1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
|
(* *********************************************************************)
(* *)
(* The Compcert verified compiler *)
(* *)
(* Xavier Leroy, INRIA Paris-Rocquencourt *)
(* Sandrine Blazy, ENSIIE and INRIA Paris-Rocquencourt *)
(* *)
(* Copyright Institut National de Recherche en Informatique et en *)
(* Automatique. All rights reserved. This file is distributed *)
(* under the terms of the GNU General Public License as published by *)
(* the Free Software Foundation, either version 2 of the License, or *)
(* (at your option) any later version. This file is also distributed *)
(* under the terms of the INRIA Non-Commercial License Agreement. *)
(* *)
(* *********************************************************************)
(** This file develops the memory model that is used in the dynamic
semantics of all the languages used in the compiler.
It defines a type [mem] of memory states, the following 4 basic
operations over memory states, and their properties:
- [load]: read a memory chunk at a given address;
- [store]: store a memory chunk at a given address;
- [alloc]: allocate a fresh memory block;
- [free]: invalidate a memory block.
*)
Require Import Coqlib.
Require Import Maps.
Require Import AST.
Require Import Integers.
Require Import Floats.
Require Import Values.
Definition update (A: Type) (x: Z) (v: A) (f: Z -> A) : Z -> A :=
fun y => if zeq y x then v else f y.
Implicit Arguments update [A].
Lemma update_s:
forall (A: Type) (x: Z) (v: A) (f: Z -> A),
update x v f x = v.
Proof.
intros; unfold update. apply zeq_true.
Qed.
Lemma update_o:
forall (A: Type) (x: Z) (v: A) (f: Z -> A) (y: Z),
x <> y -> update x v f y = f y.
Proof.
intros; unfold update. apply zeq_false; auto.
Qed.
(** * Structure of memory states *)
(** A memory state is organized in several disjoint blocks. Each block
has a low and a high bound that defines its size. Each block map
byte offsets to the contents of this byte. *)
(** The possible contents of a byte-sized memory cell. To give intuitions,
a 4-byte value [v] stored at offset [d] will be represented by
the content [Datum(4, v)] at offset [d] and [Cont] at offsets [d+1],
[d+2] and [d+3]. The [Cont] contents enable detecting future writes
that would partially overlap the 4-byte value. *)
Inductive content : Type :=
| Undef: content (**r undefined contents *)
| Datum: nat -> val -> content (**r first byte of a value *)
| Cont: content. (**r continuation bytes for a multi-byte value *)
Definition contentmap : Type := Z -> content.
(** A memory block comprises the dimensions of the block (low and high bounds)
plus a mapping from byte offsets to contents. *)
Record block_contents : Type := mkblock {
low: Z;
high: Z;
contents: contentmap
}.
(** A memory state is a mapping from block addresses (represented by [Z]
integers) to blocks. We also maintain the address of the next
unallocated block, and a proof that this address is positive. *)
Record mem : Type := mkmem {
blocks: Z -> block_contents;
nextblock: block;
nextblock_pos: nextblock > 0
}.
(** * Operations on memory stores *)
(** Memory reads and writes are performed by quantities called memory chunks,
encoding the type, size and signedness of the chunk being addressed.
The following functions extract the size information from a chunk. *)
Definition size_chunk (chunk: memory_chunk) : Z :=
match chunk with
| Mint8signed => 1
| Mint8unsigned => 1
| Mint16signed => 2
| Mint16unsigned => 2
| Mint32 => 4
| Mfloat32 => 4
| Mfloat64 => 8
end.
Definition pred_size_chunk (chunk: memory_chunk) : nat :=
match chunk with
| Mint8signed => 0%nat
| Mint8unsigned => 0%nat
| Mint16signed => 1%nat
| Mint16unsigned => 1%nat
| Mint32 => 3%nat
| Mfloat32 => 3%nat
| Mfloat64 => 7%nat
end.
Lemma size_chunk_pred:
forall chunk, size_chunk chunk = 1 + Z_of_nat (pred_size_chunk chunk).
Proof.
destruct chunk; auto.
Qed.
Lemma size_chunk_pos:
forall chunk, size_chunk chunk > 0.
Proof.
intros. rewrite size_chunk_pred. omega.
Qed.
(** Memory reads and writes must respect alignment constraints:
the byte offset of the location being addressed should be an exact
multiple of the natural alignment for the chunk being addressed.
This natural alignment is defined by the following
[align_chunk] function. Some target architectures
(e.g. the PowerPC) have no alignment constraints, which we could
reflect by taking [align_chunk chunk = 1]. However, other architectures
have stronger alignment requirements. The following definition is
appropriate for PowerPC and ARM. *)
Definition align_chunk (chunk: memory_chunk) : Z :=
match chunk with
| Mint8signed => 1
| Mint8unsigned => 1
| Mint16signed => 2
| Mint16unsigned => 2
| _ => 4
end.
Lemma align_chunk_pos:
forall chunk, align_chunk chunk > 0.
Proof.
intro. destruct chunk; simpl; omega.
Qed.
Lemma align_size_chunk_divides:
forall chunk, (align_chunk chunk | size_chunk chunk).
Proof.
intros. destruct chunk; simpl; try apply Zdivide_refl. exists 2; auto.
Qed.
Lemma align_chunk_compat:
forall chunk1 chunk2,
size_chunk chunk1 = size_chunk chunk2 -> align_chunk chunk1 = align_chunk chunk2.
Proof.
intros chunk1 chunk2.
destruct chunk1; destruct chunk2; simpl; congruence.
Qed.
(** The initial store. *)
Remark one_pos: 1 > 0.
Proof. omega. Qed.
Definition empty_block (lo hi: Z) : block_contents :=
mkblock lo hi (fun y => Undef).
Definition empty: mem :=
mkmem (fun x => empty_block 0 0) 1 one_pos.
Definition nullptr: block := 0.
(** Allocation of a fresh block with the given bounds. Return an updated
memory state and the address of the fresh block, which initially contains
undefined cells. Note that allocation never fails: we model an
infinite memory. *)
Remark succ_nextblock_pos:
forall m, Zsucc m.(nextblock) > 0.
Proof. intro. generalize (nextblock_pos m). omega. Qed.
Definition alloc (m: mem) (lo hi: Z) :=
(mkmem (update m.(nextblock)
(empty_block lo hi)
m.(blocks))
(Zsucc m.(nextblock))
(succ_nextblock_pos m),
m.(nextblock)).
(** Freeing a block. Return the updated memory state where the given
block address has been invalidated: future reads and writes to this
address will fail. Note that we make no attempt to return the block
to an allocation pool: the given block address will never be allocated
later. *)
Definition free (m: mem) (b: block) :=
mkmem (update b
(empty_block 0 0)
m.(blocks))
m.(nextblock)
m.(nextblock_pos).
(** Freeing of a list of blocks. *)
Definition free_list (m:mem) (l:list block) :=
List.fold_right (fun b m => free m b) m l.
(** Return the low and high bounds for the given block address.
Those bounds are 0 for freed or not yet allocated address. *)
Definition low_bound (m: mem) (b: block) :=
low (m.(blocks) b).
Definition high_bound (m: mem) (b: block) :=
high (m.(blocks) b).
(** A block address is valid if it was previously allocated. It remains valid
even after being freed. *)
Definition valid_block (m: mem) (b: block) :=
b < m.(nextblock).
(** Reading and writing [N] adjacent locations in a [contentmap].
We define two functions and prove some of their properties:
- [getN n ofs m] returns the datum at offset [ofs] in block contents [m]
after checking that the contents of offsets [ofs+1] to [ofs+n+1]
are [Cont].
- [setN n ofs v m] updates the block contents [m], storing the content [v]
at offset [ofs] and the content [Cont] at offsets [ofs+1] to [ofs+n+1].
*)
Fixpoint check_cont (n: nat) (p: Z) (m: contentmap) {struct n} : bool :=
match n with
| O => true
| S n1 =>
match m p with
| Cont => check_cont n1 (p + 1) m
| _ => false
end
end.
Definition eq_nat: forall (p q: nat), {p=q} + {p<>q}.
Proof. decide equality. Defined.
Definition getN (n: nat) (p: Z) (m: contentmap) : val :=
match m p with
| Datum n' v =>
if eq_nat n n' && check_cont n (p + 1) m then v else Vundef
| _ =>
Vundef
end.
Fixpoint set_cont (n: nat) (p: Z) (m: contentmap) {struct n} : contentmap :=
match n with
| O => m
| S n1 => update p Cont (set_cont n1 (p + 1) m)
end.
Definition setN (n: nat) (p: Z) (v: val) (m: contentmap) : contentmap :=
update p (Datum n v) (set_cont n (p + 1) m).
Lemma check_cont_spec:
forall n m p,
if check_cont n p m
then (forall q, p <= q < p + Z_of_nat n -> m q = Cont)
else (exists q, p <= q < p + Z_of_nat n /\ m q <> Cont).
Proof.
induction n; intros.
simpl. intros; omegaContradiction.
simpl check_cont. repeat rewrite inj_S. caseEq (m p); intros.
exists p; split. omega. congruence.
exists p; split. omega. congruence.
generalize (IHn m (p + 1)). case (check_cont n (p + 1) m).
intros. assert (p = q \/ p + 1 <= q < p + Zsucc (Z_of_nat n)) by omega.
elim H2; intro. congruence. apply H0; omega.
intros [q [A B]]. exists q; split. omega. auto.
Qed.
Lemma check_cont_true:
forall n m p,
(forall q, p <= q < p + Z_of_nat n -> m q = Cont) ->
check_cont n p m = true.
Proof.
intros. generalize (check_cont_spec n m p).
destruct (check_cont n p m). auto.
intros [q [A B]]. elim B; auto.
Qed.
Lemma check_cont_false:
forall n m p q,
p <= q < p + Z_of_nat n -> m q <> Cont ->
check_cont n p m = false.
Proof.
intros. generalize (check_cont_spec n m p).
destruct (check_cont n p m).
intros. elim H0; auto.
auto.
Qed.
Lemma set_cont_inside:
forall n p m q,
p <= q < p + Z_of_nat n ->
(set_cont n p m) q = Cont.
Proof.
induction n; intros.
unfold Z_of_nat in H. omegaContradiction.
simpl.
assert (p = q \/ p + 1 <= q < (p + 1) + Z_of_nat n).
rewrite inj_S in H. omega.
elim H0; intro.
subst q. apply update_s.
rewrite update_o. apply IHn. auto.
red; intro; subst q. omega.
Qed.
Lemma set_cont_outside:
forall n p m q,
q < p \/ p + Z_of_nat n <= q ->
(set_cont n p m) q = m q.
Proof.
induction n; intros.
simpl. auto.
simpl. rewrite inj_S in H.
rewrite update_o. apply IHn. omega. omega.
Qed.
Lemma getN_setN_same:
forall n p v m,
getN n p (setN n p v m) = v.
Proof.
intros. unfold getN, setN. rewrite update_s.
rewrite check_cont_true. unfold proj_sumbool.
rewrite dec_eq_true. auto.
intros. rewrite update_o. apply set_cont_inside. auto.
omega.
Qed.
Lemma getN_setN_other:
forall n1 n2 p1 p2 v m,
p1 + Z_of_nat n1 < p2 \/ p2 + Z_of_nat n2 < p1 ->
getN n2 p2 (setN n1 p1 v m) = getN n2 p2 m.
Proof.
intros. unfold getN, setN.
generalize (check_cont_spec n2 m (p2 + 1));
destruct (check_cont n2 (p2 + 1) m); intros.
rewrite check_cont_true.
rewrite update_o. rewrite set_cont_outside. auto.
omega. omega.
intros. rewrite update_o. rewrite set_cont_outside. auto.
omega. omega.
destruct H0 as [q [A B]].
rewrite (check_cont_false n2 (update p1 (Datum n1 v) (set_cont n1 (p1 + 1) m)) (p2 + 1) q).
rewrite update_o. rewrite set_cont_outside. auto.
omega. omega. omega.
rewrite update_o. rewrite set_cont_outside. auto.
omega. omega.
Qed.
Lemma getN_setN_overlap:
forall n1 n2 p1 p2 v m,
p1 <> p2 ->
p1 + Z_of_nat n1 >= p2 -> p2 + Z_of_nat n2 >= p1 ->
getN n2 p2 (setN n1 p1 v m) = Vundef.
Proof.
intros. unfold getN, setN.
rewrite update_o; auto.
destruct (zlt p2 p1).
(* [p1] belongs to [[p2, p2 + n2 - 1]],
therefore [check_cont n2 (p2 + 1) ...] is false. *)
rewrite (check_cont_false n2 (update p1 (Datum n1 v) (set_cont n1 (p1 + 1) m)) (p2 + 1) p1).
destruct (set_cont n1 (p1 + 1) m p2); auto.
destruct (eq_nat n2 n); auto.
omega.
rewrite update_s. congruence.
(* [p2] belongs to [[p1 + 1, p1 + n1 - 1]],
therefore [set_cont n1 (p1 + 1) m p2] is [Cont]. *)
rewrite set_cont_inside. auto. omega.
Qed.
Lemma getN_setN_mismatch:
forall n1 n2 p v m,
n1 <> n2 ->
getN n2 p (setN n1 p v m) = Vundef.
Proof.
intros. unfold getN, setN. rewrite update_s.
unfold proj_sumbool; rewrite dec_eq_false; simpl. auto. auto.
Qed.
Lemma getN_setN_characterization:
forall m v n1 p1 n2 p2,
getN n2 p2 (setN n1 p1 v m) = v
\/ getN n2 p2 (setN n1 p1 v m) = getN n2 p2 m
\/ getN n2 p2 (setN n1 p1 v m) = Vundef.
Proof.
intros. destruct (zeq p1 p2). subst p2.
destruct (eq_nat n1 n2). subst n2.
left; apply getN_setN_same.
right; right; apply getN_setN_mismatch; auto.
destruct (zlt (p1 + Z_of_nat n1) p2).
right; left; apply getN_setN_other; auto.
destruct (zlt (p2 + Z_of_nat n2) p1).
right; left; apply getN_setN_other; auto.
right; right; apply getN_setN_overlap; omega.
Qed.
Lemma getN_init:
forall n p,
getN n p (fun y => Undef) = Vundef.
Proof.
intros. auto.
Qed.
(** [valid_access m chunk b ofs] holds if a memory access (load or store)
of the given chunk is possible in [m] at address [b, ofs].
This means:
- The block [b] is valid.
- The range of bytes accessed is within the bounds of [b].
- The offset [ofs] is aligned.
*)
Inductive valid_access (m: mem) (chunk: memory_chunk) (b: block) (ofs: Z) : Prop :=
| valid_access_intro:
valid_block m b ->
low_bound m b <= ofs ->
ofs + size_chunk chunk <= high_bound m b ->
(align_chunk chunk | ofs) ->
valid_access m chunk b ofs.
(** The following function checks whether accessing the given memory chunk
at the given offset in the given block respects the bounds of the block. *)
Definition in_bounds (m: mem) (chunk: memory_chunk) (b: block) (ofs: Z) :
{valid_access m chunk b ofs} + {~valid_access m chunk b ofs}.
Proof.
intros.
destruct (zlt b m.(nextblock)).
destruct (zle (low_bound m b) ofs).
destruct (zle (ofs + size_chunk chunk) (high_bound m b)).
destruct (Zdivide_dec (align_chunk chunk) ofs (align_chunk_pos chunk)).
left; constructor; auto.
right; red; intro V; inv V; contradiction.
right; red; intro V; inv V; omega.
right; red; intro V; inv V; omega.
right; red; intro V; inv V; contradiction.
Defined.
Lemma in_bounds_true:
forall m chunk b ofs (A: Type) (a1 a2: A),
valid_access m chunk b ofs ->
(if in_bounds m chunk b ofs then a1 else a2) = a1.
Proof.
intros. destruct (in_bounds m chunk b ofs). auto. contradiction.
Qed.
(** [valid_pointer] holds if the given block address is valid and the
given offset falls within the bounds of the corresponding block. *)
Definition valid_pointer (m: mem) (b: block) (ofs: Z) : bool :=
zlt b m.(nextblock) &&
zle (low_bound m b) ofs &&
zlt ofs (high_bound m b).
(** [load chunk m b ofs] perform a read in memory state [m], at address
[b] and offset [ofs]. [None] is returned if the address is invalid
or the memory access is out of bounds. *)
Definition load (chunk: memory_chunk) (m: mem) (b: block) (ofs: Z)
: option val :=
if in_bounds m chunk b ofs then
Some (Val.load_result chunk
(getN (pred_size_chunk chunk) ofs (contents (blocks m b))))
else
None.
Lemma load_inv:
forall chunk m b ofs v,
load chunk m b ofs = Some v ->
valid_access m chunk b ofs /\
v = Val.load_result chunk
(getN (pred_size_chunk chunk) ofs (contents (blocks m b))).
Proof.
intros until v; unfold load.
destruct (in_bounds m chunk b ofs); intros.
split. auto. congruence.
congruence.
Qed.
(** [loadv chunk m addr] is similar, but the address and offset are given
as a single value [addr], which must be a pointer value. *)
Definition loadv (chunk: memory_chunk) (m: mem) (addr: val) : option val :=
match addr with
| Vptr b ofs => load chunk m b (Int.signed ofs)
| _ => None
end.
(* The memory state [m] after a store of value [v] at offset [ofs]
in block [b]. *)
Definition unchecked_store
(chunk: memory_chunk) (m: mem) (b: block)
(ofs: Z) (v: val) : mem :=
let c := m.(blocks) b in
mkmem
(update b
(mkblock c.(low) c.(high)
(setN (pred_size_chunk chunk) ofs v c.(contents)))
m.(blocks))
m.(nextblock)
m.(nextblock_pos).
(** [store chunk m b ofs v] perform a write in memory state [m].
Value [v] is stored at address [b] and offset [ofs].
Return the updated memory store, or [None] if the address is invalid
or the memory access is out of bounds. *)
Definition store (chunk: memory_chunk) (m: mem) (b: block)
(ofs: Z) (v: val) : option mem :=
if in_bounds m chunk b ofs
then Some(unchecked_store chunk m b ofs v)
else None.
Lemma store_inv:
forall chunk m b ofs v m',
store chunk m b ofs v = Some m' ->
valid_access m chunk b ofs /\
m' = unchecked_store chunk m b ofs v.
Proof.
intros until m'; unfold store.
destruct (in_bounds m chunk b ofs); intros.
split. auto. congruence.
congruence.
Qed.
(** [storev chunk m addr v] is similar, but the address and offset are given
as a single value [addr], which must be a pointer value. *)
Definition storev (chunk: memory_chunk) (m: mem) (addr v: val) : option mem :=
match addr with
| Vptr b ofs => store chunk m b (Int.signed ofs) v
| _ => None
end.
(** Build a block filled with the given initialization data. *)
Fixpoint contents_init_data (pos: Z) (id: list init_data) {struct id}: contentmap :=
match id with
| nil => (fun y => Undef)
| Init_int8 n :: id' =>
setN 0%nat pos (Vint n) (contents_init_data (pos + 1) id')
| Init_int16 n :: id' =>
setN 1%nat pos (Vint n) (contents_init_data (pos + 1) id')
| Init_int32 n :: id' =>
setN 3%nat pos (Vint n) (contents_init_data (pos + 1) id')
| Init_float32 f :: id' =>
setN 3%nat pos (Vfloat f) (contents_init_data (pos + 1) id')
| Init_float64 f :: id' =>
setN 7%nat pos (Vfloat f) (contents_init_data (pos + 1) id')
| Init_space n :: id' =>
contents_init_data (pos + Zmax n 0) id'
| Init_pointer x :: id' =>
(* Not handled properly yet *)
contents_init_data (pos + 4) id'
end.
Definition size_init_data (id: init_data) : Z :=
match id with
| Init_int8 _ => 1
| Init_int16 _ => 2
| Init_int32 _ => 4
| Init_float32 _ => 4
| Init_float64 _ => 8
| Init_space n => Zmax n 0
| Init_pointer _ => 4
end.
Definition size_init_data_list (id: list init_data): Z :=
List.fold_right (fun id sz => size_init_data id + sz) 0 id.
Remark size_init_data_list_pos:
forall id, size_init_data_list id >= 0.
Proof.
induction id; simpl.
omega.
assert (size_init_data a >= 0). destruct a; simpl; try omega.
generalize (Zmax2 z 0). omega. omega.
Qed.
Definition block_init_data (id: list init_data) : block_contents :=
mkblock 0 (size_init_data_list id) (contents_init_data 0 id).
Definition alloc_init_data (m: mem) (id: list init_data) : mem * block :=
(mkmem (update m.(nextblock)
(block_init_data id)
m.(blocks))
(Zsucc m.(nextblock))
(succ_nextblock_pos m),
m.(nextblock)).
Remark block_init_data_empty:
block_init_data nil = empty_block 0 0.
Proof.
auto.
Qed.
(** * Properties of the memory operations *)
(** ** Properties related to block validity *)
Lemma valid_not_valid_diff:
forall m b b', valid_block m b -> ~(valid_block m b') -> b <> b'.
Proof.
intros; red; intros. subst b'. contradiction.
Qed.
Lemma valid_access_valid_block:
forall m chunk b ofs,
valid_access m chunk b ofs -> valid_block m b.
Proof.
intros. inv H; auto.
Qed.
Lemma valid_access_aligned:
forall m chunk b ofs,
valid_access m chunk b ofs -> (align_chunk chunk | ofs).
Proof.
intros. inv H; auto.
Qed.
Lemma valid_access_compat:
forall m chunk1 chunk2 b ofs,
size_chunk chunk1 = size_chunk chunk2 ->
valid_access m chunk1 b ofs ->
valid_access m chunk2 b ofs.
Proof.
intros. inv H0. rewrite H in H3. constructor; auto.
rewrite <- (align_chunk_compat _ _ H). auto.
Qed.
Hint Resolve valid_not_valid_diff valid_access_valid_block valid_access_aligned: mem.
(** ** Properties related to [load] *)
Theorem valid_access_load:
forall m chunk b ofs,
valid_access m chunk b ofs ->
exists v, load chunk m b ofs = Some v.
Proof.
intros. econstructor. unfold load. rewrite in_bounds_true; auto.
Qed.
Theorem load_valid_access:
forall m chunk b ofs v,
load chunk m b ofs = Some v ->
valid_access m chunk b ofs.
Proof.
intros. generalize (load_inv _ _ _ _ _ H). tauto.
Qed.
Hint Resolve load_valid_access valid_access_load.
(** ** Properties related to [store] *)
Lemma valid_access_store:
forall m1 chunk b ofs v,
valid_access m1 chunk b ofs ->
exists m2, store chunk m1 b ofs v = Some m2.
Proof.
intros. econstructor. unfold store. rewrite in_bounds_true; auto.
Qed.
Hint Resolve valid_access_store: mem.
Section STORE.
Variable chunk: memory_chunk.
Variable m1: mem.
Variable b: block.
Variable ofs: Z.
Variable v: val.
Variable m2: mem.
Hypothesis STORE: store chunk m1 b ofs v = Some m2.
Lemma low_bound_store:
forall b', low_bound m2 b' = low_bound m1 b'.
Proof.
intro. elim (store_inv _ _ _ _ _ _ STORE); intros.
subst m2. unfold low_bound, unchecked_store; simpl.
unfold update. destruct (zeq b' b); auto. subst b'; auto.
Qed.
Lemma high_bound_store:
forall b', high_bound m2 b' = high_bound m1 b'.
Proof.
intro. elim (store_inv _ _ _ _ _ _ STORE); intros.
subst m2. unfold high_bound, unchecked_store; simpl.
unfold update. destruct (zeq b' b); auto. subst b'; auto.
Qed.
Lemma nextblock_store:
nextblock m2 = nextblock m1.
Proof.
intros. elim (store_inv _ _ _ _ _ _ STORE); intros.
subst m2; reflexivity.
Qed.
Lemma store_valid_block_1:
forall b', valid_block m1 b' -> valid_block m2 b'.
Proof.
unfold valid_block; intros. rewrite nextblock_store; auto.
Qed.
Lemma store_valid_block_2:
forall b', valid_block m2 b' -> valid_block m1 b'.
Proof.
unfold valid_block; intros. rewrite nextblock_store in H; auto.
Qed.
Hint Resolve store_valid_block_1 store_valid_block_2: mem.
Lemma store_valid_access_1:
forall chunk' b' ofs',
valid_access m1 chunk' b' ofs' -> valid_access m2 chunk' b' ofs'.
Proof.
intros. inv H. constructor; auto with mem.
rewrite low_bound_store; auto.
rewrite high_bound_store; auto.
Qed.
Lemma store_valid_access_2:
forall chunk' b' ofs',
valid_access m2 chunk' b' ofs' -> valid_access m1 chunk' b' ofs'.
Proof.
intros. inv H. constructor; auto with mem.
rewrite low_bound_store in H1; auto.
rewrite high_bound_store in H2; auto.
Qed.
Lemma store_valid_access_3:
valid_access m1 chunk b ofs.
Proof.
elim (store_inv _ _ _ _ _ _ STORE); intros. auto.
Qed.
Hint Resolve store_valid_access_1 store_valid_access_2
store_valid_access_3: mem.
Theorem load_store_similar:
forall chunk',
size_chunk chunk' = size_chunk chunk ->
load chunk' m2 b ofs = Some (Val.load_result chunk' v).
Proof.
intros. destruct (store_inv _ _ _ _ _ _ STORE).
unfold load. rewrite in_bounds_true.
decEq. decEq. rewrite H1. unfold unchecked_store; simpl.
rewrite update_s. simpl.
replace (pred_size_chunk chunk) with (pred_size_chunk chunk').
apply getN_setN_same.
repeat rewrite size_chunk_pred in H. omega.
apply store_valid_access_1.
inv H0. constructor; auto. congruence.
rewrite (align_chunk_compat _ _ H). auto.
Qed.
Theorem load_store_same:
load chunk m2 b ofs = Some (Val.load_result chunk v).
Proof.
eapply load_store_similar; eauto.
Qed.
Theorem load_store_other:
forall chunk' b' ofs',
b' <> b
\/ ofs' + size_chunk chunk' <= ofs
\/ ofs + size_chunk chunk <= ofs' ->
load chunk' m2 b' ofs' = load chunk' m1 b' ofs'.
Proof.
intros. destruct (store_inv _ _ _ _ _ _ STORE).
unfold load. destruct (in_bounds m1 chunk' b' ofs').
rewrite in_bounds_true. decEq. decEq.
rewrite H1; unfold unchecked_store; simpl.
unfold update. destruct (zeq b' b). subst b'.
simpl. repeat rewrite size_chunk_pred in H.
apply getN_setN_other. elim H; intro. congruence. omega.
auto.
eauto with mem.
destruct (in_bounds m2 chunk' b' ofs'); auto.
elim n. eauto with mem.
Qed.
Theorem load_store_overlap:
forall chunk' ofs' v',
load chunk' m2 b ofs' = Some v' ->
ofs' <> ofs ->
ofs' + size_chunk chunk' > ofs ->
ofs + size_chunk chunk > ofs' ->
v' = Vundef.
Proof.
intros. destruct (store_inv _ _ _ _ _ _ STORE).
destruct (load_inv _ _ _ _ _ H). rewrite H6.
rewrite H4. unfold unchecked_store. simpl. rewrite update_s.
simpl. rewrite getN_setN_overlap.
destruct chunk'; reflexivity.
auto. rewrite size_chunk_pred in H2. omega.
rewrite size_chunk_pred in H1. omega.
Qed.
Theorem load_store_overlap':
forall chunk' ofs',
valid_access m1 chunk' b ofs' ->
ofs' <> ofs ->
ofs' + size_chunk chunk' > ofs ->
ofs + size_chunk chunk > ofs' ->
load chunk' m2 b ofs' = Some Vundef.
Proof.
intros.
assert (exists v', load chunk' m2 b ofs' = Some v').
eauto with mem.
destruct H3 as [v' LOAD]. rewrite LOAD. decEq.
eapply load_store_overlap; eauto.
Qed.
Theorem load_store_mismatch:
forall chunk' v',
load chunk' m2 b ofs = Some v' ->
size_chunk chunk' <> size_chunk chunk ->
v' = Vundef.
Proof.
intros. destruct (store_inv _ _ _ _ _ _ STORE).
destruct (load_inv _ _ _ _ _ H). rewrite H4.
rewrite H2. unfold unchecked_store. simpl. rewrite update_s.
simpl. rewrite getN_setN_mismatch.
destruct chunk'; reflexivity.
repeat rewrite size_chunk_pred in H0; omega.
Qed.
Theorem load_store_mismatch':
forall chunk',
valid_access m1 chunk' b ofs ->
size_chunk chunk' <> size_chunk chunk ->
load chunk' m2 b ofs = Some Vundef.
Proof.
intros.
assert (exists v', load chunk' m2 b ofs = Some v').
eauto with mem.
destruct H1 as [v' LOAD]. rewrite LOAD. decEq.
eapply load_store_mismatch; eauto.
Qed.
Inductive load_store_cases
(chunk1: memory_chunk) (b1: block) (ofs1: Z)
(chunk2: memory_chunk) (b2: block) (ofs2: Z) : Type :=
| lsc_similar:
b1 = b2 -> ofs1 = ofs2 -> size_chunk chunk1 = size_chunk chunk2 ->
load_store_cases chunk1 b1 ofs1 chunk2 b2 ofs2
| lsc_other:
b1 <> b2 \/ ofs2 + size_chunk chunk2 <= ofs1 \/ ofs1 + size_chunk chunk1 <= ofs2 ->
load_store_cases chunk1 b1 ofs1 chunk2 b2 ofs2
| lsc_overlap:
b1 = b2 -> ofs1 <> ofs2 -> ofs2 + size_chunk chunk2 > ofs1 -> ofs1 + size_chunk chunk1 > ofs2 ->
load_store_cases chunk1 b1 ofs1 chunk2 b2 ofs2
| lsc_mismatch:
b1 = b2 -> ofs1 = ofs2 -> size_chunk chunk1 <> size_chunk chunk2 ->
load_store_cases chunk1 b1 ofs1 chunk2 b2 ofs2.
Definition load_store_classification:
forall (chunk1: memory_chunk) (b1: block) (ofs1: Z)
(chunk2: memory_chunk) (b2: block) (ofs2: Z),
load_store_cases chunk1 b1 ofs1 chunk2 b2 ofs2.
Proof.
intros. destruct (eq_block b1 b2).
destruct (zeq ofs1 ofs2).
destruct (zeq (size_chunk chunk1) (size_chunk chunk2)).
apply lsc_similar; auto.
apply lsc_mismatch; auto.
destruct (zle (ofs2 + size_chunk chunk2) ofs1).
apply lsc_other. tauto.
destruct (zle (ofs1 + size_chunk chunk1) ofs2).
apply lsc_other. tauto.
apply lsc_overlap; auto.
apply lsc_other; tauto.
Qed.
Theorem load_store_characterization:
forall chunk' b' ofs',
valid_access m1 chunk' b' ofs' ->
load chunk' m2 b' ofs' =
match load_store_classification chunk b ofs chunk' b' ofs' with
| lsc_similar _ _ _ => Some (Val.load_result chunk' v)
| lsc_other _ => load chunk' m1 b' ofs'
| lsc_overlap _ _ _ _ => Some Vundef
| lsc_mismatch _ _ _ => Some Vundef
end.
Proof.
intros.
assert (exists v', load chunk' m2 b' ofs' = Some v') by eauto with mem.
destruct H0 as [v' LOAD].
destruct (load_store_classification chunk b ofs chunk' b' ofs').
subst b' ofs'. apply load_store_similar; auto.
apply load_store_other; intuition.
subst b'. rewrite LOAD. decEq.
eapply load_store_overlap; eauto.
subst b' ofs'. rewrite LOAD. decEq.
eapply load_store_mismatch; eauto.
Qed.
End STORE.
Hint Resolve store_valid_block_1 store_valid_block_2: mem.
Hint Resolve store_valid_access_1 store_valid_access_2
store_valid_access_3: mem.
(** ** Properties related to [alloc]. *)
Section ALLOC.
Variable m1: mem.
Variables lo hi: Z.
Variable m2: mem.
Variable b: block.
Hypothesis ALLOC: alloc m1 lo hi = (m2, b).
Lemma nextblock_alloc:
nextblock m2 = Zsucc (nextblock m1).
Proof.
injection ALLOC; intros. rewrite <- H0; auto.
Qed.
Lemma alloc_result:
b = nextblock m1.
Proof.
injection ALLOC; auto.
Qed.
Lemma valid_block_alloc:
forall b', valid_block m1 b' -> valid_block m2 b'.
Proof.
unfold valid_block; intros. rewrite nextblock_alloc. omega.
Qed.
Lemma fresh_block_alloc:
~(valid_block m1 b).
Proof.
unfold valid_block. rewrite alloc_result. omega.
Qed.
Lemma valid_new_block:
valid_block m2 b.
Proof.
unfold valid_block. rewrite alloc_result. rewrite nextblock_alloc. omega.
Qed.
Hint Resolve valid_block_alloc fresh_block_alloc valid_new_block: mem.
Lemma valid_block_alloc_inv:
forall b', valid_block m2 b' -> b' = b \/ valid_block m1 b'.
Proof.
unfold valid_block; intros.
rewrite nextblock_alloc in H. rewrite alloc_result.
unfold block; omega.
Qed.
Lemma low_bound_alloc:
forall b', low_bound m2 b' = if zeq b' b then lo else low_bound m1 b'.
Proof.
intros. injection ALLOC; intros. rewrite <- H0; unfold low_bound; simpl.
unfold update. rewrite H. destruct (zeq b' b); auto.
Qed.
Lemma low_bound_alloc_same:
low_bound m2 b = lo.
Proof.
rewrite low_bound_alloc. apply zeq_true.
Qed.
Lemma low_bound_alloc_other:
forall b', valid_block m1 b' -> low_bound m2 b' = low_bound m1 b'.
Proof.
intros; rewrite low_bound_alloc.
apply zeq_false. eauto with mem.
Qed.
Lemma high_bound_alloc:
forall b', high_bound m2 b' = if zeq b' b then hi else high_bound m1 b'.
Proof.
intros. injection ALLOC; intros. rewrite <- H0; unfold high_bound; simpl.
unfold update. rewrite H. destruct (zeq b' b); auto.
Qed.
Lemma high_bound_alloc_same:
high_bound m2 b = hi.
Proof.
rewrite high_bound_alloc. apply zeq_true.
Qed.
Lemma high_bound_alloc_other:
forall b', valid_block m1 b' -> high_bound m2 b' = high_bound m1 b'.
Proof.
intros; rewrite high_bound_alloc.
apply zeq_false. eauto with mem.
Qed.
Lemma valid_access_alloc_other:
forall chunk b' ofs,
valid_access m1 chunk b' ofs ->
valid_access m2 chunk b' ofs.
Proof.
intros. inv H. constructor; auto with mem.
rewrite low_bound_alloc_other; auto.
rewrite high_bound_alloc_other; auto.
Qed.
Lemma valid_access_alloc_same:
forall chunk ofs,
lo <= ofs -> ofs + size_chunk chunk <= hi -> (align_chunk chunk | ofs) ->
valid_access m2 chunk b ofs.
Proof.
intros. constructor; auto with mem.
rewrite low_bound_alloc_same; auto.
rewrite high_bound_alloc_same; auto.
Qed.
Hint Resolve valid_access_alloc_other valid_access_alloc_same: mem.
Lemma valid_access_alloc_inv:
forall chunk b' ofs,
valid_access m2 chunk b' ofs ->
valid_access m1 chunk b' ofs \/
(b' = b /\ lo <= ofs /\ ofs + size_chunk chunk <= hi /\ (align_chunk chunk | ofs)).
Proof.
intros. inv H.
elim (valid_block_alloc_inv _ H0); intro.
subst b'. rewrite low_bound_alloc_same in H1.
rewrite high_bound_alloc_same in H2.
right. tauto.
left. constructor; auto.
rewrite low_bound_alloc_other in H1; auto.
rewrite high_bound_alloc_other in H2; auto.
Qed.
Theorem load_alloc_unchanged:
forall chunk b' ofs,
valid_block m1 b' ->
load chunk m2 b' ofs = load chunk m1 b' ofs.
Proof.
intros. unfold load.
destruct (in_bounds m2 chunk b' ofs).
elim (valid_access_alloc_inv _ _ _ v). intro.
rewrite in_bounds_true; auto.
injection ALLOC; intros. rewrite <- H2; simpl.
rewrite update_o. auto. rewrite H1. apply sym_not_equal. eauto with mem.
intros [A [B C]]. subst b'. elimtype False. eauto with mem.
destruct (in_bounds m1 chunk b' ofs).
elim n; eauto with mem.
auto.
Qed.
Theorem load_alloc_other:
forall chunk b' ofs v,
load chunk m1 b' ofs = Some v ->
load chunk m2 b' ofs = Some v.
Proof.
intros. rewrite <- H. apply load_alloc_unchanged. eauto with mem.
Qed.
Theorem load_alloc_same:
forall chunk ofs v,
load chunk m2 b ofs = Some v ->
v = Vundef.
Proof.
intros. destruct (load_inv _ _ _ _ _ H). rewrite H1.
injection ALLOC; intros. rewrite <- H3; simpl.
rewrite <- H2. rewrite update_s.
simpl. rewrite getN_init. destruct chunk; auto.
Qed.
Theorem load_alloc_same':
forall chunk ofs,
lo <= ofs -> ofs + size_chunk chunk <= hi -> (align_chunk chunk | ofs) ->
load chunk m2 b ofs = Some Vundef.
Proof.
intros. assert (exists v, load chunk m2 b ofs = Some v).
apply valid_access_load. constructor; eauto with mem.
rewrite low_bound_alloc_same. auto.
rewrite high_bound_alloc_same. auto.
destruct H2 as [v LOAD]. rewrite LOAD. decEq.
eapply load_alloc_same; eauto.
Qed.
End ALLOC.
Hint Resolve valid_block_alloc fresh_block_alloc valid_new_block: mem.
Hint Resolve valid_access_alloc_other valid_access_alloc_same: mem.
Hint Resolve load_alloc_unchanged: mem.
(** ** Properties related to [free]. *)
Section FREE.
Variable m: mem.
Variable bf: block.
Lemma valid_block_free_1:
forall b, valid_block m b -> valid_block (free m bf) b.
Proof.
unfold valid_block, free; intros; simpl; auto.
Qed.
Lemma valid_block_free_2:
forall b, valid_block (free m bf) b -> valid_block m b.
Proof.
unfold valid_block, free; intros; simpl in *; auto.
Qed.
Hint Resolve valid_block_free_1 valid_block_free_2: mem.
Lemma low_bound_free:
forall b, b <> bf -> low_bound (free m bf) b = low_bound m b.
Proof.
intros. unfold low_bound, free; simpl.
rewrite update_o; auto.
Qed.
Lemma high_bound_free:
forall b, b <> bf -> high_bound (free m bf) b = high_bound m b.
Proof.
intros. unfold high_bound, free; simpl.
rewrite update_o; auto.
Qed.
Lemma low_bound_free_same:
forall m b, low_bound (free m b) b = 0.
Proof.
intros. unfold low_bound; simpl. rewrite update_s. simpl; omega.
Qed.
Lemma high_bound_free_same:
forall m b, high_bound (free m b) b = 0.
Proof.
intros. unfold high_bound; simpl. rewrite update_s. simpl; omega.
Qed.
Lemma valid_access_free_1:
forall chunk b ofs,
valid_access m chunk b ofs -> b <> bf ->
valid_access (free m bf) chunk b ofs.
Proof.
intros. inv H. constructor; auto with mem.
rewrite low_bound_free; auto. rewrite high_bound_free; auto.
Qed.
Lemma valid_access_free_2:
forall chunk ofs, ~(valid_access (free m bf) chunk bf ofs).
Proof.
intros; red; intros. inv H.
unfold free, low_bound in H1; simpl in H1. rewrite update_s in H1. simpl in H1.
unfold free, high_bound in H2; simpl in H2. rewrite update_s in H2. simpl in H2.
generalize (size_chunk_pos chunk). omega.
Qed.
Hint Resolve valid_access_free_1 valid_access_free_2: mem.
Lemma valid_access_free_inv:
forall chunk b ofs,
valid_access (free m bf) chunk b ofs ->
valid_access m chunk b ofs /\ b <> bf.
Proof.
intros. destruct (eq_block b bf). subst b.
elim (valid_access_free_2 _ _ H).
inv H. rewrite low_bound_free in H1; auto.
rewrite high_bound_free in H2; auto.
split; auto. constructor; auto with mem.
Qed.
Theorem load_free:
forall chunk b ofs,
b <> bf ->
load chunk (free m bf) b ofs = load chunk m b ofs.
Proof.
intros. unfold load.
destruct (in_bounds m chunk b ofs).
rewrite in_bounds_true; auto with mem.
unfold free; simpl. rewrite update_o; auto.
destruct (in_bounds (free m bf) chunk b ofs); auto.
elim n. elim (valid_access_free_inv _ _ _ v); auto.
Qed.
End FREE.
(** ** Properties related to [free_list] *)
Lemma valid_block_free_list_1:
forall bl m b, valid_block m b -> valid_block (free_list m bl) b.
Proof.
induction bl; simpl; intros. auto.
apply valid_block_free_1; auto.
Qed.
Lemma valid_block_free_list_2:
forall bl m b, valid_block (free_list m bl) b -> valid_block m b.
Proof.
induction bl; simpl; intros. auto.
apply IHbl. apply valid_block_free_2 with a; auto.
Qed.
Lemma valid_access_free_list:
forall chunk b ofs m bl,
valid_access m chunk b ofs -> ~In b bl ->
valid_access (free_list m bl) chunk b ofs.
Proof.
induction bl; simpl; intros. auto.
apply valid_access_free_1. apply IHbl. auto. intuition. intuition congruence.
Qed.
Lemma valid_access_free_list_inv:
forall chunk b ofs m bl,
valid_access (free_list m bl) chunk b ofs ->
~In b bl /\ valid_access m chunk b ofs.
Proof.
induction bl; simpl; intros.
tauto.
elim (valid_access_free_inv _ _ _ _ _ H); intros.
elim (IHbl H0); intros.
intuition congruence.
Qed.
(** ** Properties related to pointer validity *)
Lemma valid_pointer_valid_access:
forall m b ofs,
valid_pointer m b ofs = true <-> valid_access m Mint8unsigned b ofs.
Proof.
unfold valid_pointer; intros; split; intros.
destruct (andb_prop _ _ H). destruct (andb_prop _ _ H0).
constructor. red. eapply proj_sumbool_true; eauto.
eapply proj_sumbool_true; eauto.
change (size_chunk Mint8unsigned) with 1.
generalize (proj_sumbool_true _ H1). omega.
simpl. apply Zone_divide.
inv H. unfold proj_sumbool.
rewrite zlt_true; auto. rewrite zle_true; auto.
change (size_chunk Mint8unsigned) with 1 in H2.
rewrite zlt_true. auto. omega.
Qed.
Theorem valid_pointer_alloc:
forall (m1 m2: mem) (lo hi: Z) (b b': block) (ofs: Z),
alloc m1 lo hi = (m2, b') ->
valid_pointer m1 b ofs = true ->
valid_pointer m2 b ofs = true.
Proof.
intros. rewrite valid_pointer_valid_access in H0.
rewrite valid_pointer_valid_access.
eauto with mem.
Qed.
Theorem valid_pointer_store:
forall (chunk: memory_chunk) (m1 m2: mem) (b b': block) (ofs ofs': Z) (v: val),
store chunk m1 b' ofs' v = Some m2 ->
valid_pointer m1 b ofs = true -> valid_pointer m2 b ofs = true.
Proof.
intros. rewrite valid_pointer_valid_access in H0.
rewrite valid_pointer_valid_access.
eauto with mem.
Qed.
(** * Generic injections between memory states. *)
Section GENERIC_INJECT.
Definition meminj : Type := block -> option (block * Z).
Variable val_inj: meminj -> val -> val -> Prop.
Hypothesis val_inj_undef:
forall mi, val_inj mi Vundef Vundef.
Definition mem_inj (mi: meminj) (m1 m2: mem) :=
forall chunk b1 ofs v1 b2 delta,
mi b1 = Some(b2, delta) ->
load chunk m1 b1 ofs = Some v1 ->
exists v2, load chunk m2 b2 (ofs + delta) = Some v2 /\ val_inj mi v1 v2.
Lemma valid_access_inj:
forall mi m1 m2 chunk b1 ofs b2 delta,
mi b1 = Some(b2, delta) ->
mem_inj mi m1 m2 ->
valid_access m1 chunk b1 ofs ->
valid_access m2 chunk b2 (ofs + delta).
Proof.
intros.
assert (exists v1, load chunk m1 b1 ofs = Some v1) by eauto with mem.
destruct H2 as [v1 LOAD1].
destruct (H0 _ _ _ _ _ _ H LOAD1) as [v2 [LOAD2 VCP]].
eauto with mem.
Qed.
Hint Resolve valid_access_inj: mem.
Lemma store_unmapped_inj:
forall mi m1 m2 b ofs v chunk m1',
mem_inj mi m1 m2 ->
mi b = None ->
store chunk m1 b ofs v = Some m1' ->
mem_inj mi m1' m2.
Proof.
intros; red; intros.
assert (load chunk0 m1 b1 ofs0 = Some v1).
rewrite <- H3; symmetry. eapply load_store_other; eauto.
left. congruence.
eapply H; eauto.
Qed.
Lemma store_outside_inj:
forall mi m1 m2 chunk b ofs v m2',
mem_inj mi m1 m2 ->
(forall b' delta,
mi b' = Some(b, delta) ->
high_bound m1 b' + delta <= ofs
\/ ofs + size_chunk chunk <= low_bound m1 b' + delta) ->
store chunk m2 b ofs v = Some m2' ->
mem_inj mi m1 m2'.
Proof.
intros; red; intros.
exploit H; eauto. intros [v2 [LOAD2 VINJ]].
exists v2; split; auto.
rewrite <- LOAD2. eapply load_store_other; eauto.
destruct (eq_block b2 b). subst b2.
right. generalize (H0 _ _ H2); intro.
assert (valid_access m1 chunk0 b1 ofs0) by eauto with mem.
inv H5. omega. auto.
Qed.
Definition meminj_no_overlap (mi: meminj) (m: mem) : Prop :=
forall b1 b1' delta1 b2 b2' delta2,
b1 <> b2 ->
mi b1 = Some (b1', delta1) ->
mi b2 = Some (b2', delta2) ->
b1' <> b2'
\/ low_bound m b1 >= high_bound m b1
\/ low_bound m b2 >= high_bound m b2
\/ high_bound m b1 + delta1 <= low_bound m b2 + delta2
\/ high_bound m b2 + delta2 <= low_bound m b1 + delta1.
Lemma store_mapped_inj:
forall mi m1 m2 b1 ofs b2 delta v1 v2 chunk m1',
mem_inj mi m1 m2 ->
meminj_no_overlap mi m1 ->
mi b1 = Some(b2, delta) ->
store chunk m1 b1 ofs v1 = Some m1' ->
(forall chunk', size_chunk chunk' = size_chunk chunk ->
val_inj mi (Val.load_result chunk' v1) (Val.load_result chunk' v2)) ->
exists m2',
store chunk m2 b2 (ofs + delta) v2 = Some m2' /\ mem_inj mi m1' m2'.
Proof.
intros.
assert (exists m2', store chunk m2 b2 (ofs + delta) v2 = Some m2') by eauto with mem.
destruct H4 as [m2' STORE2].
exists m2'; split. auto.
red. intros chunk' b1' ofs' v b2' delta' CP LOAD1.
assert (valid_access m1 chunk' b1' ofs') by eauto with mem.
generalize (load_store_characterization _ _ _ _ _ _ H2 _ _ _ H4).
destruct (load_store_classification chunk b1 ofs chunk' b1' ofs');
intro.
(* similar *)
subst b1' ofs'.
rewrite CP in H1. inv H1.
rewrite LOAD1 in H5. inv H5.
exists (Val.load_result chunk' v2). split.
eapply load_store_similar; eauto.
auto.
(* disjoint *)
rewrite LOAD1 in H5.
destruct (H _ _ _ _ _ _ CP (sym_equal H5)) as [v2' [LOAD2 VCP]].
exists v2'. split; auto.
rewrite <- LOAD2. eapply load_store_other; eauto.
destruct (eq_block b1 b1'). subst b1'.
rewrite CP in H1; inv H1.
right. elim o; [congruence | omega].
assert (valid_access m1 chunk b1 ofs) by eauto with mem.
generalize (H0 _ _ _ _ _ _ n H1 CP). intros [A | [A | [A | A]]].
auto.
inv H6. generalize (size_chunk_pos chunk). intro. omegaContradiction.
inv H4. generalize (size_chunk_pos chunk'). intro. omegaContradiction.
right. inv H4. inv H6. omega.
(* overlapping *)
subst b1'. rewrite CP in H1; inv H1.
assert (exists v2', load chunk' m2' b2 (ofs' + delta) = Some v2') by eauto with mem.
destruct H1 as [v2' LOAD2'].
assert (v2' = Vundef). eapply load_store_overlap; eauto.
omega. omega. omega.
exists v2'; split. auto.
replace v with Vundef by congruence. subst v2'. apply val_inj_undef.
(* mismatch *)
subst b1' ofs'. rewrite CP in H1; inv H1.
assert (exists v2', load chunk' m2' b2 (ofs + delta) = Some v2') by eauto with mem.
destruct H1 as [v2' LOAD2'].
assert (v2' = Vundef). eapply load_store_mismatch; eauto.
exists v2'; split. auto.
replace v with Vundef by congruence. subst v2'. apply val_inj_undef.
Qed.
Definition inj_offset_aligned (delta: Z) (size: Z) : Prop :=
forall chunk, size_chunk chunk <= size -> (align_chunk chunk | delta).
Lemma alloc_parallel_inj:
forall mi m1 m2 lo1 hi1 m1' b1 lo2 hi2 m2' b2 delta,
mem_inj mi m1 m2 ->
alloc m1 lo1 hi1 = (m1', b1) ->
alloc m2 lo2 hi2 = (m2', b2) ->
mi b1 = Some(b2, delta) ->
lo2 <= lo1 + delta -> hi1 + delta <= hi2 ->
inj_offset_aligned delta (hi1 - lo1) ->
mem_inj mi m1' m2'.
Proof.
intros; red; intros.
exploit (valid_access_alloc_inv m1); eauto with mem.
intros [A | [A [B [C D]]]].
assert (load chunk m1 b0 ofs = Some v1).
rewrite <- H7. symmetry. eapply load_alloc_unchanged; eauto with mem.
exploit H; eauto. intros [v2 [LOAD2 VINJ]].
exists v2; split.
rewrite <- LOAD2. eapply load_alloc_unchanged; eauto with mem.
auto.
subst b0. rewrite H2 in H6. inversion H6. subst b3 delta0.
assert (v1 = Vundef). eapply load_alloc_same with (m1 := m1); eauto.
subst v1.
assert (exists v2, load chunk m2' b2 (ofs + delta) = Some v2).
apply valid_access_load.
eapply valid_access_alloc_same; eauto. omega. omega.
apply Zdivide_plus_r; auto. apply H5. omega.
destruct H8 as [v2 LOAD2].
assert (v2 = Vundef). eapply load_alloc_same with (m1 := m2); eauto.
subst v2.
exists Vundef; split. auto. apply val_inj_undef.
Qed.
Lemma alloc_right_inj:
forall mi m1 m2 lo hi b2 m2',
mem_inj mi m1 m2 ->
alloc m2 lo hi = (m2', b2) ->
mem_inj mi m1 m2'.
Proof.
intros; red; intros.
exploit H; eauto. intros [v2 [LOAD2 VINJ]].
exists v2; split; auto.
assert (valid_block m2 b0).
apply valid_access_valid_block with chunk (ofs + delta).
eauto with mem.
rewrite <- LOAD2. eapply load_alloc_unchanged; eauto.
Qed.
Hypothesis val_inj_undef_any:
forall mi v, val_inj mi Vundef v.
Lemma alloc_left_unmapped_inj:
forall mi m1 m2 lo hi b1 m1',
mem_inj mi m1 m2 ->
alloc m1 lo hi = (m1', b1) ->
mi b1 = None ->
mem_inj mi m1' m2.
Proof.
intros; red; intros.
exploit (valid_access_alloc_inv m1); eauto with mem.
intros [A | [A [B C]]].
eapply H; eauto.
rewrite <- H3. symmetry. eapply load_alloc_unchanged; eauto with mem.
subst b0. congruence.
Qed.
Lemma alloc_left_mapped_inj:
forall mi m1 m2 lo hi b1 m1' b2 delta,
mem_inj mi m1 m2 ->
alloc m1 lo hi = (m1', b1) ->
mi b1 = Some(b2, delta) ->
valid_block m2 b2 ->
low_bound m2 b2 <= lo + delta -> hi + delta <= high_bound m2 b2 ->
inj_offset_aligned delta (hi - lo) ->
mem_inj mi m1' m2.
Proof.
intros; red; intros.
exploit (valid_access_alloc_inv m1); eauto with mem.
intros [A | [A [B [C D]]]].
eapply H; eauto.
rewrite <- H7. symmetry. eapply load_alloc_unchanged; eauto with mem.
subst b0. rewrite H1 in H6. inversion H6. subst b3 delta0.
assert (v1 = Vundef). eapply load_alloc_same with (m1 := m1); eauto.
subst v1.
assert (exists v2, load chunk m2 b2 (ofs + delta) = Some v2).
apply valid_access_load. constructor. auto. omega. omega.
apply Zdivide_plus_r; auto. apply H5. omega.
destruct H8 as [v2 LOAD2]. exists v2; split. auto.
apply val_inj_undef_any.
Qed.
Lemma free_parallel_inj:
forall mi m1 m2 b1 b2 delta,
mem_inj mi m1 m2 ->
mi b1 = Some(b2, delta) ->
(forall b delta', mi b = Some(b2, delta') -> b = b1) ->
mem_inj mi (free m1 b1) (free m2 b2).
Proof.
intros; red; intros.
exploit valid_access_free_inv; eauto with mem. intros [A B].
assert (load chunk m1 b0 ofs = Some v1).
rewrite <- H3. symmetry. apply load_free. auto.
exploit H; eauto. intros [v2 [LOAD2 INJ]].
exists v2; split.
rewrite <- LOAD2. apply load_free.
red; intro; subst b3. elim B. eauto.
auto.
Qed.
Lemma free_left_inj:
forall mi m1 m2 b1,
mem_inj mi m1 m2 ->
mem_inj mi (free m1 b1) m2.
Proof.
intros; red; intros.
exploit valid_access_free_inv; eauto with mem. intros [A B].
eapply H; eauto with mem.
rewrite <- H1; symmetry; eapply load_free; eauto.
Qed.
Lemma free_list_left_inj:
forall mi bl m1 m2,
mem_inj mi m1 m2 ->
mem_inj mi (free_list m1 bl) m2.
Proof.
induction bl; intros; simpl.
auto.
apply free_left_inj. auto.
Qed.
Lemma free_right_inj:
forall mi m1 m2 b2,
mem_inj mi m1 m2 ->
(forall b1 delta chunk ofs,
mi b1 = Some(b2, delta) -> ~(valid_access m1 chunk b1 ofs)) ->
mem_inj mi m1 (free m2 b2).
Proof.
intros; red; intros.
assert (b0 <> b2).
red; intro; subst b0. elim (H0 b1 delta chunk ofs H1).
eauto with mem.
exploit H; eauto. intros [v2 [LOAD2 INJ]].
exists v2; split; auto.
rewrite <- LOAD2. apply load_free. auto.
Qed.
Lemma valid_pointer_inj:
forall mi m1 m2 b1 ofs b2 delta,
mi b1 = Some(b2, delta) ->
mem_inj mi m1 m2 ->
valid_pointer m1 b1 ofs = true ->
valid_pointer m2 b2 (ofs + delta) = true.
Proof.
intros. rewrite valid_pointer_valid_access in H1.
rewrite valid_pointer_valid_access. eauto with mem.
Qed.
End GENERIC_INJECT.
(** ** Store extensions *)
(** A store [m2] extends a store [m1] if [m2] can be obtained from [m1]
by increasing the sizes of the memory blocks of [m1] (decreasing
the low bounds, increasing the high bounds), while still keeping the
same contents for block offsets that are valid in [m1]. *)
Definition inject_id : meminj := fun b => Some(b, 0).
Definition val_inj_id (mi: meminj) (v1 v2: val) : Prop := v1 = v2.
Definition extends (m1 m2: mem) :=
nextblock m1 = nextblock m2 /\ mem_inj val_inj_id inject_id m1 m2.
Theorem extends_refl:
forall (m: mem), extends m m.
Proof.
intros; split. auto.
red; unfold inject_id; intros. inv H.
exists v1; split. replace (ofs + 0) with ofs by omega. auto.
unfold val_inj_id; auto.
Qed.
Theorem alloc_extends:
forall (m1 m2 m1' m2': mem) (lo1 hi1 lo2 hi2: Z) (b1 b2: block),
extends m1 m2 ->
lo2 <= lo1 -> hi1 <= hi2 ->
alloc m1 lo1 hi1 = (m1', b1) ->
alloc m2 lo2 hi2 = (m2', b2) ->
b1 = b2 /\ extends m1' m2'.
Proof.
intros. destruct H.
assert (b1 = b2).
transitivity (nextblock m1). eapply alloc_result; eauto.
symmetry. rewrite H. eapply alloc_result; eauto.
subst b2. split. auto. split.
rewrite (nextblock_alloc _ _ _ _ _ H2).
rewrite (nextblock_alloc _ _ _ _ _ H3).
congruence.
eapply alloc_parallel_inj; eauto.
unfold val_inj_id; auto.
unfold inject_id; eauto.
omega. omega.
red; intros. apply Zdivide_0.
Qed.
Theorem free_extends:
forall (m1 m2: mem) (b: block),
extends m1 m2 ->
extends (free m1 b) (free m2 b).
Proof.
intros. destruct H. split.
simpl; auto.
eapply free_parallel_inj; eauto.
unfold inject_id. eauto.
unfold inject_id; intros. congruence.
Qed.
Theorem load_extends:
forall (chunk: memory_chunk) (m1 m2: mem) (b: block) (ofs: Z) (v: val),
extends m1 m2 ->
load chunk m1 b ofs = Some v ->
load chunk m2 b ofs = Some v.
Proof.
intros. destruct H.
exploit H1; eauto. unfold inject_id. eauto.
unfold val_inj_id. intros [v2 [LOAD EQ]].
replace (ofs + 0) with ofs in LOAD by omega. congruence.
Qed.
Theorem store_within_extends:
forall (chunk: memory_chunk) (m1 m2 m1': mem) (b: block) (ofs: Z) (v: val),
extends m1 m2 ->
store chunk m1 b ofs v = Some m1' ->
exists m2', store chunk m2 b ofs v = Some m2' /\ extends m1' m2'.
Proof.
intros. destruct H.
exploit store_mapped_inj; eauto.
unfold val_inj_id; eauto.
unfold meminj_no_overlap, inject_id; intros.
inv H3. inv H4. auto.
unfold inject_id; eauto.
unfold val_inj_id; intros. eauto.
intros [m2' [STORE MINJ]].
exists m2'; split.
replace (ofs + 0) with ofs in STORE by omega. auto.
split.
rewrite (nextblock_store _ _ _ _ _ _ H0).
rewrite (nextblock_store _ _ _ _ _ _ STORE).
auto.
auto.
Qed.
Theorem store_outside_extends:
forall (chunk: memory_chunk) (m1 m2 m2': mem) (b: block) (ofs: Z) (v: val),
extends m1 m2 ->
ofs + size_chunk chunk <= low_bound m1 b \/ high_bound m1 b <= ofs ->
store chunk m2 b ofs v = Some m2' ->
extends m1 m2'.
Proof.
intros. destruct H. split.
rewrite (nextblock_store _ _ _ _ _ _ H1). auto.
eapply store_outside_inj; eauto.
unfold inject_id; intros. inv H3. omega.
Qed.
Theorem valid_pointer_extends:
forall m1 m2 b ofs,
extends m1 m2 -> valid_pointer m1 b ofs = true ->
valid_pointer m2 b ofs = true.
Proof.
intros. destruct H.
replace ofs with (ofs + 0) by omega.
apply valid_pointer_inj with val_inj_id inject_id m1 b; auto.
Qed.
(** * The ``less defined than'' relation over memory states *)
(** A memory state [m1] is less defined than [m2] if, for all addresses,
the value [v1] read in [m1] at this address is less defined than
the value [v2] read in [m2], that is, either [v1 = v2] or [v1 = Vundef]. *)
Definition val_inj_lessdef (mi: meminj) (v1 v2: val) : Prop :=
Val.lessdef v1 v2.
Definition lessdef (m1 m2: mem) : Prop :=
nextblock m1 = nextblock m2 /\
mem_inj val_inj_lessdef inject_id m1 m2.
Lemma lessdef_refl:
forall m, lessdef m m.
Proof.
intros; split. auto.
red; intros. unfold inject_id in H. inv H.
exists v1; split. replace (ofs + 0) with ofs by omega. auto.
red. constructor.
Qed.
Lemma load_lessdef:
forall m1 m2 chunk b ofs v1,
lessdef m1 m2 -> load chunk m1 b ofs = Some v1 ->
exists v2, load chunk m2 b ofs = Some v2 /\ Val.lessdef v1 v2.
Proof.
intros. destruct H.
exploit H1; eauto. unfold inject_id. eauto.
intros [v2 [LOAD INJ]]. exists v2; split.
replace ofs with (ofs + 0) by omega. auto.
auto.
Qed.
Lemma loadv_lessdef:
forall m1 m2 chunk addr1 addr2 v1,
lessdef m1 m2 -> Val.lessdef addr1 addr2 ->
loadv chunk m1 addr1 = Some v1 ->
exists v2, loadv chunk m2 addr2 = Some v2 /\ Val.lessdef v1 v2.
Proof.
intros. inv H0.
destruct addr2; simpl in *; try discriminate.
eapply load_lessdef; eauto.
simpl in H1; discriminate.
Qed.
Lemma store_lessdef:
forall m1 m2 chunk b ofs v1 v2 m1',
lessdef m1 m2 -> Val.lessdef v1 v2 ->
store chunk m1 b ofs v1 = Some m1' ->
exists m2', store chunk m2 b ofs v2 = Some m2' /\ lessdef m1' m2'.
Proof.
intros. destruct H.
exploit store_mapped_inj; eauto.
unfold val_inj_lessdef; intros; constructor.
red; unfold inject_id; intros. inv H4. inv H5. auto.
unfold inject_id; eauto.
unfold val_inj_lessdef; intros.
apply Val.load_result_lessdef. eexact H0.
intros [m2' [STORE MINJ]].
exists m2'; split. replace ofs with (ofs + 0) by omega. auto.
split.
rewrite (nextblock_store _ _ _ _ _ _ H1).
rewrite (nextblock_store _ _ _ _ _ _ STORE).
auto.
auto.
Qed.
Lemma storev_lessdef:
forall m1 m2 chunk addr1 v1 addr2 v2 m1',
lessdef m1 m2 -> Val.lessdef addr1 addr2 -> Val.lessdef v1 v2 ->
storev chunk m1 addr1 v1 = Some m1' ->
exists m2', storev chunk m2 addr2 v2 = Some m2' /\ lessdef m1' m2'.
Proof.
intros. inv H0.
destruct addr2; simpl in H2; try discriminate.
simpl. eapply store_lessdef; eauto.
discriminate.
Qed.
Lemma alloc_lessdef:
forall m1 m2 lo hi b1 m1' b2 m2',
lessdef m1 m2 -> alloc m1 lo hi = (m1', b1) -> alloc m2 lo hi = (m2', b2) ->
b1 = b2 /\ lessdef m1' m2'.
Proof.
intros. destruct H.
assert (b1 = b2).
transitivity (nextblock m1). eapply alloc_result; eauto.
symmetry. rewrite H. eapply alloc_result; eauto.
subst b2. split. auto. split.
rewrite (nextblock_alloc _ _ _ _ _ H0).
rewrite (nextblock_alloc _ _ _ _ _ H1).
congruence.
eapply alloc_parallel_inj; eauto.
unfold val_inj_lessdef; auto.
unfold inject_id; eauto.
omega. omega.
red; intros. apply Zdivide_0.
Qed.
Lemma free_lessdef:
forall m1 m2 b, lessdef m1 m2 -> lessdef (free m1 b) (free m2 b).
Proof.
intros. destruct H. split.
simpl; auto.
eapply free_parallel_inj; eauto.
unfold inject_id. eauto.
unfold inject_id; intros. congruence.
Qed.
Lemma free_left_lessdef:
forall m1 m2 b,
lessdef m1 m2 -> lessdef (free m1 b) m2.
Proof.
intros. destruct H. split.
rewrite <- H. auto.
apply free_left_inj; auto.
Qed.
Lemma free_right_lessdef:
forall m1 m2 b,
lessdef m1 m2 -> low_bound m1 b >= high_bound m1 b ->
lessdef m1 (free m2 b).
Proof.
intros. destruct H. unfold lessdef. split.
rewrite H. auto.
apply free_right_inj; auto. intros. unfold inject_id in H2. inv H2.
red; intro. inv H2. generalize (size_chunk_pos chunk); intro. omega.
Qed.
Lemma valid_block_lessdef:
forall m1 m2 b, lessdef m1 m2 -> valid_block m1 b -> valid_block m2 b.
Proof.
unfold valid_block. intros. destruct H. rewrite <- H; auto.
Qed.
Lemma valid_pointer_lessdef:
forall m1 m2 b ofs,
lessdef m1 m2 -> valid_pointer m1 b ofs = true -> valid_pointer m2 b ofs = true.
Proof.
intros. destruct H.
replace ofs with (ofs + 0) by omega.
apply valid_pointer_inj with val_inj_lessdef inject_id m1 b; auto.
Qed.
(** ** Memory injections *)
(** A memory injection [f] is a function from addresses to either [None]
or [Some] of an address and an offset. It defines a correspondence
between the blocks of two memory states [m1] and [m2]:
- if [f b = None], the block [b] of [m1] has no equivalent in [m2];
- if [f b = Some(b', ofs)], the block [b] of [m2] corresponds to
a sub-block at offset [ofs] of the block [b'] in [m2].
*)
(** A memory injection defines a relation between values that is the
identity relation, except for pointer values which are shifted
as prescribed by the memory injection. *)
Inductive val_inject (mi: meminj): val -> val -> Prop :=
| val_inject_int:
forall i, val_inject mi (Vint i) (Vint i)
| val_inject_float:
forall f, val_inject mi (Vfloat f) (Vfloat f)
| val_inject_ptr:
forall b1 ofs1 b2 ofs2 x,
mi b1 = Some (b2, x) ->
ofs2 = Int.add ofs1 (Int.repr x) ->
val_inject mi (Vptr b1 ofs1) (Vptr b2 ofs2)
| val_inject_undef: forall v,
val_inject mi Vundef v.
Hint Resolve val_inject_int val_inject_float val_inject_ptr
val_inject_undef.
Inductive val_list_inject (mi: meminj): list val -> list val-> Prop:=
| val_nil_inject :
val_list_inject mi nil nil
| val_cons_inject : forall v v' vl vl' ,
val_inject mi v v' -> val_list_inject mi vl vl'->
val_list_inject mi (v :: vl) (v' :: vl').
Hint Resolve val_nil_inject val_cons_inject.
(** A memory state [m1] injects into another memory state [m2] via the
memory injection [f] if the following conditions hold:
- loads in [m1] must have matching loads in [m2] in the sense
of the [mem_inj] predicate;
- unallocated blocks in [m1] must be mapped to [None] by [f];
- if [f b = Some(b', delta)], [b'] must be valid in [m2];
- distinct blocks in [m1] are mapped to non-overlapping sub-blocks in [m2];
- the sizes of [m2]'s blocks are representable with signed machine integers;
- the offsets [delta] are representable with signed machine integers.
*)
Record mem_inject (f: meminj) (m1 m2: mem) : Prop :=
mk_mem_inject {
mi_inj:
mem_inj val_inject f m1 m2;
mi_freeblocks:
forall b, ~(valid_block m1 b) -> f b = None;
mi_mappedblocks:
forall b b' delta, f b = Some(b', delta) -> valid_block m2 b';
mi_no_overlap:
meminj_no_overlap f m1;
mi_range_1:
forall b b' delta,
f b = Some(b', delta) ->
Int.min_signed <= delta <= Int.max_signed;
mi_range_2:
forall b b' delta,
f b = Some(b', delta) ->
delta = 0 \/ (Int.min_signed <= low_bound m2 b' /\ high_bound m2 b' <= Int.max_signed)
}.
(** The following lemmas establish the absence of machine integer overflow
during address computations. *)
Lemma address_inject:
forall f m1 m2 chunk b1 ofs1 b2 delta,
mem_inject f m1 m2 ->
valid_access m1 chunk b1 (Int.signed ofs1) ->
f b1 = Some (b2, delta) ->
Int.signed (Int.add ofs1 (Int.repr delta)) = Int.signed ofs1 + delta.
Proof.
intros. inversion H.
elim (mi_range_4 _ _ _ H1); intro.
(* delta = 0 *)
subst delta. change (Int.repr 0) with Int.zero.
rewrite Int.add_zero. omega.
(* delta <> 0 *)
rewrite Int.add_signed.
repeat rewrite Int.signed_repr. auto.
eauto.
assert (valid_access m2 chunk b2 (Int.signed ofs1 + delta)).
eapply valid_access_inj; eauto.
inv H3. generalize (size_chunk_pos chunk); omega.
eauto.
Qed.
Lemma valid_pointer_inject_no_overflow:
forall f m1 m2 b ofs b' x,
mem_inject f m1 m2 ->
valid_pointer m1 b (Int.signed ofs) = true ->
f b = Some(b', x) ->
Int.min_signed <= Int.signed ofs + Int.signed (Int.repr x) <= Int.max_signed.
Proof.
intros. inv H. rewrite valid_pointer_valid_access in H0.
assert (valid_access m2 Mint8unsigned b' (Int.signed ofs + x)).
eapply valid_access_inj; eauto.
inv H. change (size_chunk Mint8unsigned) with 1 in H4.
rewrite Int.signed_repr; eauto.
exploit mi_range_4; eauto. intros [A | [A B]].
subst x. rewrite Zplus_0_r. apply Int.signed_range.
omega.
Qed.
Lemma valid_pointer_inject:
forall f m1 m2 b ofs b' ofs',
mem_inject f m1 m2 ->
valid_pointer m1 b (Int.signed ofs) = true ->
val_inject f (Vptr b ofs) (Vptr b' ofs') ->
valid_pointer m2 b' (Int.signed ofs') = true.
Proof.
intros. inv H1.
exploit valid_pointer_inject_no_overflow; eauto. intro NOOV.
inv H. rewrite Int.add_signed. rewrite Int.signed_repr; auto.
rewrite Int.signed_repr; eauto.
eapply valid_pointer_inj; eauto.
Qed.
Lemma different_pointers_inject:
forall f m m' b1 ofs1 b2 ofs2 b1' delta1 b2' delta2,
mem_inject f m m' ->
b1 <> b2 ->
valid_pointer m b1 (Int.signed ofs1) = true ->
valid_pointer m b2 (Int.signed ofs2) = true ->
f b1 = Some (b1', delta1) ->
f b2 = Some (b2', delta2) ->
b1' <> b2' \/
Int.signed (Int.add ofs1 (Int.repr delta1)) <>
Int.signed (Int.add ofs2 (Int.repr delta2)).
Proof.
intros.
rewrite valid_pointer_valid_access in H1.
rewrite valid_pointer_valid_access in H2.
rewrite (address_inject _ _ _ _ _ _ _ _ H H1 H3).
rewrite (address_inject _ _ _ _ _ _ _ _ H H2 H4).
inv H1. simpl in H7. inv H2. simpl in H10.
exploit (mi_no_overlap _ _ _ H); eauto.
intros [A | [A | [A | [A | A]]]].
auto. omegaContradiction. omegaContradiction.
right. omega. right. omega.
Qed.
(** Relation between injections and loads. *)
Lemma load_inject:
forall f m1 m2 chunk b1 ofs b2 delta v1,
mem_inject f m1 m2 ->
load chunk m1 b1 ofs = Some v1 ->
f b1 = Some (b2, delta) ->
exists v2, load chunk m2 b2 (ofs + delta) = Some v2 /\ val_inject f v1 v2.
Proof.
intros. inversion H.
eapply mi_inj0; eauto.
Qed.
Lemma loadv_inject:
forall f m1 m2 chunk a1 a2 v1,
mem_inject f m1 m2 ->
loadv chunk m1 a1 = Some v1 ->
val_inject f a1 a2 ->
exists v2, loadv chunk m2 a2 = Some v2 /\ val_inject f v1 v2.
Proof.
intros. inv H1; simpl in H0; try discriminate.
exploit load_inject; eauto. intros [v2 [LOAD INJ]].
exists v2; split; auto. simpl.
replace (Int.signed (Int.add ofs1 (Int.repr x)))
with (Int.signed ofs1 + x).
auto. symmetry. eapply address_inject; eauto with mem.
Qed.
(** Relation between injections and stores. *)
Inductive val_content_inject (f: meminj): memory_chunk -> val -> val -> Prop :=
| val_content_inject_base:
forall chunk v1 v2,
val_inject f v1 v2 ->
val_content_inject f chunk v1 v2
| val_content_inject_8:
forall chunk n1 n2,
chunk = Mint8unsigned \/ chunk = Mint8signed ->
Int.zero_ext 8 n1 = Int.zero_ext 8 n2 ->
val_content_inject f chunk (Vint n1) (Vint n2)
| val_content_inject_16:
forall chunk n1 n2,
chunk = Mint16unsigned \/ chunk = Mint16signed ->
Int.zero_ext 16 n1 = Int.zero_ext 16 n2 ->
val_content_inject f chunk (Vint n1) (Vint n2)
| val_content_inject_32:
forall f1 f2,
Float.singleoffloat f1 = Float.singleoffloat f2 ->
val_content_inject f Mfloat32 (Vfloat f1) (Vfloat f2).
Hint Resolve val_content_inject_base.
Lemma load_result_inject:
forall f chunk v1 v2 chunk',
val_content_inject f chunk v1 v2 ->
size_chunk chunk = size_chunk chunk' ->
val_inject f (Val.load_result chunk' v1) (Val.load_result chunk' v2).
Proof.
intros. inv H; simpl.
inv H1; destruct chunk'; simpl; econstructor; eauto.
elim H1; intro; subst chunk;
destruct chunk'; simpl in H0; try discriminate; simpl.
replace (Int.sign_ext 8 n1) with (Int.sign_ext 8 n2).
constructor. apply Int.sign_ext_equal_if_zero_equal; auto. compute; auto.
rewrite H2. constructor.
replace (Int.sign_ext 8 n1) with (Int.sign_ext 8 n2).
constructor. apply Int.sign_ext_equal_if_zero_equal; auto. compute; auto.
rewrite H2. constructor.
elim H1; intro; subst chunk;
destruct chunk'; simpl in H0; try discriminate; simpl.
replace (Int.sign_ext 16 n1) with (Int.sign_ext 16 n2).
constructor. apply Int.sign_ext_equal_if_zero_equal; auto. compute; auto.
rewrite H2. constructor.
replace (Int.sign_ext 16 n1) with (Int.sign_ext 16 n2).
constructor. apply Int.sign_ext_equal_if_zero_equal; auto. compute; auto.
rewrite H2. constructor.
destruct chunk'; simpl in H0; try discriminate; simpl.
constructor. rewrite H1; constructor.
Qed.
Lemma store_mapped_inject_1 :
forall f chunk m1 b1 ofs v1 n1 m2 b2 delta v2,
mem_inject f m1 m2 ->
store chunk m1 b1 ofs v1 = Some n1 ->
f b1 = Some (b2, delta) ->
val_content_inject f chunk v1 v2 ->
exists n2,
store chunk m2 b2 (ofs + delta) v2 = Some n2
/\ mem_inject f n1 n2.
Proof.
intros. inversion H.
exploit store_mapped_inj; eauto.
intros; constructor.
intros. apply load_result_inject with chunk; eauto.
intros [n2 [STORE MINJ]].
exists n2; split. auto. constructor.
(* inj *)
auto.
(* freeblocks *)
intros. apply mi_freeblocks0. red; intro. elim H3. eauto with mem.
(* mappedblocks *)
intros. eauto with mem.
(* no_overlap *)
red; intros.
repeat rewrite (low_bound_store _ _ _ _ _ _ H0).
repeat rewrite (high_bound_store _ _ _ _ _ _ H0).
eapply mi_no_overlap0; eauto.
(* range *)
auto.
intros.
repeat rewrite (low_bound_store _ _ _ _ _ _ STORE).
repeat rewrite (high_bound_store _ _ _ _ _ _ STORE).
eapply mi_range_4; eauto.
Qed.
Lemma store_mapped_inject:
forall f chunk m1 b1 ofs v1 n1 m2 b2 delta v2,
mem_inject f m1 m2 ->
store chunk m1 b1 ofs v1 = Some n1 ->
f b1 = Some (b2, delta) ->
val_inject f v1 v2 ->
exists n2,
store chunk m2 b2 (ofs + delta) v2 = Some n2
/\ mem_inject f n1 n2.
Proof.
intros. eapply store_mapped_inject_1; eauto.
Qed.
Lemma store_unmapped_inject:
forall f chunk m1 b1 ofs v1 n1 m2,
mem_inject f m1 m2 ->
store chunk m1 b1 ofs v1 = Some n1 ->
f b1 = None ->
mem_inject f n1 m2.
Proof.
intros. inversion H.
constructor.
(* inj *)
eapply store_unmapped_inj; eauto.
(* freeblocks *)
intros. apply mi_freeblocks0. red; intros; elim H2; eauto with mem.
(* mappedblocks *)
intros. eapply mi_mappedblocks0; eauto with mem.
(* no_overlap *)
red; intros.
repeat rewrite (low_bound_store _ _ _ _ _ _ H0).
repeat rewrite (high_bound_store _ _ _ _ _ _ H0).
eapply mi_no_overlap0; eauto.
(* range *)
auto. auto.
Qed.
Lemma storev_mapped_inject_1:
forall f chunk m1 a1 v1 n1 m2 a2 v2,
mem_inject f m1 m2 ->
storev chunk m1 a1 v1 = Some n1 ->
val_inject f a1 a2 ->
val_content_inject f chunk v1 v2 ->
exists n2,
storev chunk m2 a2 v2 = Some n2 /\ mem_inject f n1 n2.
Proof.
intros. inv H1; simpl in H0; try discriminate.
simpl. replace (Int.signed (Int.add ofs1 (Int.repr x)))
with (Int.signed ofs1 + x).
eapply store_mapped_inject_1; eauto.
symmetry. eapply address_inject; eauto with mem.
Qed.
Lemma storev_mapped_inject:
forall f chunk m1 a1 v1 n1 m2 a2 v2,
mem_inject f m1 m2 ->
storev chunk m1 a1 v1 = Some n1 ->
val_inject f a1 a2 ->
val_inject f v1 v2 ->
exists n2,
storev chunk m2 a2 v2 = Some n2 /\ mem_inject f n1 n2.
Proof.
intros. eapply storev_mapped_inject_1; eauto.
Qed.
(** Relation between injections and [free] *)
Lemma meminj_no_overlap_free:
forall mi m b,
meminj_no_overlap mi m ->
meminj_no_overlap mi (free m b).
Proof.
intros; red; intros.
assert (low_bound (free m b) b >= high_bound (free m b) b).
rewrite low_bound_free_same; rewrite high_bound_free_same; auto.
omega.
destruct (eq_block b1 b); destruct (eq_block b2 b); subst; auto.
repeat (rewrite low_bound_free; auto).
repeat (rewrite high_bound_free; auto).
Qed.
Lemma meminj_no_overlap_free_list:
forall mi m bl,
meminj_no_overlap mi m ->
meminj_no_overlap mi (free_list m bl).
Proof.
induction bl; simpl; intros. auto.
apply meminj_no_overlap_free. auto.
Qed.
Lemma free_inject:
forall f m1 m2 l b,
(forall b1 delta, f b1 = Some(b, delta) -> In b1 l) ->
mem_inject f m1 m2 ->
mem_inject f (free_list m1 l) (free m2 b).
Proof.
intros. inversion H0. constructor.
(* inj *)
apply free_right_inj. apply free_list_left_inj. auto.
intros; red; intros.
elim (valid_access_free_list_inv _ _ _ _ _ H2); intros.
elim H3; eauto.
(* freeblocks *)
intros. apply mi_freeblocks0. red; intro; elim H1.
apply valid_block_free_list_1; auto.
(* mappedblocks *)
intros. apply valid_block_free_1. eauto.
(* overlap *)
apply meminj_no_overlap_free_list; auto.
(* range *)
auto.
intros. destruct (eq_block b' b). subst b'.
rewrite low_bound_free_same; rewrite high_bound_free_same.
right; compute; intuition congruence.
rewrite low_bound_free; auto. rewrite high_bound_free; auto.
eauto.
Qed.
(** Monotonicity properties of memory injections. *)
Definition inject_incr (f1 f2: meminj) : Prop :=
forall b, f1 b = f2 b \/ f1 b = None.
Lemma inject_incr_refl :
forall f , inject_incr f f .
Proof. unfold inject_incr . intros. left . auto . Qed.
Lemma inject_incr_trans :
forall f1 f2 f3,
inject_incr f1 f2 -> inject_incr f2 f3 -> inject_incr f1 f3 .
Proof .
unfold inject_incr; intros.
generalize (H b); generalize (H0 b); intuition congruence.
Qed.
Lemma val_inject_incr:
forall f1 f2 v v',
inject_incr f1 f2 ->
val_inject f1 v v' ->
val_inject f2 v v'.
Proof.
intros. inversion H0.
constructor.
constructor.
elim (H b1); intro.
apply val_inject_ptr with x. congruence. auto.
congruence.
constructor.
Qed.
Lemma val_list_inject_incr:
forall f1 f2 vl vl' ,
inject_incr f1 f2 -> val_list_inject f1 vl vl' ->
val_list_inject f2 vl vl'.
Proof.
induction vl; intros; inv H0. auto.
constructor. eapply val_inject_incr; eauto. auto.
Qed.
Hint Resolve inject_incr_refl val_inject_incr val_list_inject_incr.
(** Properties of injections and allocations. *)
Definition extend_inject
(b: block) (x: option (block * Z)) (f: meminj) : meminj :=
fun (b': block) => if zeq b' b then x else f b'.
Lemma extend_inject_incr:
forall f b x,
f b = None ->
inject_incr f (extend_inject b x f).
Proof.
intros; red; intros. unfold extend_inject.
destruct (zeq b0 b). subst b0; auto. auto.
Qed.
Lemma alloc_right_inject:
forall f m1 m2 lo hi m2' b,
mem_inject f m1 m2 ->
alloc m2 lo hi = (m2', b) ->
mem_inject f m1 m2'.
Proof.
intros. inversion H. constructor.
eapply alloc_right_inj; eauto.
auto.
intros. eauto with mem.
auto.
auto.
intros. replace (low_bound m2' b') with (low_bound m2 b').
replace (high_bound m2' b') with (high_bound m2 b').
eauto.
symmetry. eapply high_bound_alloc_other; eauto.
symmetry. eapply low_bound_alloc_other; eauto.
Qed.
Lemma alloc_unmapped_inject:
forall f m1 m2 lo hi m1' b,
mem_inject f m1 m2 ->
alloc m1 lo hi = (m1', b) ->
mem_inject (extend_inject b None f) m1' m2 /\
inject_incr f (extend_inject b None f).
Proof.
intros. inversion H.
assert (inject_incr f (extend_inject b None f)).
apply extend_inject_incr. apply mi_freeblocks0. eauto with mem.
split; auto. constructor.
(* inj *)
eapply alloc_left_unmapped_inj; eauto.
red; intros. unfold extend_inject in H2.
destruct (zeq b1 b). congruence.
exploit mi_inj0; eauto. intros [v2 [LOAD VINJ]].
exists v2; split. auto.
apply val_inject_incr with f; auto.
unfold extend_inject. apply zeq_true.
(* freeblocks *)
intros. unfold extend_inject. destruct (zeq b0 b). auto.
apply mi_freeblocks0; red; intro. elim H2. eauto with mem.
(* mappedblocks *)
intros. unfold extend_inject in H2. destruct (zeq b0 b).
discriminate. eauto.
(* overlap *)
red; unfold extend_inject, update; intros.
repeat rewrite (low_bound_alloc _ _ _ _ _ H0).
repeat rewrite (high_bound_alloc _ _ _ _ _ H0).
destruct (zeq b1 b); try discriminate.
destruct (zeq b2 b); try discriminate.
eauto.
(* range *)
unfold extend_inject; intros.
destruct (zeq b0 b). discriminate. eauto.
unfold extend_inject; intros.
destruct (zeq b0 b). discriminate. eauto.
Qed.
Lemma alloc_mapped_inject:
forall f m1 m2 lo hi m1' b b' ofs,
mem_inject f m1 m2 ->
alloc m1 lo hi = (m1', b) ->
valid_block m2 b' ->
Int.min_signed <= ofs <= Int.max_signed ->
Int.min_signed <= low_bound m2 b' ->
high_bound m2 b' <= Int.max_signed ->
low_bound m2 b' <= lo + ofs ->
hi + ofs <= high_bound m2 b' ->
inj_offset_aligned ofs (hi-lo) ->
(forall b0 ofs0,
f b0 = Some (b', ofs0) ->
high_bound m1 b0 + ofs0 <= lo + ofs \/
hi + ofs <= low_bound m1 b0 + ofs0) ->
mem_inject (extend_inject b (Some (b', ofs)) f) m1' m2 /\
inject_incr f (extend_inject b (Some (b', ofs)) f).
Proof.
intros. inversion H.
assert (inject_incr f (extend_inject b (Some (b', ofs)) f)).
apply extend_inject_incr. apply mi_freeblocks0. eauto with mem.
split; auto.
constructor.
(* inj *)
eapply alloc_left_mapped_inj; eauto.
red; intros. unfold extend_inject in H10.
rewrite zeq_false in H10.
exploit mi_inj0; eauto. intros [v2 [LOAD VINJ]].
exists v2; split. auto. eapply val_inject_incr; eauto.
eauto with mem.
unfold extend_inject. apply zeq_true.
(* freeblocks *)
intros. unfold extend_inject. rewrite zeq_false.
apply mi_freeblocks0. red; intro. elim H10; eauto with mem.
apply sym_not_equal; eauto with mem.
(* mappedblocks *)
unfold extend_inject; intros.
destruct (zeq b0 b). inv H10. auto. eauto.
(* overlap *)
red; unfold extend_inject, update; intros.
repeat rewrite (low_bound_alloc _ _ _ _ _ H0).
repeat rewrite (high_bound_alloc _ _ _ _ _ H0).
destruct (zeq b1 b); [inv H11|idtac];
(destruct (zeq b2 b); [inv H12|idtac]).
congruence.
destruct (zeq b1' b2'). subst b2'. generalize (H8 _ _ H12). tauto. auto.
destruct (zeq b1' b2'). subst b2'. generalize (H8 _ _ H11). tauto. auto.
eauto.
(* range *)
unfold extend_inject; intros.
destruct (zeq b0 b). inv H10. auto. eauto.
unfold extend_inject; intros.
destruct (zeq b0 b). inv H10. auto. eauto.
Qed.
Lemma alloc_parallel_inject:
forall f m1 m2 lo hi m1' m2' b1 b2,
mem_inject f m1 m2 ->
alloc m1 lo hi = (m1', b1) ->
alloc m2 lo hi = (m2', b2) ->
Int.min_signed <= lo -> hi <= Int.max_signed ->
mem_inject (extend_inject b1 (Some(b2, 0)) f) m1' m2' /\
inject_incr f (extend_inject b1 (Some(b2, 0)) f).
Proof.
intros.
eapply alloc_mapped_inject; eauto.
eapply alloc_right_inject; eauto.
eauto with mem.
compute; intuition congruence.
rewrite (low_bound_alloc_same _ _ _ _ _ H1). auto.
rewrite (high_bound_alloc_same _ _ _ _ _ H1). auto.
rewrite (low_bound_alloc_same _ _ _ _ _ H1). omega.
rewrite (high_bound_alloc_same _ _ _ _ _ H1). omega.
red; intros. apply Zdivide_0.
intros. elimtype False. inv H.
exploit mi_mappedblocks0; eauto.
change (~ valid_block m2 b2). eauto with mem.
Qed.
Definition meminj_init (m: mem) : meminj :=
fun (b: block) => if zlt b m.(nextblock) then Some(b, 0) else None.
Definition mem_inject_neutral (m: mem) : Prop :=
forall f chunk b ofs v,
load chunk m b ofs = Some v -> val_inject f v v.
Lemma init_inject:
forall m,
mem_inject_neutral m ->
mem_inject (meminj_init m) m m.
Proof.
intros; constructor.
(* inj *)
red; intros. unfold meminj_init in H0.
destruct (zlt b1 (nextblock m)); inversion H0.
subst b2 delta. exists v1; split.
rewrite Zplus_0_r. auto. eapply H; eauto.
(* free blocks *)
unfold valid_block, meminj_init; intros.
apply zlt_false. omega.
(* mapped blocks *)
unfold valid_block, meminj_init; intros.
destruct (zlt b (nextblock m)); inversion H0. subst b'; auto.
(* overlap *)
red; unfold meminj_init; intros.
destruct (zlt b1 (nextblock m)); inversion H1.
destruct (zlt b2 (nextblock m)); inversion H2.
left; congruence.
(* range *)
unfold meminj_init; intros.
destruct (zlt b (nextblock m)); inversion H0. subst delta.
compute; intuition congruence.
unfold meminj_init; intros.
destruct (zlt b (nextblock m)); inversion H0. subst delta.
auto.
Qed.
Remark getN_setN_inject:
forall f m v n1 p1 n2 p2,
val_inject f (getN n2 p2 m) (getN n2 p2 m) ->
val_inject f v v ->
val_inject f (getN n2 p2 (setN n1 p1 v m))
(getN n2 p2 (setN n1 p1 v m)).
Proof.
intros.
destruct (getN_setN_characterization m v n1 p1 n2 p2)
as [A | [A | A]]; rewrite A; auto.
Qed.
Remark getN_contents_init_data_inject:
forall f n ofs id pos,
val_inject f (getN n ofs (contents_init_data pos id))
(getN n ofs (contents_init_data pos id)).
Proof.
induction id; simpl; intros.
repeat rewrite getN_init. constructor.
destruct a; auto; apply getN_setN_inject; auto.
Qed.
Lemma alloc_init_data_neutral:
forall m id m' b,
mem_inject_neutral m ->
alloc_init_data m id = (m', b) ->
mem_inject_neutral m'.
Proof.
intros. injection H0; intros A B.
red; intros.
exploit load_inv; eauto. intros [C D].
rewrite <- B in D; simpl in D. rewrite A in D.
unfold update in D. destruct (zeq b0 b).
subst b0. rewrite D. simpl.
apply load_result_inject with chunk. constructor.
apply getN_contents_init_data_inject. auto.
apply H with chunk b0 ofs. unfold load.
rewrite in_bounds_true. congruence.
inversion C. constructor.
generalize H2. unfold valid_block. rewrite <- B; simpl.
rewrite A. unfold block in n; intros. omega.
replace (low_bound m b0) with (low_bound m' b0). auto.
unfold low_bound; rewrite <- B; simpl; rewrite A. rewrite update_o; auto.
replace (high_bound m b0) with (high_bound m' b0). auto.
unfold high_bound; rewrite <- B; simpl; rewrite A. rewrite update_o; auto.
auto.
Qed.
(** ** Memory shifting *)
(** A special case of memory injection where blocks are not coalesced:
each source block injects in a distinct target block. *)
Definition memshift := block -> option Z.
Definition meminj_of_shift (mi: memshift) : meminj :=
fun b => match mi b with None => None | Some x => Some (b, x) end.
Definition val_shift (mi: memshift) (v1 v2: val): Prop :=
val_inject (meminj_of_shift mi) v1 v2.
Record mem_shift (f: memshift) (m1 m2: mem) : Prop :=
mk_mem_shift {
ms_inj:
mem_inj val_inject (meminj_of_shift f) m1 m2;
ms_samedomain:
nextblock m1 = nextblock m2;
ms_domain:
forall b, match f b with Some _ => b < nextblock m1 | None => b >= nextblock m1 end;
ms_range_1:
forall b delta,
f b = Some delta ->
Int.min_signed <= delta <= Int.max_signed;
ms_range_2:
forall b delta,
f b = Some delta ->
Int.min_signed <= low_bound m2 b /\ high_bound m2 b <= Int.max_signed
}.
(** The following lemmas establish the absence of machine integer overflow
during address computations. *)
Lemma address_shift:
forall f m1 m2 chunk b ofs1 delta,
mem_shift f m1 m2 ->
valid_access m1 chunk b (Int.signed ofs1) ->
f b = Some delta ->
Int.signed (Int.add ofs1 (Int.repr delta)) = Int.signed ofs1 + delta.
Proof.
intros. inversion H.
elim (ms_range_4 _ _ H1); intros.
rewrite Int.add_signed.
repeat rewrite Int.signed_repr. auto.
eauto.
assert (valid_access m2 chunk b (Int.signed ofs1 + delta)).
eapply valid_access_inj with (mi := meminj_of_shift f); eauto.
unfold meminj_of_shift. rewrite H1; auto.
inv H4. generalize (size_chunk_pos chunk); omega.
eauto.
Qed.
Lemma valid_pointer_shift_no_overflow:
forall f m1 m2 b ofs x,
mem_shift f m1 m2 ->
valid_pointer m1 b (Int.signed ofs) = true ->
f b = Some x ->
Int.min_signed <= Int.signed ofs + Int.signed (Int.repr x) <= Int.max_signed.
Proof.
intros. inv H. rewrite valid_pointer_valid_access in H0.
assert (valid_access m2 Mint8unsigned b (Int.signed ofs + x)).
eapply valid_access_inj with (mi := meminj_of_shift f); eauto.
unfold meminj_of_shift. rewrite H1; auto.
inv H. change (size_chunk Mint8unsigned) with 1 in H4.
rewrite Int.signed_repr; eauto.
exploit ms_range_4; eauto. intros [A B]. omega.
Qed.
Lemma valid_pointer_shift:
forall f m1 m2 b ofs b' ofs',
mem_shift f m1 m2 ->
valid_pointer m1 b (Int.signed ofs) = true ->
val_shift f (Vptr b ofs) (Vptr b' ofs') ->
valid_pointer m2 b' (Int.signed ofs') = true.
Proof.
intros. unfold val_shift in H1. inv H1.
assert (f b = Some x).
unfold meminj_of_shift in H5. destruct (f b); congruence.
exploit valid_pointer_shift_no_overflow; eauto. intro NOOV.
inv H. rewrite Int.add_signed. rewrite Int.signed_repr; auto.
rewrite Int.signed_repr; eauto.
eapply valid_pointer_inj; eauto.
Qed.
(** Relation between shifts and loads. *)
Lemma load_shift:
forall f m1 m2 chunk b ofs delta v1,
mem_shift f m1 m2 ->
load chunk m1 b ofs = Some v1 ->
f b = Some delta ->
exists v2, load chunk m2 b (ofs + delta) = Some v2 /\ val_shift f v1 v2.
Proof.
intros. inversion H.
unfold val_shift. eapply ms_inj0; eauto.
unfold meminj_of_shift; rewrite H1; auto.
Qed.
Lemma loadv_shift:
forall f m1 m2 chunk a1 a2 v1,
mem_shift f m1 m2 ->
loadv chunk m1 a1 = Some v1 ->
val_shift f a1 a2 ->
exists v2, loadv chunk m2 a2 = Some v2 /\ val_shift f v1 v2.
Proof.
intros. unfold val_shift in H1. inv H1; simpl in H0; try discriminate.
generalize H2. unfold meminj_of_shift. caseEq (f b1); intros; inv H3.
exploit load_shift; eauto. intros [v2 [LOAD INJ]].
exists v2; split; auto. simpl.
replace (Int.signed (Int.add ofs1 (Int.repr x)))
with (Int.signed ofs1 + x).
auto. symmetry. eapply address_shift; eauto with mem.
Qed.
(** Relation between shifts and stores. *)
Lemma store_within_shift:
forall f chunk m1 b ofs v1 n1 m2 delta v2,
mem_shift f m1 m2 ->
store chunk m1 b ofs v1 = Some n1 ->
f b = Some delta ->
val_shift f v1 v2 ->
exists n2,
store chunk m2 b (ofs + delta) v2 = Some n2
/\ mem_shift f n1 n2.
Proof.
intros. inversion H.
exploit store_mapped_inj; eauto.
intros; constructor.
red. intros until delta2. unfold meminj_of_shift.
destruct (f b1). destruct (f b2). intros. inv H4. inv H5. auto.
congruence. congruence.
unfold meminj_of_shift. rewrite H1. auto.
intros. apply load_result_inject with chunk; eauto.
unfold val_shift in H2. eauto.
intros [n2 [STORE MINJ]].
exists n2; split. auto. constructor.
(* inj *)
auto.
(* samedomain *)
rewrite (nextblock_store _ _ _ _ _ _ H0).
rewrite (nextblock_store _ _ _ _ _ _ STORE).
auto.
(* domain *)
rewrite (nextblock_store _ _ _ _ _ _ H0). auto.
(* range *)
auto.
intros.
repeat rewrite (low_bound_store _ _ _ _ _ _ STORE).
repeat rewrite (high_bound_store _ _ _ _ _ _ STORE).
eapply ms_range_4; eauto.
Qed.
Lemma store_outside_shift:
forall f chunk m1 b ofs m2 v m2' delta,
mem_shift f m1 m2 ->
f b = Some delta ->
high_bound m1 b + delta <= ofs
\/ ofs + size_chunk chunk <= low_bound m1 b + delta ->
store chunk m2 b ofs v = Some m2' ->
mem_shift f m1 m2'.
Proof.
intros. inversion H. constructor.
(* inj *)
eapply store_outside_inj; eauto.
unfold meminj_of_shift. intros b' d'. caseEq (f b'); intros; inv H4.
congruence.
(* samedomain *)
rewrite (nextblock_store _ _ _ _ _ _ H2).
auto.
(* domain *)
auto.
(* range *)
auto.
intros.
repeat rewrite (low_bound_store _ _ _ _ _ _ H2).
repeat rewrite (high_bound_store _ _ _ _ _ _ H2).
eapply ms_range_4; eauto.
Qed.
Lemma storev_shift:
forall f chunk m1 a1 v1 n1 m2 a2 v2,
mem_shift f m1 m2 ->
storev chunk m1 a1 v1 = Some n1 ->
val_shift f a1 a2 ->
val_shift f v1 v2 ->
exists n2,
storev chunk m2 a2 v2 = Some n2 /\ mem_shift f n1 n2.
Proof.
intros. unfold val_shift in H1. inv H1; simpl in H0; try discriminate.
generalize H3. unfold meminj_of_shift. caseEq (f b1); intros; inv H4.
exploit store_within_shift; eauto. intros [n2 [A B]].
exists n2; split; auto.
unfold storev.
replace (Int.signed (Int.add ofs1 (Int.repr x)))
with (Int.signed ofs1 + x).
auto. symmetry. eapply address_shift; eauto with mem.
Qed.
(** Relation between shifts and [free]. *)
Lemma free_shift:
forall f m1 m2 b,
mem_shift f m1 m2 ->
mem_shift f (free m1 b) (free m2 b).
Proof.
intros. inv H. constructor.
(* inj *)
apply free_right_inj. apply free_left_inj; auto.
intros until ofs. unfold meminj_of_shift. caseEq (f b1); intros; inv H0.
apply valid_access_free_2.
(* samedomain *)
simpl. auto.
(* domain *)
simpl. auto.
(* range *)
auto.
intros. destruct (eq_block b0 b).
subst b0. rewrite low_bound_free_same. rewrite high_bound_free_same.
vm_compute; intuition congruence.
rewrite low_bound_free; auto. rewrite high_bound_free; auto. eauto.
Qed.
(** Relation between shifts and allocation. *)
Definition shift_incr (f1 f2: memshift) : Prop :=
forall b, f1 b = f2 b \/ f1 b = None.
Remark shift_incr_inject_incr:
forall f1 f2,
shift_incr f1 f2 -> inject_incr (meminj_of_shift f1) (meminj_of_shift f2).
Proof.
intros. unfold meminj_of_shift. red. intros.
elim (H b); intro. rewrite H0. auto. rewrite H0. auto.
Qed.
Lemma val_shift_incr:
forall f1 f2 v1 v2,
shift_incr f1 f2 -> val_shift f1 v1 v2 -> val_shift f2 v1 v2.
Proof.
unfold val_shift; intros.
apply val_inject_incr with (meminj_of_shift f1).
apply shift_incr_inject_incr. auto. auto.
Qed.
(***
Remark mem_inj_incr:
forall f1 f2 m1 m2,
inject_incr f1 f2 -> mem_inj val_inject f1 m1 m2 -> mem_inj val_inject f2 m1 m2.
Proof.
intros; red; intros.
destruct (H b1). rewrite <- H3 in H1.
exploit H0; eauto. intros [v2 [A B]].
exists v2; split. auto. apply val_inject_incr with f1; auto.
congruence.
***)
Lemma alloc_shift:
forall f m1 m2 lo1 hi1 m1' b delta lo2 hi2,
mem_shift f m1 m2 ->
alloc m1 lo1 hi1 = (m1', b) ->
lo2 <= lo1 + delta -> hi1 + delta <= hi2 ->
Int.min_signed <= delta <= Int.max_signed ->
Int.min_signed <= lo2 -> hi2 <= Int.max_signed ->
inj_offset_aligned delta (hi1-lo1) ->
exists f', exists m2',
alloc m2 lo2 hi2 = (m2', b)
/\ mem_shift f' m1' m2'
/\ shift_incr f f'
/\ f' b = Some delta.
Proof.
intros. inv H. caseEq (alloc m2 lo2 hi2). intros m2' b' ALLOC2.
assert (b' = b).
rewrite (alloc_result _ _ _ _ _ H0).
rewrite (alloc_result _ _ _ _ _ ALLOC2).
auto.
subst b'.
assert (f b = None).
generalize (ms_domain0 b).
rewrite (alloc_result _ _ _ _ _ H0).
destruct (f (nextblock m1)).
intros. omegaContradiction.
auto.
set (f' := fun (b': block) => if zeq b' b then Some delta else f b').
assert (shift_incr f f').
red; unfold f'; intros.
destruct (zeq b0 b); auto.
subst b0. auto.
exists f'; exists m2'.
split. auto.
(* mem_shift *)
split. constructor.
(* inj *)
assert (mem_inj val_inject (meminj_of_shift f') m1 m2).
red; intros.
assert (meminj_of_shift f b1 = Some (b2, delta0)).
rewrite <- H8. unfold meminj_of_shift, f'.
destruct (zeq b1 b); auto.
subst b1.
assert (valid_block m1 b) by eauto with mem.
assert (~valid_block m1 b) by eauto with mem.
contradiction.
exploit ms_inj0; eauto. intros [v2 [A B]].
exists v2; split; auto.
apply val_inject_incr with (meminj_of_shift f).
apply shift_incr_inject_incr. auto. auto.
eapply alloc_parallel_inj; eauto.
unfold meminj_of_shift, f'. rewrite zeq_true. auto.
(* samedomain *)
rewrite (nextblock_alloc _ _ _ _ _ H0).
rewrite (nextblock_alloc _ _ _ _ _ ALLOC2).
congruence.
(* domain *)
intros. unfold f'.
rewrite (nextblock_alloc _ _ _ _ _ H0).
rewrite (alloc_result _ _ _ _ _ H0).
destruct (zeq b0 (nextblock m1)). omega.
generalize (ms_domain0 b0). destruct (f b0); omega.
(* range *)
unfold f'; intros. destruct (zeq b0 b). congruence. eauto.
unfold f'; intros.
rewrite (low_bound_alloc _ _ _ _ _ ALLOC2).
rewrite (high_bound_alloc _ _ _ _ _ ALLOC2).
destruct (zeq b0 b). auto. eauto.
(* shift_incr *)
split. auto.
(* f' b = delta *)
unfold f'. apply zeq_true.
Qed.
(** ** Relation between signed and unsigned loads and stores *)
(** Target processors do not distinguish between signed and unsigned
stores of 8- and 16-bit quantities. We show these are equivalent. *)
(** Signed 8- and 16-bit stores can be performed like unsigned stores. *)
Remark in_bounds_equiv:
forall chunk1 chunk2 m b ofs (A: Type) (a1 a2: A),
size_chunk chunk1 = size_chunk chunk2 ->
(if in_bounds m chunk1 b ofs then a1 else a2) =
(if in_bounds m chunk2 b ofs then a1 else a2).
Proof.
intros. destruct (in_bounds m chunk1 b ofs).
rewrite in_bounds_true. auto. eapply valid_access_compat; eauto.
destruct (in_bounds m chunk2 b ofs); auto.
elim n. eapply valid_access_compat with (chunk1 := chunk2); eauto.
Qed.
Lemma storev_8_signed_unsigned:
forall m a v,
storev Mint8signed m a v = storev Mint8unsigned m a v.
Proof.
intros. unfold storev. destruct a; auto.
unfold store. rewrite (in_bounds_equiv Mint8signed Mint8unsigned).
auto. auto.
Qed.
Lemma storev_16_signed_unsigned:
forall m a v,
storev Mint16signed m a v = storev Mint16unsigned m a v.
Proof.
intros. unfold storev. destruct a; auto.
unfold store. rewrite (in_bounds_equiv Mint16signed Mint16unsigned).
auto. auto.
Qed.
(** Likewise, some target processors (e.g. the PowerPC) do not have
a ``load 8-bit signed integer'' instruction.
We show that it can be synthesized as a ``load 8-bit unsigned integer''
followed by a sign extension. *)
Lemma loadv_8_signed_unsigned:
forall m a,
loadv Mint8signed m a = option_map (Val.sign_ext 8) (loadv Mint8unsigned m a).
Proof.
intros. unfold Mem.loadv. destruct a; try reflexivity.
unfold load. rewrite (in_bounds_equiv Mint8signed Mint8unsigned).
destruct (in_bounds m Mint8unsigned b (Int.signed i)); auto.
simpl.
destruct (getN 0 (Int.signed i) (contents (blocks m b))); auto.
simpl. rewrite Int.sign_ext_zero_ext. auto. compute; auto.
auto.
Qed.
|