Proof.
red. destruct mv; econstructor.
unfold inject_id; reflexivity. rewrite Int.add_zero; auto.
Qed.
(** [memval_inject] and compositions *)
Lemma memval_inject_compose:
forall f f' v1 v2 v3,
memval_inject f v1 v2 -> memval_inject f' v2 v3 ->
memval_inject (compose_meminj f f') v1 v3.
Proof.
intros. inv H.
inv H0. constructor.
inv H0. econstructor.
unfold compose_meminj; rewrite H1; rewrite H5; eauto.
rewrite Int.add_assoc. decEq. unfold Int.add. apply Int.eqm_samerepr. auto with ints.
constructor.
Qed.
|