1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
|
(* *********************************************************************)
(* *)
(* The Compcert verified compiler *)
(* *)
(* Xavier Leroy, INRIA Paris-Rocquencourt *)
(* *)
(* Copyright Institut National de Recherche en Informatique et en *)
(* Automatique. All rights reserved. This file is distributed *)
(* under the terms of the GNU General Public License as published by *)
(* the Free Software Foundation, either version 2 of the License, or *)
(* (at your option) any later version. This file is also distributed *)
(* under the terms of the INRIA Non-Commercial License Agreement. *)
(* *)
(* *********************************************************************)
(** This file defines a number of data types and operations used in
the abstract syntax trees of many of the intermediate languages. *)
Require Import Coqlib.
Require Import Errors.
Require Import Integers.
Require Import Floats.
Set Implicit Arguments.
(** * Syntactic elements *)
(** Identifiers (names of local variables, of global symbols and functions,
etc) are represented by the type [positive] of positive integers. *)
Definition ident := positive.
Definition ident_eq := peq.
(** The intermediate languages are weakly typed, using only two types:
[Tint] for integers and pointers, and [Tfloat] for floating-point
numbers. *)
Inductive typ : Type :=
| Tint : typ
| Tfloat : typ.
Definition typesize (ty: typ) : Z :=
match ty with Tint => 4 | Tfloat => 8 end.
Lemma typesize_pos: forall ty, typesize ty > 0.
Proof. destruct ty; simpl; omega. Qed.
Lemma typ_eq: forall (t1 t2: typ), {t1=t2} + {t1<>t2}.
Proof. decide equality. Qed.
Lemma opt_typ_eq: forall (t1 t2: option typ), {t1=t2} + {t1<>t2}.
Proof. decide equality. apply typ_eq. Qed.
(** Additionally, function definitions and function calls are annotated
by function signatures indicating the number and types of arguments,
as well as the type of the returned value if any. These signatures
are used in particular to determine appropriate calling conventions
for the function. *)
Record signature : Type := mksignature {
sig_args: list typ;
sig_res: option typ
}.
Definition proj_sig_res (s: signature) : typ :=
match s.(sig_res) with
| None => Tint
| Some t => t
end.
(** Memory accesses (load and store instructions) are annotated by
a ``memory chunk'' indicating the type, size and signedness of the
chunk of memory being accessed. *)
Inductive memory_chunk : Type :=
| Mint8signed : memory_chunk (**r 8-bit signed integer *)
| Mint8unsigned : memory_chunk (**r 8-bit unsigned integer *)
| Mint16signed : memory_chunk (**r 16-bit signed integer *)
| Mint16unsigned : memory_chunk (**r 16-bit unsigned integer *)
| Mint32 : memory_chunk (**r 32-bit integer, or pointer *)
| Mfloat32 : memory_chunk (**r 32-bit single-precision float *)
| Mfloat64 : memory_chunk. (**r 64-bit double-precision float *)
(** Initialization data for global variables. *)
Inductive init_data: Type :=
| Init_int8: int -> init_data
| Init_int16: int -> init_data
| Init_int32: int -> init_data
| Init_float32: float -> init_data
| Init_float64: float -> init_data
| Init_space: Z -> init_data
| Init_pointer: list init_data -> init_data.
(** Whole programs consist of:
- a collection of function definitions (name and description);
- the name of the ``main'' function that serves as entry point in the program;
- a collection of global variable declarations, consisting of
a name, initialization data, and additional information.
The type of function descriptions and that of additional information
for variables vary among the various intermediate languages and are
taken as parameters to the [program] type. The other parts of whole
programs are common to all languages. *)
Record program (F V: Type) : Type := mkprogram {
prog_funct: list (ident * F);
prog_main: ident;
prog_vars: list (ident * list init_data * V)
}.
Definition prog_funct_names (F V: Type) (p: program F V) : list ident :=
map (@fst ident F) p.(prog_funct).
Definition prog_var_names (F V: Type) (p: program F V) : list ident :=
map (fun x: ident * list init_data * V => fst(fst x)) p.(prog_vars).
(** * Generic transformations over programs *)
(** We now define a general iterator over programs that applies a given
code transformation function to all function descriptions and leaves
the other parts of the program unchanged. *)
Section TRANSF_PROGRAM.
Variable A B V: Type.
Variable transf: A -> B.
Definition transf_program (l: list (ident * A)) : list (ident * B) :=
List.map (fun id_fn => (fst id_fn, transf (snd id_fn))) l.
Definition transform_program (p: program A V) : program B V :=
mkprogram
(transf_program p.(prog_funct))
p.(prog_main)
p.(prog_vars).
Lemma transform_program_function:
forall p i tf,
In (i, tf) (transform_program p).(prog_funct) ->
exists f, In (i, f) p.(prog_funct) /\ transf f = tf.
Proof.
simpl. unfold transf_program. intros.
exploit list_in_map_inv; eauto.
intros [[i' f] [EQ IN]]. simpl in EQ. inversion EQ; subst.
exists f; split; auto.
Qed.
End TRANSF_PROGRAM.
(** The following is a variant of [transform_program] where the
code transformation function can fail and therefore returns an
option type. *)
Open Local Scope error_monad_scope.
Open Local Scope string_scope.
Section MAP_PARTIAL.
Variable A B C: Type.
Variable prefix_errmsg: A -> errmsg.
Variable f: B -> res C.
Fixpoint map_partial (l: list (A * B)) : res (list (A * C)) :=
match l with
| nil => OK nil
| (a, b) :: rem =>
match f b with
| Error msg => Error (prefix_errmsg a ++ msg)%list
| OK c =>
do rem' <- map_partial rem;
OK ((a, c) :: rem')
end
end.
Remark In_map_partial:
forall l l' a c,
map_partial l = OK l' ->
In (a, c) l' ->
exists b, In (a, b) l /\ f b = OK c.
Proof.
induction l; simpl.
intros. inv H. elim H0.
intros until c. destruct a as [a1 b1].
caseEq (f b1); try congruence.
intro c1; intros. monadInv H0.
elim H1; intro. inv H0. exists b1; auto.
exploit IHl; eauto. intros [b [P Q]]. exists b; auto.
Qed.
Remark map_partial_forall2:
forall l l',
map_partial l = OK l' ->
list_forall2
(fun (a_b: A * B) (a_c: A * C) =>
fst a_b = fst a_c /\ f (snd a_b) = OK (snd a_c))
l l'.
Proof.
induction l; simpl.
intros. inv H. constructor.
intro l'. destruct a as [a b].
caseEq (f b). 2: congruence. intro c; intros. monadInv H0.
constructor. simpl. auto. auto.
Qed.
End MAP_PARTIAL.
Remark map_partial_total:
forall (A B C: Type) (prefix: A -> errmsg) (f: B -> C) (l: list (A * B)),
map_partial prefix (fun b => OK (f b)) l =
OK (List.map (fun a_b => (fst a_b, f (snd a_b))) l).
Proof.
induction l; simpl.
auto.
destruct a as [a1 b1]. rewrite IHl. reflexivity.
Qed.
Remark map_partial_identity:
forall (A B: Type) (prefix: A -> errmsg) (l: list (A * B)),
map_partial prefix (fun b => OK b) l = OK l.
Proof.
induction l; simpl.
auto.
destruct a as [a1 b1]. rewrite IHl. reflexivity.
Qed.
Section TRANSF_PARTIAL_PROGRAM.
Variable A B V: Type.
Variable transf_partial: A -> res B.
Definition prefix_funct_name (id: ident) : errmsg :=
MSG "In function " :: CTX id :: MSG ":\n" :: nil.
Definition transform_partial_program (p: program A V) : res (program B V) :=
do fl <- map_partial prefix_funct_name transf_partial p.(prog_funct);
OK (mkprogram fl p.(prog_main) p.(prog_vars)).
Lemma transform_partial_program_function:
forall p tp i tf,
transform_partial_program p = OK tp ->
In (i, tf) tp.(prog_funct) ->
exists f, In (i, f) p.(prog_funct) /\ transf_partial f = OK tf.
Proof.
intros. monadInv H. simpl in H0.
eapply In_map_partial; eauto.
Qed.
Lemma transform_partial_program_main:
forall p tp,
transform_partial_program p = OK tp ->
tp.(prog_main) = p.(prog_main).
Proof.
intros. monadInv H. reflexivity.
Qed.
Lemma transform_partial_program_vars:
forall p tp,
transform_partial_program p = OK tp ->
tp.(prog_vars) = p.(prog_vars).
Proof.
intros. monadInv H. reflexivity.
Qed.
End TRANSF_PARTIAL_PROGRAM.
(** The following is a variant of [transform_program_partial] where
both the program functions and the additional variable information
are transformed by functions that can fail. *)
Section TRANSF_PARTIAL_PROGRAM2.
Variable A B V W: Type.
Variable transf_partial_function: A -> res B.
Variable transf_partial_variable: V -> res W.
Definition prefix_var_name (id_init: ident * list init_data) : errmsg :=
MSG "In global variable " :: CTX (fst id_init) :: MSG ":\n" :: nil.
Definition transform_partial_program2 (p: program A V) : res (program B W) :=
do fl <- map_partial prefix_funct_name transf_partial_function p.(prog_funct);
do vl <- map_partial prefix_var_name transf_partial_variable p.(prog_vars);
OK (mkprogram fl p.(prog_main) vl).
Lemma transform_partial_program2_function:
forall p tp i tf,
transform_partial_program2 p = OK tp ->
In (i, tf) tp.(prog_funct) ->
exists f, In (i, f) p.(prog_funct) /\ transf_partial_function f = OK tf.
Proof.
intros. monadInv H.
eapply In_map_partial; eauto.
Qed.
Lemma transform_partial_program2_variable:
forall p tp i tv,
transform_partial_program2 p = OK tp ->
In (i, tv) tp.(prog_vars) ->
exists v, In (i, v) p.(prog_vars) /\ transf_partial_variable v = OK tv.
Proof.
intros. monadInv H.
eapply In_map_partial; eauto.
Qed.
Lemma transform_partial_program2_main:
forall p tp,
transform_partial_program2 p = OK tp ->
tp.(prog_main) = p.(prog_main).
Proof.
intros. monadInv H. reflexivity.
Qed.
End TRANSF_PARTIAL_PROGRAM2.
(** The following is a relational presentation of
[transform_program_partial2]. Given relations between function
definitions and between variable information, it defines a relation
between programs stating that the two programs have the same shape
(same global names, etc) and that identically-named function definitions
are variable information are related. *)
Section MATCH_PROGRAM.
Variable A B V W: Type.
Variable match_fundef: A -> B -> Prop.
Variable match_varinfo: V -> W -> Prop.
Definition match_funct_entry (x1: ident * A) (x2: ident * B) :=
match x1, x2 with
| (id1, fn1), (id2, fn2) => id1 = id2 /\ match_fundef fn1 fn2
end.
Definition match_var_entry (x1: ident * list init_data * V) (x2: ident * list init_data * W) :=
match x1, x2 with
| (id1, init1, info1), (id2, init2, info2) => id1 = id2 /\ init1 = init2 /\ match_varinfo info1 info2
end.
Definition match_program (p1: program A V) (p2: program B W) : Prop :=
list_forall2 match_funct_entry p1.(prog_funct) p2.(prog_funct)
/\ p1.(prog_main) = p2.(prog_main)
/\ list_forall2 match_var_entry p1.(prog_vars) p2.(prog_vars).
End MATCH_PROGRAM.
Remark transform_partial_program2_match:
forall (A B V W: Type)
(transf_partial_function: A -> res B)
(transf_partial_variable: V -> res W)
(p: program A V) (tp: program B W),
transform_partial_program2 transf_partial_function transf_partial_variable p = OK tp ->
match_program
(fun fd tfd => transf_partial_function fd = OK tfd)
(fun info tinfo => transf_partial_variable info = OK tinfo)
p tp.
Proof.
intros. monadInv H. split.
apply list_forall2_imply with
(fun (ab: ident * A) (ac: ident * B) =>
fst ab = fst ac /\ transf_partial_function (snd ab) = OK (snd ac)).
eapply map_partial_forall2. eauto.
intros. destruct v1; destruct v2; simpl in *. auto.
split. auto.
apply list_forall2_imply with
(fun (ab: ident * list init_data * V) (ac: ident * list init_data * W) =>
fst ab = fst ac /\ transf_partial_variable (snd ab) = OK (snd ac)).
eapply map_partial_forall2. eauto.
intros. destruct v1; destruct v2; simpl in *. destruct p0; destruct p1. intuition congruence.
Qed.
(** * External functions *)
(** For most languages, the functions composing the program are either
internal functions, defined within the language, or external functions
(a.k.a. system calls) that emit an event when applied. We define
a type for such functions and some generic transformation functions. *)
Record external_function : Type := mkextfun {
ef_id: ident;
ef_sig: signature
}.
Inductive fundef (F: Type): Type :=
| Internal: F -> fundef F
| External: external_function -> fundef F.
Implicit Arguments External [F].
Section TRANSF_FUNDEF.
Variable A B: Type.
Variable transf: A -> B.
Definition transf_fundef (fd: fundef A): fundef B :=
match fd with
| Internal f => Internal (transf f)
| External ef => External ef
end.
End TRANSF_FUNDEF.
Section TRANSF_PARTIAL_FUNDEF.
Variable A B: Type.
Variable transf_partial: A -> res B.
Definition transf_partial_fundef (fd: fundef A): res (fundef B) :=
match fd with
| Internal f => do f' <- transf_partial f; OK (Internal f')
| External ef => OK (External ef)
end.
End TRANSF_PARTIAL_FUNDEF.
|