1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
|
(* *********************************************************************)
(* *)
(* The Compcert verified compiler *)
(* *)
(* Xavier Leroy, INRIA Paris-Rocquencourt *)
(* *)
(* Copyright Institut National de Recherche en Informatique et en *)
(* Automatique. All rights reserved. This file is distributed *)
(* under the terms of the INRIA Non-Commercial License Agreement. *)
(* *)
(* *********************************************************************)
(** Abstract syntax and semantics for the Csharpminor language. *)
Require Import Coqlib.
Require Import Maps.
Require Import AST.
Require Import Integers.
Require Import Floats.
Require Import Values.
Require Import Memory.
Require Import Events.
Require Import Globalenvs.
Require Cminor.
Require Import Smallstep.
(** Abstract syntax *)
(** Csharpminor is a low-level imperative language structured in expressions,
statements, functions and programs. Expressions include
reading temporary variables, taking the address of a variable,
constants, arithmetic operations, and dereferencing addresses. *)
Inductive constant : Type :=
| Ointconst: int -> constant (**r integer constant *)
| Ofloatconst: float -> constant (**r floating-point constant *)
| Olongconst: int64 -> constant. (**r long integer constant *)
Definition unary_operation : Type := Cminor.unary_operation.
Definition binary_operation : Type := Cminor.binary_operation.
Inductive expr : Type :=
| Evar : ident -> expr (**r reading a temporary variable *)
| Eaddrof : ident -> expr (**r taking the address of a variable *)
| Econst : constant -> expr (**r constants *)
| Eunop : unary_operation -> expr -> expr (**r unary operation *)
| Ebinop : binary_operation -> expr -> expr -> expr (**r binary operation *)
| Eload : memory_chunk -> expr -> expr. (**r memory read *)
(** Statements include expression evaluation, temporary variable assignment,
memory stores, function calls, an if/then/else conditional,
infinite loops, blocks and early block exits, and early function returns.
[Sexit n] terminates prematurely the execution of the [n+1] enclosing
[Sblock] statements. *)
Definition label := ident.
Inductive stmt : Type :=
| Sskip: stmt
| Sset : ident -> expr -> stmt
| Sstore : memory_chunk -> expr -> expr -> stmt
| Scall : option ident -> signature -> expr -> list expr -> stmt
| Sbuiltin : option ident -> external_function -> list expr -> stmt
| Sseq: stmt -> stmt -> stmt
| Sifthenelse: expr -> stmt -> stmt -> stmt
| Sloop: stmt -> stmt
| Sblock: stmt -> stmt
| Sexit: nat -> stmt
| Sswitch: expr -> lbl_stmt -> stmt
| Sreturn: option expr -> stmt
| Slabel: label -> stmt -> stmt
| Sgoto: label -> stmt
with lbl_stmt : Type :=
| LSdefault: stmt -> lbl_stmt
| LScase: int -> stmt -> lbl_stmt -> lbl_stmt.
(** Functions are composed of a return type, a list of parameter names,
a list of local variables with their sizes, a list of temporary variables,
and a statement representing the function body. *)
Record function : Type := mkfunction {
fn_sig: signature;
fn_params: list ident;
fn_vars: list (ident * Z);
fn_temps: list ident;
fn_body: stmt
}.
Definition fundef := AST.fundef function.
Definition program : Type := AST.program fundef unit.
Definition funsig (fd: fundef) :=
match fd with
| Internal f => fn_sig f
| External ef => ef_sig ef
end.
(** * Operational semantics *)
(** Three evaluation environments are involved:
- [genv]: global environments, map symbols and functions to memory blocks,
and maps symbols to variable informations (type [var_kind])
- [env]: local environments, map local variables
to pairs (memory block, size)
- [temp_env]: local environments, map temporary variables to
their current values.
*)
Definition genv := Genv.t fundef unit.
Definition env := PTree.t (block * Z).
Definition temp_env := PTree.t val.
Definition empty_env : env := PTree.empty (block * Z).
Definition empty_temp_env : temp_env := PTree.empty val.
(** Initialization of temporary variables *)
Fixpoint create_undef_temps (temps: list ident) : temp_env :=
match temps with
| nil => PTree.empty val
| id :: temps' => PTree.set id Vundef (create_undef_temps temps')
end.
(** Initialization of temporaries that are parameters. *)
Fixpoint bind_parameters (formals: list ident) (args: list val)
(le: temp_env) : option temp_env :=
match formals, args with
| nil, nil => Some le
| id :: xl, v :: vl => bind_parameters xl vl (PTree.set id v le)
| _, _ => None
end.
(** Continuations *)
Inductive cont: Type :=
| Kstop: cont (**r stop program execution *)
| Kseq: stmt -> cont -> cont (**r execute stmt, then cont *)
| Kblock: cont -> cont (**r exit a block, then do cont *)
| Kcall: option ident -> function -> env -> temp_env -> cont -> cont.
(**r return to caller *)
(** States *)
Inductive state: Type :=
| State: (**r Execution within a function *)
forall (f: function) (**r currently executing function *)
(s: stmt) (**r statement under consideration *)
(k: cont) (**r its continuation -- what to do next *)
(e: env) (**r current local environment *)
(le: temp_env) (**r current temporary environment *)
(m: mem), (**r current memory state *)
state
| Callstate: (**r Invocation of a function *)
forall (f: fundef) (**r function to invoke *)
(args: list val) (**r arguments provided by caller *)
(k: cont) (**r what to do next *)
(m: mem), (**r memory state *)
state
| Returnstate: (**r Return from a function *)
forall (v: val) (**r Return value *)
(k: cont) (**r what to do next *)
(m: mem), (**r memory state *)
state.
(** Pop continuation until a call or stop *)
Fixpoint call_cont (k: cont) : cont :=
match k with
| Kseq s k => call_cont k
| Kblock k => call_cont k
| _ => k
end.
Definition is_call_cont (k: cont) : Prop :=
match k with
| Kstop => True
| Kcall _ _ _ _ _ => True
| _ => False
end.
(** Resolve [switch] statements. *)
Fixpoint select_switch (n: int) (sl: lbl_stmt) {struct sl} : lbl_stmt :=
match sl with
| LSdefault _ => sl
| LScase c s sl' => if Int.eq c n then sl else select_switch n sl'
end.
Fixpoint seq_of_lbl_stmt (sl: lbl_stmt) : stmt :=
match sl with
| LSdefault s => s
| LScase c s sl' => Sseq s (seq_of_lbl_stmt sl')
end.
(** Find the statement and manufacture the continuation
corresponding to a label *)
Fixpoint find_label (lbl: label) (s: stmt) (k: cont)
{struct s}: option (stmt * cont) :=
match s with
| Sseq s1 s2 =>
match find_label lbl s1 (Kseq s2 k) with
| Some sk => Some sk
| None => find_label lbl s2 k
end
| Sifthenelse a s1 s2 =>
match find_label lbl s1 k with
| Some sk => Some sk
| None => find_label lbl s2 k
end
| Sloop s1 =>
find_label lbl s1 (Kseq (Sloop s1) k)
| Sblock s1 =>
find_label lbl s1 (Kblock k)
| Sswitch a sl =>
find_label_ls lbl sl k
| Slabel lbl' s' =>
if ident_eq lbl lbl' then Some(s', k) else find_label lbl s' k
| _ => None
end
with find_label_ls (lbl: label) (sl: lbl_stmt) (k: cont)
{struct sl}: option (stmt * cont) :=
match sl with
| LSdefault s => find_label lbl s k
| LScase _ s sl' =>
match find_label lbl s (Kseq (seq_of_lbl_stmt sl') k) with
| Some sk => Some sk
| None => find_label_ls lbl sl' k
end
end.
(** Evaluation of operator applications. *)
Definition eval_constant (cst: constant) : option val :=
match cst with
| Ointconst n => Some (Vint n)
| Ofloatconst n => Some (Vfloat n)
| Olongconst n => Some (Vlong n)
end.
Definition eval_unop := Cminor.eval_unop.
Definition eval_binop := Cminor.eval_binop.
(** Allocation of local variables at function entry. Each variable is
bound to the reference to a fresh block of the appropriate size. *)
Inductive alloc_variables: env -> mem ->
list (ident * Z) ->
env -> mem -> Prop :=
| alloc_variables_nil:
forall e m,
alloc_variables e m nil e m
| alloc_variables_cons:
forall e m id sz vars m1 b1 m2 e2,
Mem.alloc m 0 sz = (m1, b1) ->
alloc_variables (PTree.set id (b1, sz) e) m1 vars e2 m2 ->
alloc_variables e m ((id, sz) :: vars) e2 m2.
(** List of blocks mentioned in an environment, with low and high bounds *)
Definition block_of_binding (id_b_sz: ident * (block * Z)) :=
match id_b_sz with (id, (b, sz)) => (b, 0, sz) end.
Definition blocks_of_env (e: env) : list (block * Z * Z) :=
List.map block_of_binding (PTree.elements e).
Section RELSEM.
Variable ge: genv.
(* Evaluation of the address of a variable:
[eval_var_addr prg ge e id b] states that variable [id]
in environment [e] evaluates to block [b]. *)
Inductive eval_var_addr: env -> ident -> block -> Prop :=
| eval_var_addr_local:
forall e id b sz,
PTree.get id e = Some (b, sz) ->
eval_var_addr e id b
| eval_var_addr_global:
forall e id b,
PTree.get id e = None ->
Genv.find_symbol ge id = Some b ->
eval_var_addr e id b.
(** Evaluation of an expression: [eval_expr prg e m a v] states
that expression [a], in initial memory state [m] and local
environment [e], evaluates to value [v]. *)
Section EVAL_EXPR.
Variable e: env.
Variable le: temp_env.
Variable m: mem.
Inductive eval_expr: expr -> val -> Prop :=
| eval_Evar: forall id v,
le!id = Some v ->
eval_expr (Evar id) v
| eval_Eaddrof: forall id b,
eval_var_addr e id b ->
eval_expr (Eaddrof id) (Vptr b Int.zero)
| eval_Econst: forall cst v,
eval_constant cst = Some v ->
eval_expr (Econst cst) v
| eval_Eunop: forall op a1 v1 v,
eval_expr a1 v1 ->
eval_unop op v1 = Some v ->
eval_expr (Eunop op a1) v
| eval_Ebinop: forall op a1 a2 v1 v2 v,
eval_expr a1 v1 ->
eval_expr a2 v2 ->
eval_binop op v1 v2 m = Some v ->
eval_expr (Ebinop op a1 a2) v
| eval_Eload: forall chunk a v1 v,
eval_expr a v1 ->
Mem.loadv chunk m v1 = Some v ->
eval_expr (Eload chunk a) v.
(** Evaluation of a list of expressions:
[eval_exprlist prg e m al vl] states that the list [al] of
expressions evaluate to the list [vl] of values. The other
parameters are as in [eval_expr]. *)
Inductive eval_exprlist: list expr -> list val -> Prop :=
| eval_Enil:
eval_exprlist nil nil
| eval_Econs: forall a1 al v1 vl,
eval_expr a1 v1 -> eval_exprlist al vl ->
eval_exprlist (a1 :: al) (v1 :: vl).
End EVAL_EXPR.
(** One step of execution *)
Inductive step: state -> trace -> state -> Prop :=
| step_skip_seq: forall f s k e le m,
step (State f Sskip (Kseq s k) e le m)
E0 (State f s k e le m)
| step_skip_block: forall f k e le m,
step (State f Sskip (Kblock k) e le m)
E0 (State f Sskip k e le m)
| step_skip_call: forall f k e le m m',
is_call_cont k ->
Mem.free_list m (blocks_of_env e) = Some m' ->
step (State f Sskip k e le m)
E0 (Returnstate Vundef k m')
| step_set: forall f id a k e le m v,
eval_expr e le m a v ->
step (State f (Sset id a) k e le m)
E0 (State f Sskip k e (PTree.set id v le) m)
| step_store: forall f chunk addr a k e le m vaddr v m',
eval_expr e le m addr vaddr ->
eval_expr e le m a v ->
Mem.storev chunk m vaddr v = Some m' ->
step (State f (Sstore chunk addr a) k e le m)
E0 (State f Sskip k e le m')
| step_call: forall f optid sig a bl k e le m vf vargs fd,
eval_expr e le m a vf ->
eval_exprlist e le m bl vargs ->
Genv.find_funct ge vf = Some fd ->
funsig fd = sig ->
step (State f (Scall optid sig a bl) k e le m)
E0 (Callstate fd vargs (Kcall optid f e le k) m)
| step_builtin: forall f optid ef bl k e le m vargs t vres m',
eval_exprlist e le m bl vargs ->
external_call ef ge vargs m t vres m' ->
step (State f (Sbuiltin optid ef bl) k e le m)
t (State f Sskip k e (Cminor.set_optvar optid vres le) m')
| step_seq: forall f s1 s2 k e le m,
step (State f (Sseq s1 s2) k e le m)
E0 (State f s1 (Kseq s2 k) e le m)
| step_ifthenelse: forall f a s1 s2 k e le m v b,
eval_expr e le m a v ->
Val.bool_of_val v b ->
step (State f (Sifthenelse a s1 s2) k e le m)
E0 (State f (if b then s1 else s2) k e le m)
| step_loop: forall f s k e le m,
step (State f (Sloop s) k e le m)
E0 (State f s (Kseq (Sloop s) k) e le m)
| step_block: forall f s k e le m,
step (State f (Sblock s) k e le m)
E0 (State f s (Kblock k) e le m)
| step_exit_seq: forall f n s k e le m,
step (State f (Sexit n) (Kseq s k) e le m)
E0 (State f (Sexit n) k e le m)
| step_exit_block_0: forall f k e le m,
step (State f (Sexit O) (Kblock k) e le m)
E0 (State f Sskip k e le m)
| step_exit_block_S: forall f n k e le m,
step (State f (Sexit (S n)) (Kblock k) e le m)
E0 (State f (Sexit n) k e le m)
| step_switch: forall f a cases k e le m n,
eval_expr e le m a (Vint n) ->
step (State f (Sswitch a cases) k e le m)
E0 (State f (seq_of_lbl_stmt (select_switch n cases)) k e le m)
| step_return_0: forall f k e le m m',
Mem.free_list m (blocks_of_env e) = Some m' ->
step (State f (Sreturn None) k e le m)
E0 (Returnstate Vundef (call_cont k) m')
| step_return_1: forall f a k e le m v m',
eval_expr e le m a v ->
Mem.free_list m (blocks_of_env e) = Some m' ->
step (State f (Sreturn (Some a)) k e le m)
E0 (Returnstate v (call_cont k) m')
| step_label: forall f lbl s k e le m,
step (State f (Slabel lbl s) k e le m)
E0 (State f s k e le m)
| step_goto: forall f lbl k e le m s' k',
find_label lbl f.(fn_body) (call_cont k) = Some(s', k') ->
step (State f (Sgoto lbl) k e le m)
E0 (State f s' k' e le m)
| step_internal_function: forall f vargs k m m1 e le,
list_norepet (map fst f.(fn_vars)) ->
list_norepet f.(fn_params) ->
list_disjoint f.(fn_params) f.(fn_temps) ->
alloc_variables empty_env m (fn_vars f) e m1 ->
bind_parameters f.(fn_params) vargs (create_undef_temps f.(fn_temps)) = Some le ->
step (Callstate (Internal f) vargs k m)
E0 (State f f.(fn_body) k e le m1)
| step_external_function: forall ef vargs k m t vres m',
external_call ef ge vargs m t vres m' ->
step (Callstate (External ef) vargs k m)
t (Returnstate vres k m')
| step_return: forall v optid f e le k m,
step (Returnstate v (Kcall optid f e le k) m)
E0 (State f Sskip k e (Cminor.set_optvar optid v le) m).
End RELSEM.
(** Execution of whole programs are described as sequences of transitions
from an initial state to a final state. An initial state is a [Callstate]
corresponding to the invocation of the ``main'' function of the program
without arguments and with an empty continuation. *)
Inductive initial_state (p: program): state -> Prop :=
| initial_state_intro: forall b f m0,
let ge := Genv.globalenv p in
Genv.init_mem p = Some m0 ->
Genv.find_symbol ge p.(prog_main) = Some b ->
Genv.find_funct_ptr ge b = Some f ->
funsig f = mksignature nil (Some Tint) ->
initial_state p (Callstate f nil Kstop m0).
(** A final state is a [Returnstate] with an empty continuation. *)
Inductive final_state: state -> int -> Prop :=
| final_state_intro: forall r m,
final_state (Returnstate (Vint r) Kstop m) r.
(** Wrapping up these definitions in a small-step semantics. *)
Definition semantics (p: program) :=
Semantics step (initial_state p) final_state (Genv.globalenv p).
|