1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
|
(* *********************************************************************)
(* *)
(* The Compcert verified compiler *)
(* *)
(* Xavier Leroy, INRIA Paris-Rocquencourt *)
(* *)
(* Copyright Institut National de Recherche en Informatique et en *)
(* Automatique. All rights reserved. This file is distributed *)
(* under the terms of the INRIA Non-Commercial License Agreement. *)
(* *)
(* *********************************************************************)
(** Compile-time evaluation of initializers for global C variables. *)
Require Import Coqlib.
Require Import Errors.
Require Import Maps.
Require Import Integers.
Require Import Floats.
Require Import Values.
Require Import AST.
Require Import Memory.
Require Import Globalenvs.
Require Import Events.
Require Import Smallstep.
Require Import Ctypes.
Require Import Cop.
Require Import Csyntax.
Require Import Csem.
Require Import Initializers.
Open Scope error_monad_scope.
Section SOUNDNESS.
Variable ge: genv.
(** * Simple expressions and their big-step semantics *)
(** An expression is simple if it contains no assignments and no
function calls. *)
Fixpoint simple (a: expr) : Prop :=
match a with
| Eloc _ _ _ => True
| Evar _ _ => True
| Ederef r _ => simple r
| Efield l1 _ _ => simple l1
| Eval _ _ => True
| Evalof l _ => simple l
| Eaddrof l _ => simple l
| Eunop _ r1 _ => simple r1
| Ebinop _ r1 r2 _ => simple r1 /\ simple r2
| Ecast r1 _ => simple r1
| Eseqand r1 r2 _ => simple r1 /\ simple r2
| Eseqor r1 r2 _ => simple r1 /\ simple r2
| Econdition r1 r2 r3 _ => simple r1 /\ simple r2 /\ simple r3
| Esizeof _ _ => True
| Ealignof _ _ => True
| Eassign _ _ _ => False
| Eassignop _ _ _ _ _ => False
| Epostincr _ _ _ => False
| Ecomma r1 r2 _ => simple r1 /\ simple r2
| Ecall _ _ _ => False
| Ebuiltin _ _ _ _ => False
| Eparen r1 _ => simple r1
end.
(** A big-step semantics for simple expressions. Similar to the
big-step semantics from [Cstrategy], with the addition of
conditionals, comma and paren operators. It is a pity we do not
share definitions with [Cstrategy], but such sharing raises
technical difficulties. *)
Section SIMPLE_EXPRS.
Variable e: env.
Variable m: mem.
Inductive eval_simple_lvalue: expr -> block -> int -> Prop :=
| esl_loc: forall b ofs ty,
eval_simple_lvalue (Eloc b ofs ty) b ofs
| esl_var_local: forall x ty b,
e!x = Some(b, ty) ->
eval_simple_lvalue (Evar x ty) b Int.zero
| esl_var_global: forall x ty b,
e!x = None ->
Genv.find_symbol ge x = Some b ->
eval_simple_lvalue (Evar x ty) b Int.zero
| esl_deref: forall r ty b ofs,
eval_simple_rvalue r (Vptr b ofs) ->
eval_simple_lvalue (Ederef r ty) b ofs
| esl_field_struct: forall r f ty b ofs id fList a delta,
eval_simple_rvalue r (Vptr b ofs) ->
typeof r = Tstruct id fList a -> field_offset f fList = OK delta ->
eval_simple_lvalue (Efield r f ty) b (Int.add ofs (Int.repr delta))
| esl_field_union: forall r f ty b ofs id fList a,
eval_simple_rvalue r (Vptr b ofs) ->
typeof r = Tunion id fList a ->
eval_simple_lvalue (Efield r f ty) b ofs
with eval_simple_rvalue: expr -> val -> Prop :=
| esr_val: forall v ty,
eval_simple_rvalue (Eval v ty) v
| esr_rvalof: forall b ofs l ty v,
eval_simple_lvalue l b ofs ->
ty = typeof l ->
deref_loc ge ty m b ofs E0 v ->
eval_simple_rvalue (Evalof l ty) v
| esr_addrof: forall b ofs l ty,
eval_simple_lvalue l b ofs ->
eval_simple_rvalue (Eaddrof l ty) (Vptr b ofs)
| esr_unop: forall op r1 ty v1 v,
eval_simple_rvalue r1 v1 ->
sem_unary_operation op v1 (typeof r1) = Some v ->
eval_simple_rvalue (Eunop op r1 ty) v
| esr_binop: forall op r1 r2 ty v1 v2 v,
eval_simple_rvalue r1 v1 -> eval_simple_rvalue r2 v2 ->
sem_binary_operation op v1 (typeof r1) v2 (typeof r2) m = Some v ->
eval_simple_rvalue (Ebinop op r1 r2 ty) v
| esr_cast: forall ty r1 v1 v,
eval_simple_rvalue r1 v1 ->
sem_cast v1 (typeof r1) ty = Some v ->
eval_simple_rvalue (Ecast r1 ty) v
| esr_sizeof: forall ty1 ty,
eval_simple_rvalue (Esizeof ty1 ty) (Vint (Int.repr (sizeof ty1)))
| esr_alignof: forall ty1 ty,
eval_simple_rvalue (Ealignof ty1 ty) (Vint (Int.repr (alignof ty1)))
| esr_seqand_true: forall r1 r2 ty v1 v2 v3 v4,
eval_simple_rvalue r1 v1 -> bool_val v1 (typeof r1) = Some true ->
eval_simple_rvalue r2 v2 ->
sem_cast v2 (typeof r2) type_bool = Some v3 ->
sem_cast v3 type_bool ty = Some v4 ->
eval_simple_rvalue (Eseqand r1 r2 ty) v4
| esr_seqand_false: forall r1 r2 ty v1,
eval_simple_rvalue r1 v1 -> bool_val v1 (typeof r1) = Some false ->
eval_simple_rvalue (Eseqand r1 r2 ty) (Vint Int.zero)
| esr_seqor_false: forall r1 r2 ty v1 v2 v3 v4,
eval_simple_rvalue r1 v1 -> bool_val v1 (typeof r1) = Some false ->
eval_simple_rvalue r2 v2 ->
sem_cast v2 (typeof r2) type_bool = Some v3 ->
sem_cast v3 type_bool ty = Some v4 ->
eval_simple_rvalue (Eseqor r1 r2 ty) v4
| esr_seqor_true: forall r1 r2 ty v1,
eval_simple_rvalue r1 v1 -> bool_val v1 (typeof r1) = Some true ->
eval_simple_rvalue (Eseqor r1 r2 ty) (Vint Int.one)
| esr_condition: forall r1 r2 r3 ty v v1 b v',
eval_simple_rvalue r1 v1 -> bool_val v1 (typeof r1) = Some b ->
eval_simple_rvalue (if b then r2 else r3) v' ->
sem_cast v' (typeof (if b then r2 else r3)) ty = Some v ->
eval_simple_rvalue (Econdition r1 r2 r3 ty) v
| esr_comma: forall r1 r2 ty v1 v,
eval_simple_rvalue r1 v1 -> eval_simple_rvalue r2 v ->
eval_simple_rvalue (Ecomma r1 r2 ty) v
| esr_paren: forall r ty v v',
eval_simple_rvalue r v -> sem_cast v (typeof r) ty = Some v' ->
eval_simple_rvalue (Eparen r ty) v'.
End SIMPLE_EXPRS.
(** * Correctness of the big-step semantics with respect to reduction sequences *)
(** In this section, we show that if a simple expression [a] reduces to
some value (with the transition semantics from module [Csem]),
then it evaluates to this value (with the big-step semantics above). *)
Definition compat_eval (k: kind) (e: env) (a a': expr) (m: mem) : Prop :=
typeof a = typeof a' /\
match k with
| LV => forall b ofs, eval_simple_lvalue e m a' b ofs -> eval_simple_lvalue e m a b ofs
| RV => forall v, eval_simple_rvalue e m a' v -> eval_simple_rvalue e m a v
end.
Lemma lred_simple:
forall e l m l' m', lred ge e l m l' m' -> simple l -> simple l'.
Proof.
induction 1; simpl; tauto.
Qed.
Lemma lred_compat:
forall e l m l' m', lred ge e l m l' m' ->
m = m' /\ compat_eval LV e l l' m.
Proof.
induction 1; simpl; split; auto; split; auto; intros bx ofsx EV; inv EV.
apply esl_var_local; auto.
apply esl_var_global; auto.
constructor. constructor.
eapply esl_field_struct; eauto. constructor. simpl; eauto.
eapply esl_field_union; eauto. constructor. simpl; eauto.
Qed.
Lemma rred_simple:
forall r m t r' m', rred ge r m t r' m' -> simple r -> simple r'.
Proof.
induction 1; simpl; intuition. destruct b; auto.
Qed.
Lemma rred_compat:
forall e r m r' m', rred ge r m E0 r' m' ->
simple r ->
m = m' /\ compat_eval RV e r r' m.
Proof.
intros until m'; intros RED SIMP. inv RED; simpl in SIMP; try contradiction; split; auto; split; auto; intros vx EV.
inv EV. econstructor. constructor. auto. auto.
inv EV. econstructor. constructor.
inv EV. econstructor; eauto. constructor.
inv EV. econstructor; eauto. constructor. constructor.
inv EV. econstructor; eauto. constructor.
inv EV. inv H2. eapply esr_seqand_true; eauto. constructor.
inv EV. eapply esr_seqand_false; eauto. constructor.
inv EV. eapply esr_seqor_true; eauto. constructor.
inv EV. inv H2. eapply esr_seqor_false; eauto. constructor.
inv EV. eapply esr_condition; eauto. constructor.
inv EV. constructor.
inv EV. constructor.
econstructor; eauto. constructor.
inv EV. econstructor. constructor. auto.
Qed.
Lemma compat_eval_context:
forall e a a' m from to C,
context from to C ->
compat_eval from e a a' m ->
compat_eval to e (C a) (C a') m.
Proof.
induction 1; intros CE; auto;
try (generalize (IHcontext CE); intros [TY EV]; red; split; simpl; auto; intros).
inv H0. constructor; auto.
inv H0.
eapply esl_field_struct; eauto. rewrite TY; eauto.
eapply esl_field_union; eauto. rewrite TY; eauto.
inv H0. econstructor. eauto. auto. auto.
inv H0. econstructor; eauto.
inv H0. econstructor; eauto. congruence.
inv H0. econstructor; eauto. congruence.
inv H0. econstructor; eauto. congruence.
inv H0. econstructor; eauto. congruence.
inv H0.
eapply esr_seqand_true; eauto. rewrite TY; auto.
eapply esr_seqand_false; eauto. rewrite TY; auto.
inv H0.
eapply esr_seqor_false; eauto. rewrite TY; auto.
eapply esr_seqor_true; eauto. rewrite TY; auto.
inv H0. eapply esr_condition; eauto. congruence.
inv H0.
inv H0.
inv H0.
inv H0.
inv H0.
inv H0.
red; split; intros. auto. inv H0.
red; split; intros. auto. inv H0.
inv H0. econstructor; eauto.
inv H0. econstructor; eauto. congruence.
Qed.
Lemma simple_context_1:
forall a from to C, context from to C -> simple (C a) -> simple a.
Proof.
induction 1; simpl; tauto.
Qed.
Lemma simple_context_2:
forall a a', simple a' -> forall from to C, context from to C -> simple (C a) -> simple (C a').
Proof.
induction 2; simpl; try tauto.
Qed.
Lemma compat_eval_steps_aux f r e m r' m' s2 :
simple r ->
star step ge s2 nil (ExprState f r' Kstop e m') ->
estep ge (ExprState f r Kstop e m) nil s2 ->
exists r1,
s2 = ExprState f r1 Kstop e m /\
compat_eval RV e r r1 m /\ simple r1.
Proof.
intros.
inv H1.
(* lred *)
assert (S: simple a) by (eapply simple_context_1; eauto).
exploit lred_compat; eauto. intros [A B]. subst m'0.
econstructor; split. eauto. split.
eapply compat_eval_context; eauto.
eapply simple_context_2; eauto. eapply lred_simple; eauto.
(* rred *)
assert (S: simple a) by (eapply simple_context_1; eauto).
exploit rred_compat; eauto. intros [A B]. subst m'0.
econstructor; split. eauto. split.
eapply compat_eval_context; eauto.
eapply simple_context_2; eauto. eapply rred_simple; eauto.
(* callred *)
assert (S: simple a) by (eapply simple_context_1; eauto).
inv H8; simpl in S; contradiction.
(* stuckred *)
inv H0. destruct H1; inv H0.
Qed.
Lemma compat_eval_steps:
forall f r e m r' m',
star step ge (ExprState f r Kstop e m) E0 (ExprState f r' Kstop e m') ->
simple r ->
m' = m /\ compat_eval RV e r r' m.
Proof.
intros.
remember (ExprState f r Kstop e m) as S1.
remember E0 as t.
remember (ExprState f r' Kstop e m') as S2.
revert S1 t S2 H r m r' m' HeqS1 Heqt HeqS2 H0.
induction 1; intros; subst.
(* base case *)
inv HeqS2. split. auto. red; auto.
(* inductive case *)
destruct (app_eq_nil t1 t2); auto. subst. inv H.
(* expression step *)
exploit compat_eval_steps_aux; eauto.
intros [r1 [A [B C]]]. subst s2.
exploit IHstar; eauto. intros [D E].
split. auto. destruct B; destruct E. split. congruence. auto.
(* statement steps *)
inv H1.
Qed.
Theorem eval_simple_steps:
forall f r e m v ty m',
star step ge (ExprState f r Kstop e m) E0 (ExprState f (Eval v ty) Kstop e m') ->
simple r ->
m' = m /\ ty = typeof r /\ eval_simple_rvalue e m r v.
Proof.
intros. exploit compat_eval_steps; eauto. intros [A [B C]].
intuition. apply C. constructor.
Qed.
(** * Soundness of the compile-time evaluator *)
(** A global environment [ge] induces a memory injection mapping
our symbolic pointers [Vptr id ofs] to run-time pointers
[Vptr b ofs] where [Genv.find_symbol ge id = Some b]. *)
Definition inj (b: block) :=
match Genv.find_symbol ge b with
| Some b' => Some (b', 0)
| None => None
end.
Lemma mem_empty_not_valid_pointer:
forall b ofs, Mem.valid_pointer Mem.empty b ofs = false.
Proof.
intros. unfold Mem.valid_pointer. destruct (Mem.perm_dec Mem.empty b ofs Cur Nonempty); auto.
eelim Mem.perm_empty; eauto.
Qed.
Lemma mem_empty_not_weak_valid_pointer:
forall b ofs, Mem.weak_valid_pointer Mem.empty b ofs = false.
Proof.
intros. unfold Mem.weak_valid_pointer.
now rewrite !mem_empty_not_valid_pointer.
Qed.
Lemma sem_cast_match:
forall v1 ty1 ty2 v2 v1' v2',
sem_cast v1 ty1 ty2 = Some v2 ->
do_cast v1' ty1 ty2 = OK v2' ->
val_inject inj v1' v1 ->
val_inject inj v2' v2.
Proof.
intros. unfold do_cast in H0. destruct (sem_cast v1' ty1 ty2) as [v2''|] eqn:E; inv H0.
exploit sem_cast_inject. eexact E. eauto.
intros [v' [A B]]. congruence.
Qed.
(** Soundness of [constval] with respect to the big-step semantics *)
Lemma constval_rvalue:
forall m a v,
eval_simple_rvalue empty_env m a v ->
forall v',
constval a = OK v' ->
val_inject inj v' v
with constval_lvalue:
forall m a b ofs,
eval_simple_lvalue empty_env m a b ofs ->
forall v',
constval a = OK v' ->
val_inject inj v' (Vptr b ofs).
Proof.
(* rvalue *)
induction 1; intros vres CV; simpl in CV; try (monadInv CV).
(* val *)
destruct v; monadInv CV; constructor.
(* rval *)
inv H1; rewrite H2 in CV; try congruence. eauto. eauto.
(* addrof *)
eauto.
(* unop *)
destruct (sem_unary_operation op x (typeof r1)) as [v1'|] eqn:E; inv EQ0.
exploit sem_unary_operation_inject. eexact E. eauto.
intros [v' [A B]]. congruence.
(* binop *)
destruct (sem_binary_operation op x (typeof r1) x0 (typeof r2) Mem.empty) as [v1'|] eqn:E; inv EQ2.
exploit (sem_binary_operation_inj inj Mem.empty m).
intros. rewrite mem_empty_not_valid_pointer in H3; discriminate.
intros. rewrite mem_empty_not_weak_valid_pointer in H3; discriminate.
intros. rewrite mem_empty_not_weak_valid_pointer in H3; discriminate.
intros. rewrite mem_empty_not_valid_pointer in H3; discriminate.
eauto. eauto. eauto.
intros [v' [A B]]. congruence.
(* cast *)
eapply sem_cast_match; eauto.
(* sizeof *)
constructor.
(* alignof *)
constructor.
(* seqand *)
destruct (bool_val x (typeof r1)) as [b|] eqn:E; inv EQ2.
exploit bool_val_inject. eexact E. eauto. intros E'.
assert (b = true) by congruence. subst b. monadInv H5.
eapply sem_cast_match; eauto. eapply sem_cast_match; eauto.
destruct (bool_val x (typeof r1)) as [b|] eqn:E; inv EQ2.
exploit bool_val_inject. eexact E. eauto. intros E'.
assert (b = false) by congruence. subst b. inv H2. auto.
(* seqor *)
destruct (bool_val x (typeof r1)) as [b|] eqn:E; inv EQ2.
exploit bool_val_inject. eexact E. eauto. intros E'.
assert (b = false) by congruence. subst b. monadInv H5.
eapply sem_cast_match; eauto. eapply sem_cast_match; eauto.
destruct (bool_val x (typeof r1)) as [b|] eqn:E; inv EQ2.
exploit bool_val_inject. eexact E. eauto. intros E'.
assert (b = true) by congruence. subst b. inv H2. auto.
(* conditional *)
destruct (bool_val x (typeof r1)) as [b'|] eqn:E; inv EQ3.
exploit bool_val_inject. eexact E. eauto. intros E'.
assert (b' = b) by congruence. subst b'.
destruct b; eapply sem_cast_match; eauto.
(* comma *)
auto.
(* paren *)
eapply sem_cast_match; eauto.
(* lvalue *)
induction 1; intros v' CV; simpl in CV; try (monadInv CV).
(* var local *)
unfold empty_env in H. rewrite PTree.gempty in H. congruence.
(* var_global *)
econstructor. unfold inj. rewrite H0. eauto. auto.
(* deref *)
eauto.
(* field struct *)
rewrite H0 in CV. monadInv CV. exploit constval_rvalue; eauto. intro MV. inv MV.
simpl. replace x with delta by congruence. econstructor; eauto.
rewrite ! Int.add_assoc. f_equal. apply Int.add_commut.
simpl. auto.
(* field union *)
rewrite H0 in CV. eauto.
Qed.
Lemma constval_simple:
forall a v, constval a = OK v -> simple a.
Proof.
induction a; simpl; intros vx CV; try (monadInv CV); eauto.
destruct (typeof a); discriminate || eauto.
monadInv CV. eauto.
destruct (access_mode ty); discriminate || eauto.
intuition eauto.
Qed.
(** Soundness of [constval] with respect to the reduction semantics. *)
Theorem constval_steps:
forall f r m v v' ty m',
star step ge (ExprState f r Kstop empty_env m) E0 (ExprState f (Eval v' ty) Kstop empty_env m') ->
constval r = OK v ->
m' = m /\ ty = typeof r /\ val_inject inj v v'.
Proof.
intros. exploit eval_simple_steps; eauto. eapply constval_simple; eauto.
intros [A [B C]]. intuition. eapply constval_rvalue; eauto.
Qed.
(** * Soundness of the translation of initializers *)
(** Soundness for single initializers. *)
Theorem transl_init_single_steps:
forall ty a data f m v1 ty1 m' v chunk b ofs m'',
transl_init_single ty a = OK data ->
star step ge (ExprState f a Kstop empty_env m) E0 (ExprState f (Eval v1 ty1) Kstop empty_env m') ->
sem_cast v1 ty1 ty = Some v ->
access_mode ty = By_value chunk ->
Mem.store chunk m' b ofs v = Some m'' ->
Genv.store_init_data ge m b ofs data = Some m''.
Proof.
intros. monadInv H.
exploit constval_steps; eauto. intros [A [B C]]. subst m' ty1.
exploit sem_cast_match; eauto. intros D.
unfold Genv.store_init_data.
inv D.
(* int *)
destruct ty; try discriminate.
destruct i0; inv EQ2.
destruct s; simpl in H2; inv H2. rewrite <- Mem.store_signed_unsigned_8; auto. auto.
destruct s; simpl in H2; inv H2. rewrite <- Mem.store_signed_unsigned_16; auto. auto.
simpl in H2; inv H2. assumption.
simpl in H2; inv H2. assumption.
inv EQ2. simpl in H2; inv H2. assumption.
(* long *)
destruct ty; inv EQ2. simpl in H2; inv H2. assumption.
(* float *)
destruct ty; try discriminate.
destruct f1; inv EQ2; simpl in H2; inv H2; assumption.
(* single *)
destruct ty; try discriminate.
destruct f1; inv EQ2; simpl in H2; inv H2; assumption.
(* pointer *)
unfold inj in H.
assert (data = Init_addrof b1 ofs1 /\ chunk = Mint32).
destruct ty; inv EQ2; inv H2.
destruct i; inv H5. intuition congruence. auto.
destruct H4; subst. destruct (Genv.find_symbol ge b1); inv H.
rewrite Int.add_zero in H3. auto.
(* undef *)
discriminate.
Qed.
(** Size properties for initializers. *)
Lemma transl_init_single_size:
forall ty a data,
transl_init_single ty a = OK data ->
Genv.init_data_size data = sizeof ty.
Proof.
intros. monadInv H. destruct x0.
- monadInv EQ2.
- destruct ty; try discriminate.
destruct i0; inv EQ2; auto.
inv EQ2; auto.
inv EQ2; auto.
- destruct ty; inv EQ2; auto.
- destruct ty; try discriminate.
destruct f0; inv EQ2; auto.
- destruct ty; try discriminate.
destruct f0; inv EQ2; auto.
- destruct ty; try discriminate.
destruct i0; inv EQ2; auto.
inv EQ2; auto.
inv EQ2; auto.
Qed.
Notation idlsize := Genv.init_data_list_size.
Remark padding_size:
forall frm to, frm <= to -> idlsize (padding frm to) = to - frm.
Proof.
unfold padding; intros. destruct (zlt frm to).
simpl. xomega.
simpl. omega.
Qed.
Remark idlsize_app:
forall d1 d2, idlsize (d1 ++ d2) = idlsize d1 + idlsize d2.
Proof.
induction d1; simpl; intros.
auto.
rewrite IHd1. omega.
Qed.
Remark union_field_size:
forall f ty fl, field_type f fl = OK ty -> sizeof ty <= sizeof_union fl.
Proof.
induction fl; simpl; intros.
- inv H.
- destruct (ident_eq f i).
+ inv H. xomega.
+ specialize (IHfl H). xomega.
Qed.
Lemma transl_init_size:
forall i ty data,
transl_init ty i = OK data ->
idlsize data = sizeof ty
with transl_init_list_size:
forall il,
(forall ty sz data,
transl_init_array ty il sz = OK data ->
idlsize data = sizeof ty * sz)
/\
(forall id ty fl pos data,
transl_init_struct id ty fl il pos = OK data ->
sizeof_struct fl pos <= sizeof ty ->
idlsize data + pos = sizeof ty).
Proof.
- induction i; intros.
+ (* single *)
monadInv H. simpl. erewrite transl_init_single_size by eauto. omega.
+ (* array *)
simpl in H. destruct ty; try discriminate.
simpl. eapply (proj1 (transl_init_list_size il)); eauto.
+ (* struct *)
simpl in H. destruct ty; try discriminate.
replace (idlsize data) with (idlsize data + 0) by omega.
eapply (proj2 (transl_init_list_size il)). eauto.
Local Opaque alignof.
simpl. apply align_le. apply alignof_pos.
+ (* union *)
simpl in H. destruct ty; try discriminate.
set (sz := sizeof (Tunion i0 f0 a)) in *.
monadInv H. rewrite idlsize_app. rewrite (IHi _ _ EQ1).
rewrite padding_size. omega. unfold sz. simpl.
apply Zle_trans with (sizeof_union f0). eapply union_field_size; eauto.
apply align_le. apply alignof_pos.
- induction il.
+ (* base cases *)
simpl. intuition.
* (* arrays *)
destruct (zeq sz 0). inv H. simpl; ring.
destruct (zle 0 sz); inv H. simpl.
rewrite Z.mul_comm.
assert (0 <= sizeof ty * sz).
{ apply Zmult_gt_0_le_0_compat. omega. generalize (sizeof_pos ty); omega. }
zify; omega.
* (* structs *)
destruct fl; inv H.
simpl in H0. rewrite padding_size by omega. omega.
+ (* inductive cases *)
destruct IHil as [A B]. split.
* (* arrays *)
intros. monadInv H.
rewrite idlsize_app.
rewrite (transl_init_size _ _ _ EQ).
rewrite (A _ _ _ EQ1).
ring.
* (* structs *)
intros. simpl in H. destruct fl; monadInv H.
rewrite ! idlsize_app.
simpl in H0.
rewrite padding_size.
rewrite (transl_init_size _ _ _ EQ).
rewrite <- (B _ _ _ _ _ EQ1). omega.
auto. apply align_le. apply alignof_pos.
Qed.
(** A semantics for general initializers *)
Definition dummy_function := mkfunction Tvoid cc_default nil nil Sskip.
Fixpoint fields_of_struct (id: ident) (ty: type) (fl: fieldlist) (pos: Z) : list (Z * type) :=
match fl with
| Fnil => nil
| Fcons id1 ty1 fl' =>
(align pos (alignof ty1), ty1) :: fields_of_struct id ty fl' (align pos (alignof ty1) + sizeof ty1)
end.
Inductive exec_init: mem -> block -> Z -> type -> initializer -> mem -> Prop :=
| exec_init_single: forall m b ofs ty a v1 ty1 chunk m' v m'',
star step ge (ExprState dummy_function a Kstop empty_env m)
E0 (ExprState dummy_function (Eval v1 ty1) Kstop empty_env m') ->
sem_cast v1 ty1 ty = Some v ->
access_mode ty = By_value chunk ->
Mem.store chunk m' b ofs v = Some m'' ->
exec_init m b ofs ty (Init_single a) m''
| exec_init_array_: forall m b ofs ty sz a il m',
exec_init_array m b ofs ty sz il m' ->
exec_init m b ofs (Tarray ty sz a) (Init_array il) m'
| exec_init_struct: forall m b ofs id fl a il m',
exec_init_list m b ofs (fields_of_struct id (Tstruct id fl a) fl 0) il m' ->
exec_init m b ofs (Tstruct id fl a) (Init_struct il) m'
| exec_init_union: forall m b ofs id fl a f i ty m',
field_type f fl = OK ty ->
exec_init m b ofs ty i m' ->
exec_init m b ofs (Tunion id fl a) (Init_union f i) m'
with exec_init_array: mem -> block -> Z -> type -> Z -> initializer_list -> mem -> Prop :=
| exec_init_array_nil: forall m b ofs ty sz,
sz >= 0 ->
exec_init_array m b ofs ty sz Init_nil m
| exec_init_array_cons: forall m b ofs ty sz i1 il m' m'',
exec_init m b ofs ty i1 m' ->
exec_init_array m' b (ofs + sizeof ty) ty (sz - 1) il m'' ->
exec_init_array m b ofs ty sz (Init_cons i1 il) m''
with exec_init_list: mem -> block -> Z -> list (Z * type) -> initializer_list -> mem -> Prop :=
| exec_init_list_nil: forall m b ofs,
exec_init_list m b ofs nil Init_nil m
| exec_init_list_cons: forall m b ofs pos ty l i1 il m' m'',
exec_init m b (ofs + pos) ty i1 m' ->
exec_init_list m' b ofs l il m'' ->
exec_init_list m b ofs ((pos, ty) :: l) (Init_cons i1 il) m''.
Scheme exec_init_ind3 := Minimality for exec_init Sort Prop
with exec_init_array_ind3 := Minimality for exec_init_array Sort Prop
with exec_init_list_ind3 := Minimality for exec_init_list Sort Prop.
Combined Scheme exec_init_scheme from exec_init_ind3, exec_init_array_ind3, exec_init_list_ind3.
Remark exec_init_array_length:
forall m b ofs ty sz il m',
exec_init_array m b ofs ty sz il m' -> sz >= 0.
Proof.
induction 1; omega.
Qed.
Lemma store_init_data_list_app:
forall data1 m b ofs m' data2 m'',
Genv.store_init_data_list ge m b ofs data1 = Some m' ->
Genv.store_init_data_list ge m' b (ofs + idlsize data1) data2 = Some m'' ->
Genv.store_init_data_list ge m b ofs (data1 ++ data2) = Some m''.
Proof.
induction data1; simpl; intros.
inv H. rewrite Zplus_0_r in H0. auto.
destruct (Genv.store_init_data ge m b ofs a); try discriminate.
rewrite Zplus_assoc in H0. eauto.
Qed.
Remark store_init_data_list_padding:
forall frm to b ofs m,
Genv.store_init_data_list ge m b ofs (padding frm to) = Some m.
Proof.
intros. unfold padding. destruct (zlt frm to); auto.
Qed.
Lemma transl_init_sound_gen:
(forall m b ofs ty i m', exec_init m b ofs ty i m' ->
forall data, transl_init ty i = OK data ->
Genv.store_init_data_list ge m b ofs data = Some m')
/\(forall m b ofs ty sz il m', exec_init_array m b ofs ty sz il m' ->
forall data, transl_init_array ty il sz = OK data ->
Genv.store_init_data_list ge m b ofs data = Some m')
/\(forall m b ofs l il m', exec_init_list m b ofs l il m' ->
forall id ty fl data pos,
l = fields_of_struct id ty fl pos ->
transl_init_struct id ty fl il pos = OK data ->
Genv.store_init_data_list ge m b (ofs + pos) data = Some m').
Proof.
Local Opaque sizeof.
apply exec_init_scheme; simpl; intros.
- (* single *)
monadInv H3. simpl. erewrite transl_init_single_steps by eauto. auto.
- (* array *)
replace (Z.max 0 sz) with sz in H1. eauto.
assert (sz >= 0) by (eapply exec_init_array_length; eauto). xomega.
- (* struct *)
replace ofs with (ofs + 0) by omega. eauto.
- (* union *)
rewrite H in H2. monadInv H2. inv EQ.
eapply store_init_data_list_app. eauto.
apply store_init_data_list_padding.
- (* array, empty *)
destruct (zeq sz 0).
inv H0. auto.
rewrite zle_true in H0 by omega. inv H0. auto.
- (* array, nonempty *)
monadInv H3.
eapply store_init_data_list_app.
eauto.
rewrite (transl_init_size _ _ _ EQ). eauto.
- (* struct, empty *)
destruct fl; simpl in H; inv H.
inv H0. apply store_init_data_list_padding.
- (* struct, nonempty *)
destruct fl; simpl in H3; inv H3.
monadInv H4.
eapply store_init_data_list_app. apply store_init_data_list_padding.
rewrite padding_size.
replace (ofs + pos0 + (align pos0 (alignof t) - pos0))
with (ofs + align pos0 (alignof t)) by omega.
eapply store_init_data_list_app.
eauto.
rewrite (transl_init_size _ _ _ EQ).
rewrite <- Zplus_assoc. eapply H2. eauto. eauto.
apply align_le. apply alignof_pos.
Qed.
Theorem transl_init_sound:
forall m b ty i m' data,
exec_init m b 0 ty i m' ->
transl_init ty i = OK data ->
Genv.store_init_data_list ge m b 0 data = Some m'.
Proof.
intros. eapply (proj1 transl_init_sound_gen); eauto.
Qed.
End SOUNDNESS.
|