1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
|
(* *********************************************************************)
(* *)
(* The Compcert verified compiler *)
(* *)
(* Xavier Leroy, INRIA Paris-Rocquencourt *)
(* *)
(* Copyright Institut National de Recherche en Informatique et en *)
(* Automatique. All rights reserved. This file is distributed *)
(* under the terms of the GNU General Public License as published by *)
(* the Free Software Foundation, either version 2 of the License, or *)
(* (at your option) any later version. This file is also distributed *)
(* under the terms of the INRIA Non-Commercial License Agreement. *)
(* *)
(* *********************************************************************)
(** Observable events, execution traces, and semantics of external calls. *)
Require Import Coqlib.
Require Intv.
Require Import AST.
Require Import Integers.
Require Import Floats.
Require Import Values.
Require Import Memory.
Require Import Globalenvs.
(** * Events and traces *)
(** The observable behaviour of programs is stated in terms of
input/output events, which represent the actions of the program
that the external world can observe. CompCert leaves much flexibility as to
the exact content of events: the only requirement is that they
do not expose memory states nor pointer values
(other than pointers to global variables), because these
are not preserved literally during compilation. For concreteness,
we use the following type for events. Each event represents either:
- A system call (e.g. an input/output operation), recording the
name of the system call, its parameters, and its result.
- A volatile load from a global memory location, recording the chunk
and address being read and the value just read.
- A volatile store to a global memory location, recording the chunk
and address being written and the value stored there.
- An annotation, recording the text of the annotation and the values
of the arguments.
The values attached to these events are of the following form.
As mentioned above, we do not expose pointer values directly.
Pointers relative to a global variable are shown with the name
of the variable instead of the block identifier.
*)
Inductive eventval: Type :=
| EVint: int -> eventval
| EVfloat: float -> eventval
| EVptr_global: ident -> int -> eventval.
Inductive event: Type :=
| Event_syscall: ident -> list eventval -> eventval -> event
| Event_vload: memory_chunk -> ident -> int -> eventval -> event
| Event_vstore: memory_chunk -> ident -> int -> eventval -> event
| Event_annot: ident -> list eventval -> event.
(** The dynamic semantics for programs collect traces of events.
Traces are of two kinds: finite (type [trace]) or infinite (type [traceinf]). *)
Definition trace := list event.
Definition E0 : trace := nil.
Definition Eapp (t1 t2: trace) : trace := t1 ++ t2.
CoInductive traceinf : Type :=
| Econsinf: event -> traceinf -> traceinf.
Fixpoint Eappinf (t: trace) (T: traceinf) {struct t} : traceinf :=
match t with
| nil => T
| ev :: t' => Econsinf ev (Eappinf t' T)
end.
(** Concatenation of traces is written [**] in the finite case
or [***] in the infinite case. *)
Infix "**" := Eapp (at level 60, right associativity).
Infix "***" := Eappinf (at level 60, right associativity).
Lemma E0_left: forall t, E0 ** t = t.
Proof. auto. Qed.
Lemma E0_right: forall t, t ** E0 = t.
Proof. intros. unfold E0, Eapp. rewrite <- app_nil_end. auto. Qed.
Lemma Eapp_assoc: forall t1 t2 t3, (t1 ** t2) ** t3 = t1 ** (t2 ** t3).
Proof. intros. unfold Eapp, trace. apply app_ass. Qed.
Lemma Eapp_E0_inv: forall t1 t2, t1 ** t2 = E0 -> t1 = E0 /\ t2 = E0.
Proof (@app_eq_nil event).
Lemma E0_left_inf: forall T, E0 *** T = T.
Proof. auto. Qed.
Lemma Eappinf_assoc: forall t1 t2 T, (t1 ** t2) *** T = t1 *** (t2 *** T).
Proof.
induction t1; intros; simpl. auto. decEq; auto.
Qed.
Hint Rewrite E0_left E0_right Eapp_assoc
E0_left_inf Eappinf_assoc: trace_rewrite.
Opaque trace E0 Eapp Eappinf.
(** The following [traceEq] tactic proves equalities between traces
or infinite traces. *)
Ltac substTraceHyp :=
match goal with
| [ H: (@eq trace ?x ?y) |- _ ] =>
subst x || clear H
end.
Ltac decomposeTraceEq :=
match goal with
| [ |- (_ ** _) = (_ ** _) ] =>
apply (f_equal2 Eapp); auto; decomposeTraceEq
| _ =>
auto
end.
Ltac traceEq :=
repeat substTraceHyp; autorewrite with trace_rewrite; decomposeTraceEq.
(** Bisimilarity between infinite traces. *)
CoInductive traceinf_sim: traceinf -> traceinf -> Prop :=
| traceinf_sim_cons: forall e T1 T2,
traceinf_sim T1 T2 ->
traceinf_sim (Econsinf e T1) (Econsinf e T2).
Lemma traceinf_sim_refl:
forall T, traceinf_sim T T.
Proof.
cofix COINDHYP; intros.
destruct T. constructor. apply COINDHYP.
Qed.
Lemma traceinf_sim_sym:
forall T1 T2, traceinf_sim T1 T2 -> traceinf_sim T2 T1.
Proof.
cofix COINDHYP; intros. inv H; constructor; auto.
Qed.
Lemma traceinf_sim_trans:
forall T1 T2 T3,
traceinf_sim T1 T2 -> traceinf_sim T2 T3 -> traceinf_sim T1 T3.
Proof.
cofix COINDHYP;intros. inv H; inv H0; constructor; eauto.
Qed.
CoInductive traceinf_sim': traceinf -> traceinf -> Prop :=
| traceinf_sim'_cons: forall t T1 T2,
t <> E0 -> traceinf_sim' T1 T2 -> traceinf_sim' (t *** T1) (t *** T2).
Lemma traceinf_sim'_sim:
forall T1 T2, traceinf_sim' T1 T2 -> traceinf_sim T1 T2.
Proof.
cofix COINDHYP; intros. inv H.
destruct t. elim H0; auto.
Transparent Eappinf.
Transparent E0.
simpl.
destruct t. simpl. constructor. apply COINDHYP; auto.
constructor. apply COINDHYP.
constructor. unfold E0; congruence. auto.
Qed.
(** An alternate presentation of infinite traces as
infinite concatenations of nonempty finite traces. *)
CoInductive traceinf': Type :=
| Econsinf': forall (t: trace) (T: traceinf'), t <> E0 -> traceinf'.
Program Definition split_traceinf' (t: trace) (T: traceinf') (NE: t <> E0): event * traceinf' :=
match t with
| nil => _
| e :: nil => (e, T)
| e :: t' => (e, Econsinf' t' T _)
end.
Next Obligation.
elimtype False. elim NE. auto.
Qed.
Next Obligation.
red; intro. elim (H e). rewrite H0. auto.
Qed.
CoFixpoint traceinf_of_traceinf' (T': traceinf') : traceinf :=
match T' with
| Econsinf' t T'' NOTEMPTY =>
let (e, tl) := split_traceinf' t T'' NOTEMPTY in
Econsinf e (traceinf_of_traceinf' tl)
end.
Remark unroll_traceinf':
forall T, T = match T with Econsinf' t T' NE => Econsinf' t T' NE end.
Proof.
intros. destruct T; auto.
Qed.
Remark unroll_traceinf:
forall T, T = match T with Econsinf t T' => Econsinf t T' end.
Proof.
intros. destruct T; auto.
Qed.
Lemma traceinf_traceinf'_app:
forall t T NE,
traceinf_of_traceinf' (Econsinf' t T NE) = t *** traceinf_of_traceinf' T.
Proof.
induction t.
intros. elim NE. auto.
intros. simpl.
rewrite (unroll_traceinf (traceinf_of_traceinf' (Econsinf' (a :: t) T NE))).
simpl. destruct t. auto.
Transparent Eappinf.
simpl. f_equal. apply IHt.
Qed.
(** Prefixes of traces. *)
Definition trace_prefix (t1 t2: trace) :=
exists t3, t2 = t1 ** t3.
Definition traceinf_prefix (t1: trace) (T2: traceinf) :=
exists T3, T2 = t1 *** T3.
Lemma trace_prefix_app:
forall t1 t2 t,
trace_prefix t1 t2 ->
trace_prefix (t ** t1) (t ** t2).
Proof.
intros. destruct H as [t3 EQ]. exists t3. traceEq.
Qed.
Lemma traceinf_prefix_app:
forall t1 T2 t,
traceinf_prefix t1 T2 ->
traceinf_prefix (t ** t1) (t *** T2).
Proof.
intros. destruct H as [T3 EQ]. exists T3. subst T2. traceEq.
Qed.
(** * Relating values and event values *)
Set Implicit Arguments.
Section EVENTVAL.
(** Global environment used to translate between global variable names and their block identifiers. *)
Variables F V: Type.
Variable ge: Genv.t F V.
(** Translation between values and event values. *)
Inductive eventval_match: eventval -> typ -> val -> Prop :=
| ev_match_int: forall i,
eventval_match (EVint i) Tint (Vint i)
| ev_match_float: forall f,
eventval_match (EVfloat f) Tfloat (Vfloat f)
| ev_match_ptr: forall id b ofs,
Genv.find_symbol ge id = Some b ->
eventval_match (EVptr_global id ofs) Tint (Vptr b ofs).
Inductive eventval_list_match: list eventval -> list typ -> list val -> Prop :=
| evl_match_nil:
eventval_list_match nil nil nil
| evl_match_cons:
forall ev1 evl ty1 tyl v1 vl,
eventval_match ev1 ty1 v1 ->
eventval_list_match evl tyl vl ->
eventval_list_match (ev1::evl) (ty1::tyl) (v1::vl).
(** Some properties of these translation predicates. *)
Lemma eventval_match_type:
forall ev ty v,
eventval_match ev ty v -> Val.has_type v ty.
Proof.
intros. inv H; constructor.
Qed.
Lemma eventval_list_match_length:
forall evl tyl vl, eventval_list_match evl tyl vl -> List.length vl = List.length tyl.
Proof.
induction 1; simpl; eauto.
Qed.
Lemma eventval_match_lessdef:
forall ev ty v1 v2,
eventval_match ev ty v1 -> Val.lessdef v1 v2 -> eventval_match ev ty v2.
Proof.
intros. inv H; inv H0; constructor; auto.
Qed.
Lemma eventval_list_match_lessdef:
forall evl tyl vl1, eventval_list_match evl tyl vl1 ->
forall vl2, Val.lessdef_list vl1 vl2 -> eventval_list_match evl tyl vl2.
Proof.
induction 1; intros. inv H; constructor.
inv H1. constructor. eapply eventval_match_lessdef; eauto. eauto.
Qed.
(** Compatibility with memory injections *)
Variable f: block -> option (block * Z).
Definition meminj_preserves_globals : Prop :=
(forall id b, Genv.find_symbol ge id = Some b -> f b = Some(b, 0))
/\ (forall b gv, Genv.find_var_info ge b = Some gv -> f b = Some(b, 0))
/\ (forall b1 b2 delta gv, Genv.find_var_info ge b2 = Some gv -> f b1 = Some(b2, delta) -> b2 = b1).
Hypothesis glob_pres: meminj_preserves_globals.
Lemma eventval_match_inject:
forall ev ty v1 v2,
eventval_match ev ty v1 -> val_inject f v1 v2 -> eventval_match ev ty v2.
Proof.
intros. inv H; inv H0. constructor. constructor.
destruct glob_pres as [A [B C]].
exploit A; eauto. intro EQ; rewrite H3 in EQ; inv EQ.
rewrite Int.add_zero. econstructor; eauto.
Qed.
Lemma eventval_match_inject_2:
forall ev ty v,
eventval_match ev ty v -> val_inject f v v.
Proof.
induction 1. constructor. constructor.
destruct glob_pres as [A [B C]].
exploit A; eauto. intro EQ.
econstructor; eauto. rewrite Int.add_zero; auto.
Qed.
Lemma eventval_list_match_inject:
forall evl tyl vl1, eventval_list_match evl tyl vl1 ->
forall vl2, val_list_inject f vl1 vl2 -> eventval_list_match evl tyl vl2.
Proof.
induction 1; intros. inv H; constructor.
inv H1. constructor. eapply eventval_match_inject; eauto. eauto.
Qed.
(** Determinism *)
Lemma eventval_match_determ_1:
forall ev ty v1 v2, eventval_match ev ty v1 -> eventval_match ev ty v2 -> v1 = v2.
Proof.
intros. inv H; inv H0; auto. congruence.
Qed.
Lemma eventval_match_determ_2:
forall ev1 ev2 ty v, eventval_match ev1 ty v -> eventval_match ev2 ty v -> ev1 = ev2.
Proof.
intros. inv H; inv H0; auto.
decEq. eapply Genv.genv_vars_inj; eauto.
Qed.
Lemma eventval_list_match_determ_2:
forall evl1 tyl vl, eventval_list_match evl1 tyl vl ->
forall evl2, eventval_list_match evl2 tyl vl -> evl1 = evl2.
Proof.
induction 1; intros. inv H. auto. inv H1. f_equal; eauto.
eapply eventval_match_determ_2; eauto.
Qed.
(** Validity *)
Definition eventval_valid (ev: eventval) : Prop :=
match ev with
| EVint _ => True
| EVfloat _ => True
| EVptr_global id ofs => exists b, Genv.find_symbol ge id = Some b
end.
Definition eventval_type (ev: eventval) : typ :=
match ev with
| EVint _ => Tint
| EVfloat _ => Tfloat
| EVptr_global id ofs => Tint
end.
Lemma eventval_valid_match:
forall ev ty,
eventval_valid ev -> eventval_type ev = ty -> exists v, eventval_match ev ty v.
Proof.
intros. subst ty. destruct ev; simpl in *.
exists (Vint i); constructor.
exists (Vfloat f0); constructor.
destruct H as [b A]. exists (Vptr b i0); constructor; auto.
Qed.
Lemma eventval_match_valid:
forall ev ty v,
eventval_match ev ty v -> eventval_valid ev /\ eventval_type ev = ty.
Proof.
induction 1; simpl; auto. split; auto. exists b; auto.
Qed.
End EVENTVAL.
(** Invariance under changes to the global environment *)
Section EVENTVAL_INV.
Variables F1 V1 F2 V2: Type.
Variable ge1: Genv.t F1 V1.
Variable ge2: Genv.t F2 V2.
Hypothesis symbols_preserved:
forall id, Genv.find_symbol ge2 id = Genv.find_symbol ge1 id.
Lemma eventval_match_preserved:
forall ev ty v,
eventval_match ge1 ev ty v -> eventval_match ge2 ev ty v.
Proof.
induction 1; constructor. rewrite symbols_preserved; auto.
Qed.
Lemma eventval_list_match_preserved:
forall evl tyl vl,
eventval_list_match ge1 evl tyl vl -> eventval_list_match ge2 evl tyl vl.
Proof.
induction 1; constructor; auto. eapply eventval_match_preserved; eauto.
Qed.
Lemma eventval_valid_preserved:
forall ev, eventval_valid ge1 ev -> eventval_valid ge2 ev.
Proof.
unfold eventval_valid; destruct ev; auto.
intros [b A]. exists b; rewrite symbols_preserved; auto.
Qed.
End EVENTVAL_INV.
(** * Matching traces. *)
Section MATCH_TRACES.
Variables F V: Type.
Variable ge: Genv.t F V.
(** Matching between traces corresponding to single transitions.
Arguments (provided by the program) must be equal.
Results (provided by the outside world) can vary as long as they
can be converted safely to values. *)
Inductive match_traces: trace -> trace -> Prop :=
| match_traces_E0:
match_traces nil nil
| match_traces_syscall: forall id args res1 res2,
eventval_valid ge res1 -> eventval_valid ge res2 -> eventval_type res1 = eventval_type res2 ->
match_traces (Event_syscall id args res1 :: nil) (Event_syscall id args res2 :: nil)
| match_traces_vload: forall chunk id ofs res1 res2,
eventval_valid ge res1 -> eventval_valid ge res2 -> eventval_type res1 = eventval_type res2 ->
match_traces (Event_vload chunk id ofs res1 :: nil) (Event_vload chunk id ofs res2 :: nil)
| match_traces_vstore: forall chunk id ofs arg,
match_traces (Event_vstore chunk id ofs arg :: nil) (Event_vstore chunk id ofs arg :: nil)
| match_traces_annot: forall id args,
match_traces (Event_annot id args :: nil) (Event_annot id args :: nil).
End MATCH_TRACES.
(** Invariance by change of global environment *)
Section MATCH_TRACES_INV.
Variables F1 V1 F2 V2: Type.
Variable ge1: Genv.t F1 V1.
Variable ge2: Genv.t F2 V2.
Hypothesis symbols_preserved:
forall id, Genv.find_symbol ge2 id = Genv.find_symbol ge1 id.
Lemma match_traces_preserved:
forall t1 t2, match_traces ge1 t1 t2 -> match_traces ge2 t1 t2.
Proof.
induction 1; constructor; auto; eapply eventval_valid_preserved; eauto.
Qed.
End MATCH_TRACES_INV.
(** An output trace is a trace composed only of output events,
that is, events that do not take any result from the outside world. *)
Definition output_event (ev: event) : Prop :=
match ev with
| Event_syscall _ _ _ => False
| Event_vload _ _ _ _ => False
| Event_vstore _ _ _ _ => True
| Event_annot _ _ => True
end.
Fixpoint output_trace (t: trace) : Prop :=
match t with
| nil => True
| ev :: t' => output_event ev /\ output_trace t'
end.
(** * Semantics of volatile memory accesses *)
Definition block_is_volatile (F V: Type) (ge: Genv.t F V) (b: block) : bool :=
match Genv.find_var_info ge b with
| None => false
| Some gv => gv.(gvar_volatile)
end.
Inductive volatile_load (F V: Type) (ge: Genv.t F V):
memory_chunk -> mem -> block -> int -> trace -> val -> Prop :=
| volatile_load_vol: forall chunk m b ofs id ev v,
block_is_volatile ge b = true ->
Genv.find_symbol ge id = Some b ->
eventval_match ge ev (type_of_chunk chunk) v ->
volatile_load ge chunk m b ofs
(Event_vload chunk id ofs ev :: nil)
(Val.load_result chunk v)
| volatile_load_nonvol: forall chunk m b ofs v,
block_is_volatile ge b = false ->
Mem.load chunk m b (Int.unsigned ofs) = Some v ->
volatile_load ge chunk m b ofs E0 v.
Inductive volatile_store (F V: Type) (ge: Genv.t F V):
memory_chunk -> mem -> block -> int -> val -> trace -> mem -> Prop :=
| volatile_store_vol: forall chunk m b ofs id ev v,
block_is_volatile ge b = true ->
Genv.find_symbol ge id = Some b ->
eventval_match ge ev (type_of_chunk chunk) v ->
volatile_store ge chunk m b ofs v
(Event_vstore chunk id ofs ev :: nil)
m
| volatile_store_nonvol: forall chunk m b ofs v m',
block_is_volatile ge b = false ->
Mem.store chunk m b (Int.unsigned ofs) v = Some m' ->
volatile_store ge chunk m b ofs v E0 m'.
(** * Semantics of external functions *)
(** For each external function, its behavior is defined by a predicate relating:
- the global environment
- the values of the arguments passed to this function
- the memory state before the call
- the result value of the call
- the memory state after the call
- the trace generated by the call (can be empty).
*)
Definition extcall_sem : Type :=
forall (F V: Type), Genv.t F V -> list val -> mem -> trace -> val -> mem -> Prop.
(** We now specify the expected properties of this predicate. *)
Definition mem_unchanged_on (P: block -> Z -> Prop) (m_before m_after: mem): Prop :=
(forall b ofs p,
P b ofs -> Mem.perm m_before b ofs p -> Mem.perm m_after b ofs p)
/\(forall chunk b ofs v,
(forall i, ofs <= i < ofs + size_chunk chunk -> P b i) ->
Mem.load chunk m_before b ofs = Some v ->
Mem.load chunk m_after b ofs = Some v).
Definition loc_out_of_bounds (m: mem) (b: block) (ofs: Z) : Prop :=
ofs < Mem.low_bound m b \/ ofs > Mem.high_bound m b.
Definition loc_unmapped (f: meminj) (b: block) (ofs: Z): Prop :=
f b = None.
Definition loc_out_of_reach (f: meminj) (m: mem) (b: block) (ofs: Z): Prop :=
forall b0 delta,
f b0 = Some(b, delta) ->
ofs < Mem.low_bound m b0 + delta \/ ofs >= Mem.high_bound m b0 + delta.
Definition inject_separated (f f': meminj) (m1 m2: mem): Prop :=
forall b1 b2 delta,
f b1 = None -> f' b1 = Some(b2, delta) ->
~Mem.valid_block m1 b1 /\ ~Mem.valid_block m2 b2.
Record extcall_properties (sem: extcall_sem)
(sg: signature) : Prop := mk_extcall_properties {
(** The return value of an external call must agree with its signature. *)
ec_well_typed:
forall F V (ge: Genv.t F V) vargs m1 t vres m2,
sem F V ge vargs m1 t vres m2 ->
Val.has_type vres (proj_sig_res sg);
(** The number of arguments of an external call must agree with its signature. *)
ec_arity:
forall F V (ge: Genv.t F V) vargs m1 t vres m2,
sem F V ge vargs m1 t vres m2 ->
List.length vargs = List.length sg.(sig_args);
(** The semantics is invariant under change of global environment that preserves symbols. *)
ec_symbols_preserved:
forall F1 V1 (ge1: Genv.t F1 V1) F2 V2 (ge2: Genv.t F2 V2) vargs m1 t vres m2,
(forall id, Genv.find_symbol ge2 id = Genv.find_symbol ge1 id) ->
(forall b, block_is_volatile ge2 b = block_is_volatile ge1 b) ->
sem F1 V1 ge1 vargs m1 t vres m2 ->
sem F2 V2 ge2 vargs m1 t vres m2;
(** External calls cannot invalidate memory blocks. (Remember that
freeing a block does not invalidate its block identifier.) *)
ec_valid_block:
forall F V (ge: Genv.t F V) vargs m1 t vres m2 b,
sem F V ge vargs m1 t vres m2 ->
Mem.valid_block m1 b -> Mem.valid_block m2 b;
(** External calls preserve the bounds of valid blocks. *)
ec_bounds:
forall F V (ge: Genv.t F V) vargs m1 t vres m2 b,
sem F V ge vargs m1 t vres m2 ->
Mem.valid_block m1 b -> Mem.bounds m2 b = Mem.bounds m1 b;
(** External calls must commute with memory extensions, in the
following sense. *)
ec_mem_extends:
forall F V (ge: Genv.t F V) vargs m1 t vres m2 m1' vargs',
sem F V ge vargs m1 t vres m2 ->
Mem.extends m1 m1' ->
Val.lessdef_list vargs vargs' ->
exists vres', exists m2',
sem F V ge vargs' m1' t vres' m2'
/\ Val.lessdef vres vres'
/\ Mem.extends m2 m2'
/\ mem_unchanged_on (loc_out_of_bounds m1) m1' m2';
(** External calls must commute with memory injections,
in the following sense. *)
ec_mem_inject:
forall F V (ge: Genv.t F V) vargs m1 t vres m2 f m1' vargs',
meminj_preserves_globals ge f ->
sem F V ge vargs m1 t vres m2 ->
Mem.inject f m1 m1' ->
val_list_inject f vargs vargs' ->
exists f', exists vres', exists m2',
sem F V ge vargs' m1' t vres' m2'
/\ val_inject f' vres vres'
/\ Mem.inject f' m2 m2'
/\ mem_unchanged_on (loc_unmapped f) m1 m2
/\ mem_unchanged_on (loc_out_of_reach f m1) m1' m2'
/\ inject_incr f f'
/\ inject_separated f f' m1 m1';
(** External calls produce at most one event. *)
ec_trace_length:
forall F V ge vargs m t vres m',
sem F V ge vargs m t vres m' -> (length t <= 1)%nat;
(** External calls must be receptive to changes of traces by another, matching trace. *)
ec_receptive:
forall F V ge vargs m t1 vres1 m1 t2,
sem F V ge vargs m t1 vres1 m1 -> match_traces ge t1 t2 ->
exists vres2, exists m2, sem F V ge vargs m t2 vres2 m2;
(** External calls must be deterministic up to matching between traces. *)
ec_determ:
forall F V ge vargs m t1 vres1 m1 t2 vres2 m2,
sem F V ge vargs m t1 vres1 m1 -> sem F V ge vargs m t2 vres2 m2 ->
match_traces ge t1 t2 /\ (t1 = t2 -> vres1 = vres2 /\ m1 = m2)
}.
(** ** Semantics of volatile loads *)
Inductive volatile_load_sem (chunk: memory_chunk) (F V: Type) (ge: Genv.t F V):
list val -> mem -> trace -> val -> mem -> Prop :=
| volatile_load_sem_intro: forall b ofs m t v,
volatile_load ge chunk m b ofs t v ->
volatile_load_sem chunk ge (Vptr b ofs :: nil) m t v m.
Lemma volatile_load_preserved:
forall F1 V1 (ge1: Genv.t F1 V1) F2 V2 (ge2: Genv.t F2 V2) chunk m b ofs t v,
(forall id, Genv.find_symbol ge2 id = Genv.find_symbol ge1 id) ->
(forall b, block_is_volatile ge2 b = block_is_volatile ge1 b) ->
volatile_load ge1 chunk m b ofs t v ->
volatile_load ge2 chunk m b ofs t v.
Proof.
intros. inv H1; constructor; auto.
rewrite H0; auto.
rewrite H; auto.
eapply eventval_match_preserved; eauto.
rewrite H0; auto.
Qed.
Lemma volatile_load_extends:
forall F V (ge: Genv.t F V) chunk m b ofs t v m',
volatile_load ge chunk m b ofs t v ->
Mem.extends m m' ->
exists v', volatile_load ge chunk m' b ofs t v' /\ Val.lessdef v v'.
Proof.
intros. inv H.
econstructor; split; eauto. econstructor; eauto.
exploit Mem.load_extends; eauto. intros [v' [A B]]. exists v'; split; auto. constructor; auto.
Qed.
Remark meminj_preserves_block_is_volatile:
forall F V (ge: Genv.t F V) f b1 b2 delta,
meminj_preserves_globals ge f ->
f b1 = Some (b2, delta) ->
block_is_volatile ge b2 = block_is_volatile ge b1.
Proof.
intros. destruct H as [A [B C]]. unfold block_is_volatile.
case_eq (Genv.find_var_info ge b1); intros.
exploit B; eauto. intro EQ; rewrite H0 in EQ; inv EQ. rewrite H; auto.
case_eq (Genv.find_var_info ge b2); intros.
exploit C; eauto. intro EQ. congruence.
auto.
Qed.
Lemma volatile_load_inject:
forall F V (ge: Genv.t F V) f chunk m b ofs t v b' ofs' m',
meminj_preserves_globals ge f ->
volatile_load ge chunk m b ofs t v ->
val_inject f (Vptr b ofs) (Vptr b' ofs') ->
Mem.inject f m m' ->
exists v', volatile_load ge chunk m' b' ofs' t v' /\ val_inject f v v'.
Proof.
intros. inv H0.
inv H1. exploit (proj1 H); eauto. intros EQ; rewrite H8 in EQ; inv EQ.
rewrite Int.add_zero. exists (Val.load_result chunk v0); split.
constructor; auto.
apply val_load_result_inject. eapply eventval_match_inject_2; eauto.
exploit Mem.loadv_inject; eauto. simpl; eauto. simpl; intros [v' [A B]]. exists v'; split; auto.
constructor; auto. rewrite <- H3. inv H1. eapply meminj_preserves_block_is_volatile; eauto.
Qed.
Lemma volatile_load_receptive:
forall F V (ge: Genv.t F V) chunk m b ofs t1 t2 v1,
volatile_load ge chunk m b ofs t1 v1 -> match_traces ge t1 t2 ->
exists v2, volatile_load ge chunk m b ofs t2 v2.
Proof.
intros. inv H; inv H0.
exploit eventval_match_valid; eauto. intros [A B].
exploit eventval_valid_match. eexact H9. rewrite <- H10; eauto.
intros [v' EVM]. exists (Val.load_result chunk v'). constructor; auto.
exists v1; constructor; auto.
Qed.
Lemma volatile_load_ok:
forall chunk,
extcall_properties (volatile_load_sem chunk)
(mksignature (Tint :: nil) (Some (type_of_chunk chunk))).
Proof.
intros; constructor; intros.
(* well typed *)
unfold proj_sig_res; simpl. inv H. inv H0.
destruct chunk; destruct v; simpl; constructor.
eapply Mem.load_type; eauto.
(* arity *)
inv H; inv H0; auto.
(* symbols *)
inv H1. constructor. eapply volatile_load_preserved; eauto.
(* valid blocks *)
inv H; auto.
(* bounds *)
inv H; auto.
(* mem extends *)
inv H. inv H1. inv H6. inv H4.
exploit volatile_load_extends; eauto. intros [v' [A B]].
exists v'; exists m1'; intuition. constructor; auto. red; auto.
(* mem injects *)
inv H0. inv H2. inv H7. inversion H5; subst.
exploit volatile_load_inject; eauto. intros [v' [A B]].
exists f; exists v'; exists m1'; intuition. constructor; auto.
red; auto. red; auto. red; intros. congruence.
(* trace length *)
inv H; inv H0; simpl; omega.
(* receptive *)
inv H. exploit volatile_load_receptive; eauto. intros [v2 A].
exists v2; exists m1; constructor; auto.
(* determ *)
inv H; inv H0. inv H1; inv H7; try congruence.
assert (id = id0) by (eapply Genv.genv_vars_inj; eauto). subst id0.
exploit eventval_match_valid. eexact H2. intros [V1 T1].
exploit eventval_match_valid. eexact H4. intros [V2 T2].
split. constructor; auto. congruence.
intros EQ; inv EQ.
assert (v = v0) by (eapply eventval_match_determ_1; eauto). subst v0.
auto.
split. constructor. intuition congruence.
Qed.
Inductive volatile_load_global_sem (chunk: memory_chunk) (id: ident) (ofs: int)
(F V: Type) (ge: Genv.t F V):
list val -> mem -> trace -> val -> mem -> Prop :=
| volatile_load_global_sem_intro: forall b t v m,
Genv.find_symbol ge id = Some b ->
volatile_load ge chunk m b ofs t v ->
volatile_load_global_sem chunk id ofs ge nil m t v m.
Remark volatile_load_global_charact:
forall chunk id ofs (F V: Type) (ge: Genv.t F V) vargs m t vres m',
volatile_load_global_sem chunk id ofs ge vargs m t vres m' <->
exists b, Genv.find_symbol ge id = Some b /\ volatile_load_sem chunk ge (Vptr b ofs :: vargs) m t vres m'.
Proof.
intros; split.
intros. inv H. exists b; split; auto. constructor; auto.
intros [b [P Q]]. inv Q. econstructor; eauto.
Qed.
Lemma volatile_load_global_ok:
forall chunk id ofs,
extcall_properties (volatile_load_global_sem chunk id ofs)
(mksignature nil (Some (type_of_chunk chunk))).
Proof.
intros; constructor; intros.
(* well typed *)
unfold proj_sig_res; simpl. inv H. inv H1.
destruct chunk; destruct v; simpl; constructor.
eapply Mem.load_type; eauto.
(* arity *)
inv H; inv H1; auto.
(* symbols *)
inv H1. econstructor. rewrite H; eauto. eapply volatile_load_preserved; eauto.
(* valid blocks *)
inv H; auto.
(* bounds *)
inv H; auto.
(* extends *)
inv H. inv H1. exploit volatile_load_extends; eauto. intros [v' [A B]].
exists v'; exists m1'; intuition. econstructor; eauto. red; auto.
(* inject *)
inv H0. inv H2.
assert (val_inject f (Vptr b ofs) (Vptr b ofs)).
exploit (proj1 H); eauto. intros EQ. econstructor. eauto. rewrite Int.add_zero; auto.
exploit volatile_load_inject; eauto. intros [v' [A B]].
exists f; exists v'; exists m1'; intuition. econstructor; eauto.
red; auto. red; auto. red; intros; congruence.
(* trace length *)
inv H; inv H1; simpl; omega.
(* receptive *)
inv H. exploit volatile_load_receptive; eauto. intros [v2 A].
exists v2; exists m1; econstructor; eauto.
(* determ *)
rewrite volatile_load_global_charact in *.
destruct H as [b1 [A1 B1]]. destruct H0 as [b2 [A2 B2]].
rewrite A1 in A2; inv A2.
eapply ec_determ. eapply volatile_load_ok. eauto. eauto.
Qed.
(** ** Semantics of volatile stores *)
Inductive volatile_store_sem (chunk: memory_chunk) (F V: Type) (ge: Genv.t F V):
list val -> mem -> trace -> val -> mem -> Prop :=
| volatile_store_sem_intro: forall b ofs m1 v t m2,
volatile_store ge chunk m1 b ofs v t m2 ->
volatile_store_sem chunk ge (Vptr b ofs :: v :: nil) m1 t Vundef m2.
Lemma volatile_store_preserved:
forall F1 V1 (ge1: Genv.t F1 V1) F2 V2 (ge2: Genv.t F2 V2) chunk m1 b ofs v t m2,
(forall id, Genv.find_symbol ge2 id = Genv.find_symbol ge1 id) ->
(forall b, block_is_volatile ge2 b = block_is_volatile ge1 b) ->
volatile_store ge1 chunk m1 b ofs v t m2 ->
volatile_store ge2 chunk m1 b ofs v t m2.
Proof.
intros. inv H1; constructor; auto.
rewrite H0; auto.
rewrite H; auto.
eapply eventval_match_preserved; eauto.
rewrite H0; auto.
Qed.
Lemma volatile_store_extends:
forall F V (ge: Genv.t F V) chunk m1 b ofs v t m2 m1' v',
volatile_store ge chunk m1 b ofs v t m2 ->
Mem.extends m1 m1' ->
Val.lessdef v v' ->
exists m2',
volatile_store ge chunk m1' b ofs v' t m2'
/\ Mem.extends m2 m2'
/\ mem_unchanged_on (loc_out_of_bounds m1) m1' m2'.
Proof.
intros. inv H.
econstructor; split. econstructor; eauto. eapply eventval_match_lessdef; eauto.
split. auto. red; auto.
exploit Mem.store_within_extends; eauto. intros [m2' [A B]].
exists m2'; intuition. econstructor; eauto.
red; split; intros.
eapply Mem.perm_store_1; eauto.
rewrite <- H4. eapply Mem.load_store_other; eauto.
destruct (eq_block b0 b); auto. subst b0; right.
exploit Mem.valid_access_in_bounds.
eapply Mem.store_valid_access_3. eexact H3.
intros [C D].
generalize (size_chunk_pos chunk0). intro E.
generalize (size_chunk_pos chunk). intro G.
apply (Intv.range_disjoint' (ofs0, ofs0 + size_chunk chunk0)
(Int.unsigned ofs, Int.unsigned ofs + size_chunk chunk)).
red; intros. generalize (H x H5). unfold loc_out_of_bounds, Intv.In; simpl. omega.
simpl; omega. simpl; omega.
Qed.
Lemma volatile_store_inject:
forall F V (ge: Genv.t F V) f chunk m1 b ofs v t m2 m1' b' ofs' v',
meminj_preserves_globals ge f ->
volatile_store ge chunk m1 b ofs v t m2 ->
val_inject f (Vptr b ofs) (Vptr b' ofs') ->
val_inject f v v' ->
Mem.inject f m1 m1' ->
exists m2',
volatile_store ge chunk m1' b' ofs' v' t m2'
/\ Mem.inject f m2 m2'
/\ mem_unchanged_on (loc_unmapped f) m1 m2
/\ mem_unchanged_on (loc_out_of_reach f m1) m1' m2'.
Proof.
intros. inv H0.
inv H1. exploit (proj1 H); eauto. intros EQ; rewrite H9 in EQ; inv EQ.
rewrite Int.add_zero. exists m1'.
split. constructor; auto. eapply eventval_match_inject; eauto.
split. auto. split. red; auto. red; auto.
assert (Mem.storev chunk m1 (Vptr b ofs) v = Some m2). simpl; auto.
exploit Mem.storev_mapped_inject; eauto. intros [m2' [A B]].
inv H1. exists m2'; intuition.
constructor; auto. rewrite <- H4. eapply meminj_preserves_block_is_volatile; eauto.
split; intros. eapply Mem.perm_store_1; eauto.
rewrite <- H6. eapply Mem.load_store_other; eauto.
left. exploit (H1 ofs0). generalize (size_chunk_pos chunk0). omega.
unfold loc_unmapped. congruence.
split; intros. eapply Mem.perm_store_1; eauto.
rewrite <- H6. eapply Mem.load_store_other; eauto.
destruct (eq_block b0 b'); auto. subst b0; right.
assert (EQ: Int.unsigned (Int.add ofs (Int.repr delta)) = Int.unsigned ofs + delta).
eapply Mem.address_inject; eauto with mem.
unfold Mem.storev in A. rewrite EQ in A. rewrite EQ.
exploit Mem.valid_access_in_bounds.
eapply Mem.store_valid_access_3. eexact H0.
intros [C D].
generalize (size_chunk_pos chunk0). intro E.
generalize (size_chunk_pos chunk). intro G.
apply (Intv.range_disjoint' (ofs0, ofs0 + size_chunk chunk0)
(Int.unsigned ofs + delta, Int.unsigned ofs + delta + size_chunk chunk)).
red; intros. exploit (H1 x H7). eauto. unfold Intv.In; simpl. omega.
simpl; omega. simpl; omega.
Qed.
Lemma volatile_store_receptive:
forall F V (ge: Genv.t F V) chunk m b ofs v t1 m1 t2,
volatile_store ge chunk m b ofs v t1 m1 -> match_traces ge t1 t2 -> t1 = t2.
Proof.
intros. inv H; inv H0; auto.
Qed.
Lemma volatile_store_ok:
forall chunk,
extcall_properties (volatile_store_sem chunk)
(mksignature (Tint :: type_of_chunk chunk :: nil) None).
Proof.
intros; constructor; intros.
(* well typed *)
unfold proj_sig_res; simpl. inv H; constructor.
(* arity *)
inv H; simpl; auto.
(* symbols preserved *)
inv H1. constructor. eapply volatile_store_preserved; eauto.
(* valid block *)
inv H. inv H1. auto. eauto with mem.
(* bounds *)
inv H. inv H1. auto. eapply Mem.bounds_store; eauto.
(* mem extends*)
inv H. inv H1. inv H6. inv H7. inv H4.
exploit volatile_store_extends; eauto. intros [m2' [A [B C]]].
exists Vundef; exists m2'; intuition. constructor; auto.
(* mem inject *)
inv H0. inv H2. inv H7. inv H8. inversion H5; subst.
exploit volatile_store_inject; eauto. intros [m2' [A [B [C D]]]].
exists f; exists Vundef; exists m2'; intuition. constructor; auto. red; intros; congruence.
(* trace length *)
inv H; inv H0; simpl; omega.
(* receptive *)
assert (t1 = t2). inv H. eapply volatile_store_receptive; eauto.
subst t2; exists vres1; exists m1; auto.
(* determ *)
inv H; inv H0. inv H1; inv H8; try congruence.
assert (id = id0) by (eapply Genv.genv_vars_inj; eauto). subst id0.
assert (ev = ev0) by (eapply eventval_match_determ_2; eauto). subst ev0.
split. constructor. auto.
split. constructor. intuition congruence.
Qed.
Inductive volatile_store_global_sem (chunk: memory_chunk) (id: ident) (ofs: int)
(F V: Type) (ge: Genv.t F V):
list val -> mem -> trace -> val -> mem -> Prop :=
| volatile_store_global_sem_intro: forall b m1 v t m2,
Genv.find_symbol ge id = Some b ->
volatile_store ge chunk m1 b ofs v t m2 ->
volatile_store_global_sem chunk id ofs ge (v :: nil) m1 t Vundef m2.
Remark volatile_store_global_charact:
forall chunk id ofs (F V: Type) (ge: Genv.t F V) vargs m t vres m',
volatile_store_global_sem chunk id ofs ge vargs m t vres m' <->
exists b, Genv.find_symbol ge id = Some b /\ volatile_store_sem chunk ge (Vptr b ofs :: vargs) m t vres m'.
Proof.
intros; split.
intros. inv H; exists b; split; auto; econstructor; eauto.
intros [b [P Q]]. inv Q. econstructor; eauto.
Qed.
Lemma volatile_store_global_ok:
forall chunk id ofs,
extcall_properties (volatile_store_global_sem chunk id ofs)
(mksignature (type_of_chunk chunk :: nil) None).
Proof.
intros; constructor; intros.
(* well typed *)
unfold proj_sig_res; simpl. inv H; constructor.
(* arity *)
inv H; simpl; auto.
(* symbols preserved *)
inv H1. econstructor. rewrite H; eauto. eapply volatile_store_preserved; eauto.
(* valid block *)
inv H. inv H2. auto. eauto with mem.
(* bounds *)
inv H. inv H2. auto. eapply Mem.bounds_store; eauto.
(* mem extends*)
rewrite volatile_store_global_charact in H. destruct H as [b [P Q]].
exploit ec_mem_extends. eapply volatile_store_ok. eexact Q. eauto. eauto.
intros [vres' [m2' [A [B [C D]]]]].
exists vres'; exists m2'; intuition. rewrite volatile_store_global_charact. exists b; auto.
(* mem inject *)
rewrite volatile_store_global_charact in H0. destruct H0 as [b [P Q]].
exploit (proj1 H). eauto. intros EQ.
assert (val_inject f (Vptr b ofs) (Vptr b ofs)). econstructor; eauto. rewrite Int.add_zero; auto.
exploit ec_mem_inject. eapply volatile_store_ok. eauto. eexact Q. eauto. eauto.
intros [f' [vres' [m2' [A [B [C [D [E G]]]]]]]].
exists f'; exists vres'; exists m2'; intuition.
rewrite volatile_store_global_charact. exists b; auto.
(* trace length *)
inv H. inv H1; simpl; omega.
(* receptive *)
assert (t1 = t2). inv H. eapply volatile_store_receptive; eauto. subst t2.
exists vres1; exists m1; congruence.
(* determ *)
rewrite volatile_store_global_charact in *.
destruct H as [b1 [A1 B1]]. destruct H0 as [b2 [A2 B2]]. rewrite A1 in A2; inv A2.
eapply ec_determ. eapply volatile_store_ok. eauto. eauto.
Qed.
(** ** Semantics of dynamic memory allocation (malloc) *)
Inductive extcall_malloc_sem (F V: Type) (ge: Genv.t F V):
list val -> mem -> trace -> val -> mem -> Prop :=
| extcall_malloc_sem_intro: forall n m m' b m'',
Mem.alloc m (-4) (Int.unsigned n) = (m', b) ->
Mem.store Mint32 m' b (-4) (Vint n) = Some m'' ->
extcall_malloc_sem ge (Vint n :: nil) m E0 (Vptr b Int.zero) m''.
Lemma extcall_malloc_ok:
extcall_properties extcall_malloc_sem
(mksignature (Tint :: nil) (Some Tint)).
Proof.
assert (UNCHANGED:
forall (P: block -> Z -> Prop) m n m' b m'',
Mem.alloc m (-4) (Int.unsigned n) = (m', b) ->
Mem.store Mint32 m' b (-4) (Vint n) = Some m'' ->
mem_unchanged_on P m m'').
intros; split; intros.
eauto with mem.
transitivity (Mem.load chunk m' b0 ofs).
eapply Mem.load_store_other; eauto. left.
apply Mem.valid_not_valid_diff with m; eauto with mem.
eapply Mem.load_alloc_other; eauto.
constructor; intros.
(* well typed *)
inv H. unfold proj_sig_res; simpl. auto.
(* arity *)
inv H. auto.
(* symbols preserved *)
inv H1; econstructor; eauto.
(* valid block *)
inv H. eauto with mem.
(* bounds *)
inv H. transitivity (Mem.bounds m' b).
eapply Mem.bounds_store; eauto.
eapply Mem.bounds_alloc_other; eauto.
apply Mem.valid_not_valid_diff with m1; eauto with mem.
(* mem extends *)
inv H. inv H1. inv H5. inv H7.
exploit Mem.alloc_extends; eauto. apply Zle_refl. apply Zle_refl.
intros [m3' [A B]].
exploit Mem.store_within_extends. eexact B. eauto.
instantiate (1 := Vint n). auto.
intros [m2' [C D]].
exists (Vptr b Int.zero); exists m2'; intuition.
econstructor; eauto.
eapply UNCHANGED; eauto.
(* mem injects *)
inv H0. inv H2. inv H6. inv H8.
exploit Mem.alloc_parallel_inject; eauto. apply Zle_refl. apply Zle_refl.
intros [f' [m3' [b' [ALLOC [A [B [C D]]]]]]].
exploit Mem.store_mapped_inject. eexact A. eauto. eauto.
instantiate (1 := Vint n). auto.
intros [m2' [E G]].
exists f'; exists (Vptr b' Int.zero); exists m2'; intuition.
econstructor; eauto.
econstructor. eauto. auto.
eapply UNCHANGED; eauto.
eapply UNCHANGED; eauto.
red; intros. destruct (eq_block b1 b).
subst b1. rewrite C in H2. inv H2. eauto with mem.
rewrite D in H2. congruence. auto.
(* trace length *)
inv H; simpl; omega.
(* receptive *)
assert (t1 = t2). inv H; inv H0; auto. subst t2.
exists vres1; exists m1; auto.
(* determ *)
inv H; inv H0. split. constructor. intuition congruence.
Qed.
(** ** Semantics of dynamic memory deallocation (free) *)
Inductive extcall_free_sem (F V: Type) (ge: Genv.t F V):
list val -> mem -> trace -> val -> mem -> Prop :=
| extcall_free_sem_intro: forall b lo sz m m',
Mem.load Mint32 m b (Int.unsigned lo - 4) = Some (Vint sz) ->
Int.unsigned sz > 0 ->
Mem.free m b (Int.unsigned lo - 4) (Int.unsigned lo + Int.unsigned sz) = Some m' ->
extcall_free_sem ge (Vptr b lo :: nil) m E0 Vundef m'.
Lemma extcall_free_ok:
extcall_properties extcall_free_sem
(mksignature (Tint :: nil) None).
Proof.
assert (UNCHANGED:
forall (P: block -> Z -> Prop) m b lo hi m',
Mem.free m b lo hi = Some m' ->
lo < hi ->
(forall b' ofs, P b' ofs -> b' <> b \/ ofs < lo \/ hi <= ofs) ->
mem_unchanged_on P m m').
intros; split; intros.
eapply Mem.perm_free_1; eauto.
rewrite <- H3. eapply Mem.load_free; eauto.
destruct (eq_block b0 b); auto. right. right.
apply (Intv.range_disjoint' (ofs, ofs + size_chunk chunk) (lo, hi)).
red; intros. apply Intv.notin_range. simpl. exploit H1; eauto. intuition.
simpl; generalize (size_chunk_pos chunk); omega.
simpl; omega.
constructor; intros.
(* well typed *)
inv H. unfold proj_sig_res. simpl. auto.
(* arity *)
inv H. auto.
(* symbols preserved *)
inv H1; econstructor; eauto.
(* valid block *)
inv H. eauto with mem.
(* bounds *)
inv H. eapply Mem.bounds_free; eauto.
(* mem extends *)
inv H. inv H1. inv H8. inv H6.
exploit Mem.load_extends; eauto. intros [vsz [A B]]. inv B.
exploit Mem.free_parallel_extends; eauto. intros [m2' [C D]].
exists Vundef; exists m2'; intuition.
econstructor; eauto.
eapply UNCHANGED; eauto. omega.
intros. destruct (eq_block b' b); auto. subst b; right.
red in H.
exploit Mem.range_perm_in_bounds.
eapply Mem.free_range_perm. eexact H4. omega. omega.
(* mem inject *)
inv H0. inv H2. inv H7. inv H9.
exploit Mem.load_inject; eauto. intros [vsz [A B]]. inv B.
assert (Mem.range_perm m1 b (Int.unsigned lo - 4) (Int.unsigned lo + Int.unsigned sz) Freeable).
eapply Mem.free_range_perm; eauto.
exploit Mem.address_inject; eauto.
apply Mem.perm_implies with Freeable; auto with mem.
apply H0. instantiate (1 := lo). omega.
intro EQ.
assert (Mem.range_perm m1' b2 (Int.unsigned lo + delta - 4) (Int.unsigned lo + delta + Int.unsigned sz) Freeable).
red; intros.
replace ofs with ((ofs - delta) + delta) by omega.
eapply Mem.perm_inject; eauto. apply H0. omega.
destruct (Mem.range_perm_free _ _ _ _ H2) as [m2' FREE].
exists f; exists Vundef; exists m2'; intuition.
econstructor.
rewrite EQ. replace (Int.unsigned lo + delta - 4) with (Int.unsigned lo - 4 + delta) by omega.
eauto. auto.
rewrite EQ. auto.
assert (Mem.free_list m1 ((b, Int.unsigned lo - 4, Int.unsigned lo + Int.unsigned sz) :: nil) = Some m2).
simpl. rewrite H5. auto.
eapply Mem.free_inject; eauto.
intros. destruct (eq_block b b1).
subst b. assert (delta0 = delta) by congruence. subst delta0.
exists (Int.unsigned lo - 4); exists (Int.unsigned lo + Int.unsigned sz); split.
simpl; auto. omega.
elimtype False.
exploit Mem.inject_no_overlap. eauto. eauto. eauto. eauto.
instantiate (1 := ofs + delta0 - delta).
apply Mem.perm_implies with Freeable; auto with mem.
apply H0. omega. eauto with mem.
unfold block; omega.
eapply UNCHANGED; eauto. omega. intros.
red in H7. left. congruence.
eapply UNCHANGED; eauto. omega. intros.
destruct (eq_block b' b2); auto. subst b'. right.
red in H7. generalize (H7 _ _ H6). intros.
exploit Mem.range_perm_in_bounds. eexact H0. omega. intros. omega.
red; intros. congruence.
(* trace length *)
inv H; simpl; omega.
(* receptive *)
assert (t1 = t2). inv H; inv H0; auto. subst t2.
exists vres1; exists m1; auto.
(* determ *)
inv H; inv H0. split. constructor. intuition congruence.
Qed.
(** ** Semantics of [memcpy] operations. *)
Inductive extcall_memcpy_sem (sz al: Z) (F V: Type) (ge: Genv.t F V): list val -> mem -> trace -> val -> mem -> Prop :=
| extcall_memcpy_sem_intro: forall bdst odst bsrc osrc m bytes m',
al = 1 \/ al = 2 \/ al = 4 -> sz > 0 ->
(al | sz) -> (al | Int.unsigned osrc) -> (al | Int.unsigned odst) ->
bsrc <> bdst \/ Int.unsigned osrc = Int.unsigned odst
\/ Int.unsigned osrc + sz <= Int.unsigned odst
\/ Int.unsigned odst + sz <= Int.unsigned osrc ->
Mem.loadbytes m bsrc (Int.unsigned osrc) sz = Some bytes ->
Mem.storebytes m bdst (Int.unsigned odst) bytes = Some m' ->
extcall_memcpy_sem sz al ge (Vptr bdst odst :: Vptr bsrc osrc :: nil) m E0 Vundef m'.
Lemma extcall_memcpy_ok:
forall sz al,
extcall_properties (extcall_memcpy_sem sz al) (mksignature (Tint :: Tint :: nil) None).
Proof.
intros. constructor.
(* return type *)
intros. inv H. constructor.
(* arity *)
intros. inv H. auto.
(* change of globalenv *)
intros. inv H1. econstructor; eauto.
(* valid blocks *)
intros. inv H. eauto with mem.
(* bounds *)
intros. inv H. eapply Mem.bounds_storebytes; eauto.
(* extensions *)
intros. inv H.
inv H1. inv H13. inv H14. inv H10. inv H11.
exploit Mem.loadbytes_length; eauto. intros LEN.
exploit Mem.loadbytes_extends; eauto. intros [bytes2 [A B]].
exploit Mem.storebytes_within_extends; eauto. intros [m2' [C D]].
exists Vundef; exists m2'.
split. econstructor; eauto.
split. constructor.
split. auto.
red; split; intros.
eauto with mem.
exploit Mem.loadbytes_length. eexact H8. intros.
rewrite <- H1. eapply Mem.load_storebytes_other; eauto.
destruct (eq_block b bdst); auto. subst b; right.
exploit Mem.range_perm_in_bounds. eapply Mem.storebytes_range_perm. eexact H9.
rewrite H10. rewrite nat_of_Z_eq. omega. omega.
intros [P Q].
exploit list_forall2_length; eauto. intros R. rewrite R in Q.
apply (Intv.range_disjoint' (ofs, ofs + size_chunk chunk)
(Int.unsigned odst, Int.unsigned odst + Z_of_nat (length bytes2))); simpl.
red; intros. generalize (H x H11). unfold loc_out_of_bounds, Intv.In; simpl. omega.
generalize (size_chunk_pos chunk); omega.
rewrite <- R; rewrite H10. rewrite nat_of_Z_eq. omega. omega.
(* injections *)
intros. inv H0. inv H2. inv H14. inv H15. inv H11. inv H12.
exploit Mem.loadbytes_length; eauto. intros LEN.
assert (RPSRC: Mem.range_perm m1 bsrc (Int.unsigned osrc) (Int.unsigned osrc + sz) Nonempty).
eapply Mem.range_perm_implies. eapply Mem.loadbytes_range_perm; eauto. auto with mem.
assert (RPDST: Mem.range_perm m1 bdst (Int.unsigned odst) (Int.unsigned odst + sz) Nonempty).
replace sz with (Z_of_nat (length bytes)).
eapply Mem.range_perm_implies. eapply Mem.storebytes_range_perm; eauto. auto with mem.
rewrite LEN. apply nat_of_Z_eq. omega.
assert (PSRC: Mem.perm m1 bsrc (Int.unsigned osrc) Nonempty).
apply RPSRC. omega.
assert (PDST: Mem.perm m1 bdst (Int.unsigned odst) Nonempty).
apply RPDST. omega.
exploit Mem.address_inject. eauto. eexact PSRC. eauto. intros EQ1.
exploit Mem.address_inject. eauto. eexact PDST. eauto. intros EQ2.
exploit Mem.loadbytes_inject; eauto. intros [bytes2 [A B]].
exploit Mem.storebytes_mapped_inject; eauto. intros [m2' [C D]].
exists f; exists Vundef; exists m2'.
split. econstructor; try rewrite EQ1; try rewrite EQ2; eauto.
eapply Mem.aligned_area_inject with (m := m1); eauto.
eapply Mem.aligned_area_inject with (m := m1); eauto.
eapply Mem.disjoint_or_equal_inject with (m := m1); eauto.
split. constructor.
split. auto.
split. red; split; intros. eauto with mem.
rewrite <- H2. eapply Mem.load_storebytes_other; eauto.
destruct (eq_block b bdst); auto. subst b.
assert (loc_unmapped f bdst ofs). apply H0. generalize (size_chunk_pos chunk); omega.
red in H12. congruence.
split. red; split; intros. eauto with mem.
rewrite <- H2. eapply Mem.load_storebytes_other; eauto.
destruct (eq_block b b0); auto. subst b0; right.
rewrite <- (list_forall2_length B). rewrite LEN. rewrite nat_of_Z_eq; try omega.
apply (Intv.range_disjoint' (ofs, ofs + size_chunk chunk)
(Int.unsigned odst + delta0, Int.unsigned odst + delta0 + sz)); simpl.
red; intros. generalize (H0 x H12). unfold loc_out_of_reach, Intv.In; simpl.
intros. exploit H14; eauto.
exploit Mem.range_perm_in_bounds. eexact RPDST. omega.
omega.
generalize (size_chunk_pos chunk); omega.
omega.
split. apply inject_incr_refl.
red; intros; congruence.
(* trace length *)
intros; inv H. simpl; omega.
(* receptive *)
intros.
assert (t1 = t2). inv H; inv H0; auto. subst t2.
exists vres1; exists m1; auto.
(* determ *)
intros; inv H; inv H0. split. constructor. intros; split; congruence.
Qed.
(** ** Semantics of system calls. *)
Inductive extcall_io_sem (name: ident) (sg: signature) (F V: Type) (ge: Genv.t F V):
list val -> mem -> trace -> val -> mem -> Prop :=
| extcall_io_sem_intro: forall vargs m args res vres,
eventval_list_match ge args (sig_args sg) vargs ->
eventval_match ge res (proj_sig_res sg) vres ->
extcall_io_sem name sg ge vargs m (Event_syscall name args res :: E0) vres m.
Lemma extcall_io_ok:
forall name sg,
extcall_properties (extcall_io_sem name sg) sg.
Proof.
intros; constructor; intros.
(* well typed *)
inv H. eapply eventval_match_type; eauto.
(* arity *)
inv H. eapply eventval_list_match_length; eauto.
(* symbols preserved *)
inv H1. econstructor; eauto.
eapply eventval_list_match_preserved; eauto.
eapply eventval_match_preserved; eauto.
(* valid block *)
inv H; auto.
(* bounds *)
inv H; auto.
(* mem extends *)
inv H.
exists vres; exists m1'; intuition.
econstructor; eauto.
eapply eventval_list_match_lessdef; eauto.
red; auto.
(* mem injects *)
inv H0.
exists f; exists vres; exists m1'; intuition.
econstructor; eauto.
eapply eventval_list_match_inject; eauto.
eapply eventval_match_inject_2; eauto.
red; auto.
red; auto.
red; intros; congruence.
(* trace length *)
inv H; simpl; omega.
(* receptive *)
inv H; inv H0.
exploit eventval_match_valid; eauto. intros [A B].
exploit eventval_valid_match. eexact H7. rewrite <- H8; eauto.
intros [v' EVM]. exists v'; exists m1. econstructor; eauto.
(* determ *)
inv H; inv H0.
assert (args = args0). eapply eventval_list_match_determ_2; eauto. subst args0.
exploit eventval_match_valid. eexact H2. intros [V1 T1].
exploit eventval_match_valid. eexact H3. intros [V2 T2].
split. constructor; auto. congruence.
intros EQ; inv EQ. split; auto. eapply eventval_match_determ_1; eauto.
Qed.
(** ** Semantics of annotation. *)
Inductive extcall_annot_sem (text: ident) (targs: list typ) (F V: Type) (ge: Genv.t F V):
list val -> mem -> trace -> val -> mem -> Prop :=
| extcall_annot_sem_intro: forall vargs m args,
eventval_list_match ge args targs vargs ->
extcall_annot_sem text targs ge vargs m (Event_annot text args :: E0) Vundef m.
Lemma extcall_annot_ok:
forall text targs,
extcall_properties (extcall_annot_sem text targs) (mksignature targs None).
Proof.
intros; constructor; intros.
(* well typed *)
inv H. simpl. auto.
(* arity *)
inv H. eapply eventval_list_match_length; eauto.
(* symbols *)
inv H1. econstructor; eauto.
eapply eventval_list_match_preserved; eauto.
(* valid blocks *)
inv H; auto.
(* bounds *)
inv H; auto.
(* mem extends *)
inv H.
exists Vundef; exists m1'; intuition.
econstructor; eauto.
eapply eventval_list_match_lessdef; eauto.
red; auto.
(* mem injects *)
inv H0.
exists f; exists Vundef; exists m1'; intuition.
econstructor; eauto.
eapply eventval_list_match_inject; eauto.
red; auto.
red; auto.
red; intros; congruence.
(* trace length *)
inv H; simpl; omega.
(* receptive *)
assert (t1 = t2). inv H; inv H0; auto.
exists vres1; exists m1; congruence.
(* determ *)
inv H; inv H0.
assert (args = args0). eapply eventval_list_match_determ_2; eauto. subst args0.
split. constructor. auto.
Qed.
Inductive extcall_annot_val_sem (text: ident) (targ: typ) (F V: Type) (ge: Genv.t F V):
list val -> mem -> trace -> val -> mem -> Prop :=
| extcall_annot_val_sem_intro: forall varg m arg,
eventval_match ge arg targ varg ->
extcall_annot_val_sem text targ ge (varg :: nil) m (Event_annot text (arg :: nil) :: E0) varg m.
Lemma extcall_annot_val_ok:
forall text targ,
extcall_properties (extcall_annot_val_sem text targ) (mksignature (targ :: nil) (Some targ)).
Proof.
intros; constructor; intros.
inv H. unfold proj_sig_res; simpl. eapply eventval_match_type; eauto.
inv H. auto.
inv H1. econstructor; eauto.
eapply eventval_match_preserved; eauto.
inv H; auto.
inv H; auto.
inv H. inv H1. inv H6.
exists v2; exists m1'; intuition.
econstructor; eauto.
eapply eventval_match_lessdef; eauto.
red; auto.
inv H0. inv H2. inv H7.
exists f; exists v'; exists m1'; intuition.
econstructor; eauto.
eapply eventval_match_inject; eauto.
red; auto.
red; auto.
red; intros; congruence.
inv H; simpl; omega.
assert (t1 = t2). inv H; inv H0; auto. subst t2.
exists vres1; exists m1; auto.
inv H; inv H0.
assert (arg = arg0). eapply eventval_match_determ_2; eauto. subst arg0.
split. constructor. auto.
Qed.
(** ** Combined semantics of external calls *)
(** Combining the semantics given above for the various kinds of external calls,
we define the predicate [external_call] that relates:
- the external function being invoked
- the values of the arguments passed to this function
- the memory state before the call
- the result value of the call
- the memory state after the call
- the trace generated by the call (can be empty).
This predicate is used in the semantics of all CompCert languages. *)
Definition external_call (ef: external_function): extcall_sem :=
match ef with
| EF_external name sg => extcall_io_sem name sg
| EF_builtin name sg => extcall_io_sem name sg
| EF_vload chunk => volatile_load_sem chunk
| EF_vstore chunk => volatile_store_sem chunk
| EF_vload_global chunk id ofs => volatile_load_global_sem chunk id ofs
| EF_vstore_global chunk id ofs => volatile_store_global_sem chunk id ofs
| EF_malloc => extcall_malloc_sem
| EF_free => extcall_free_sem
| EF_memcpy sz al => extcall_memcpy_sem sz al
| EF_annot txt targs => extcall_annot_sem txt targs
| EF_annot_val txt targ=> extcall_annot_val_sem txt targ
end.
Theorem external_call_spec:
forall ef,
extcall_properties (external_call ef) (ef_sig ef).
Proof.
intros. unfold external_call, ef_sig. destruct ef.
apply extcall_io_ok.
apply extcall_io_ok.
apply volatile_load_ok.
apply volatile_store_ok.
apply volatile_load_global_ok.
apply volatile_store_global_ok.
apply extcall_malloc_ok.
apply extcall_free_ok.
apply extcall_memcpy_ok.
apply extcall_annot_ok.
apply extcall_annot_val_ok.
Qed.
Definition external_call_well_typed ef := ec_well_typed (external_call_spec ef).
Definition external_call_arity ef := ec_arity (external_call_spec ef).
Definition external_call_symbols_preserved_gen ef := ec_symbols_preserved (external_call_spec ef).
Definition external_call_valid_block ef := ec_valid_block (external_call_spec ef).
Definition external_call_bounds ef := ec_bounds (external_call_spec ef).
Definition external_call_mem_extends ef := ec_mem_extends (external_call_spec ef).
Definition external_call_mem_inject ef := ec_mem_inject (external_call_spec ef).
Definition external_call_trace_length ef := ec_trace_length (external_call_spec ef).
Definition external_call_receptive ef := ec_receptive (external_call_spec ef).
Definition external_call_determ ef := ec_determ (external_call_spec ef).
(** Special cases of [external_call_symbols_preserved_gen]. *)
Lemma external_call_symbols_preserved:
forall ef F1 F2 V (ge1: Genv.t F1 V) (ge2: Genv.t F2 V) vargs m1 t vres m2,
external_call ef ge1 vargs m1 t vres m2 ->
(forall id, Genv.find_symbol ge2 id = Genv.find_symbol ge1 id) ->
(forall b, Genv.find_var_info ge2 b = Genv.find_var_info ge1 b) ->
external_call ef ge2 vargs m1 t vres m2.
Proof.
intros. eapply external_call_symbols_preserved_gen; eauto.
intros. unfold block_is_volatile. rewrite H1. auto.
Qed.
Require Import Errors.
Lemma external_call_symbols_preserved_2:
forall ef F1 V1 F2 V2 (tvar: V1 -> res V2)
(ge1: Genv.t F1 V1) (ge2: Genv.t F2 V2) vargs m1 t vres m2,
external_call ef ge1 vargs m1 t vres m2 ->
(forall id, Genv.find_symbol ge2 id = Genv.find_symbol ge1 id) ->
(forall b gv1, Genv.find_var_info ge1 b = Some gv1 ->
exists gv2, Genv.find_var_info ge2 b = Some gv2 /\ transf_globvar tvar gv1 = OK gv2) ->
(forall b gv2, Genv.find_var_info ge2 b = Some gv2 ->
exists gv1, Genv.find_var_info ge1 b = Some gv1 /\ transf_globvar tvar gv1 = OK gv2) ->
external_call ef ge2 vargs m1 t vres m2.
Proof.
intros. eapply external_call_symbols_preserved_gen; eauto.
intros. unfold block_is_volatile.
case_eq (Genv.find_var_info ge1 b); intros.
exploit H1; eauto. intros [g2 [A B]]. rewrite A. monadInv B. destruct g; auto.
case_eq (Genv.find_var_info ge2 b); intros.
exploit H2; eauto. intros [g1 [A B]]. congruence.
auto.
Qed.
(** Corollary of [external_call_valid_block]. *)
Lemma external_call_nextblock:
forall ef (F V : Type) (ge : Genv.t F V) vargs m1 t vres m2,
external_call ef ge vargs m1 t vres m2 ->
Mem.nextblock m1 <= Mem.nextblock m2.
Proof.
intros.
exploit external_call_valid_block; eauto.
instantiate (1 := Mem.nextblock m1 - 1). red; omega.
unfold Mem.valid_block. omega.
Qed.
(** Corollaries of [external_call_determ]. *)
Lemma external_call_match_traces:
forall ef (F V : Type) (ge : Genv.t F V) vargs m t1 vres1 m1 t2 vres2 m2,
external_call ef ge vargs m t1 vres1 m1 ->
external_call ef ge vargs m t2 vres2 m2 ->
match_traces ge t1 t2.
Proof.
intros. exploit external_call_determ. eexact H. eexact H0. tauto.
Qed.
Lemma external_call_deterministic:
forall ef (F V : Type) (ge : Genv.t F V) vargs m t vres1 m1 vres2 m2,
external_call ef ge vargs m t vres1 m1 ->
external_call ef ge vargs m t vres2 m2 ->
vres1 = vres2 /\ m1 = m2.
Proof.
intros. exploit external_call_determ. eexact H. eexact H0. intuition.
Qed.
|