1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
|
(* *********************************************************************)
(* *)
(* The Compcert verified compiler *)
(* *)
(* Xavier Leroy, INRIA Paris-Rocquencourt *)
(* *)
(* Copyright Institut National de Recherche en Informatique et en *)
(* Automatique. All rights reserved. This file is distributed *)
(* under the terms of the INRIA Non-Commercial License Agreement. *)
(* *)
(* *********************************************************************)
(** Correctness proof for Cminor generation. *)
Require Import Coq.Program.Equality.
Require Import FSets.
Require Import Permutation.
Require Import Coqlib.
Require Intv.
Require Import Errors.
Require Import Maps.
Require Import AST.
Require Import Integers.
Require Import Floats.
Require Import Values.
Require Import Memory.
Require Import Events.
Require Import Globalenvs.
Require Import Smallstep.
Require Import Switch.
Require Import Csharpminor.
Require Import Cminor.
Require Import Cminorgen.
Open Local Scope error_monad_scope.
Section TRANSLATION.
Variable prog: Csharpminor.program.
Variable tprog: program.
Hypothesis TRANSL: transl_program prog = OK tprog.
Let ge : Csharpminor.genv := Genv.globalenv prog.
Let tge: genv := Genv.globalenv tprog.
Lemma symbols_preserved:
forall (s: ident), Genv.find_symbol tge s = Genv.find_symbol ge s.
Proof (Genv.find_symbol_transf_partial transl_fundef _ TRANSL).
Lemma function_ptr_translated:
forall (b: block) (f: Csharpminor.fundef),
Genv.find_funct_ptr ge b = Some f ->
exists tf,
Genv.find_funct_ptr tge b = Some tf /\ transl_fundef f = OK tf.
Proof (Genv.find_funct_ptr_transf_partial transl_fundef _ TRANSL).
Lemma functions_translated:
forall (v: val) (f: Csharpminor.fundef),
Genv.find_funct ge v = Some f ->
exists tf,
Genv.find_funct tge v = Some tf /\ transl_fundef f = OK tf.
Proof (Genv.find_funct_transf_partial transl_fundef _ TRANSL).
Lemma varinfo_preserved:
forall b, Genv.find_var_info tge b = Genv.find_var_info ge b.
Proof (Genv.find_var_info_transf_partial transl_fundef _ TRANSL).
Lemma sig_preserved_body:
forall f tf cenv size,
transl_funbody cenv size f = OK tf ->
tf.(fn_sig) = Csharpminor.fn_sig f.
Proof.
intros. unfold transl_funbody in H. monadInv H; reflexivity.
Qed.
Lemma sig_preserved:
forall f tf,
transl_fundef f = OK tf ->
Cminor.funsig tf = Csharpminor.funsig f.
Proof.
intros until tf; destruct f; simpl.
unfold transl_function. destruct (build_compilenv f).
case (zle z Int.max_unsigned); simpl bind; try congruence.
intros. monadInv H. simpl. eapply sig_preserved_body; eauto.
intro. inv H. reflexivity.
Qed.
(** * Derived properties of memory operations *)
Lemma load_freelist:
forall fbl chunk m b ofs m',
(forall b' lo hi, In (b', lo, hi) fbl -> b' <> b) ->
Mem.free_list m fbl = Some m' ->
Mem.load chunk m' b ofs = Mem.load chunk m b ofs.
Proof.
induction fbl; intros.
simpl in H0. congruence.
destruct a as [[b' lo] hi].
generalize H0. simpl. case_eq (Mem.free m b' lo hi); try congruence.
intros m1 FR1 FRL.
transitivity (Mem.load chunk m1 b ofs).
eapply IHfbl; eauto. intros. eapply H. eauto with coqlib.
eapply Mem.load_free; eauto. left. apply sym_not_equal. eapply H. auto with coqlib.
Qed.
Lemma perm_freelist:
forall fbl m m' b ofs k p,
Mem.free_list m fbl = Some m' ->
Mem.perm m' b ofs k p ->
Mem.perm m b ofs k p.
Proof.
induction fbl; simpl; intros until p.
congruence.
destruct a as [[b' lo] hi]. case_eq (Mem.free m b' lo hi); try congruence.
intros. eauto with mem.
Qed.
Lemma nextblock_freelist:
forall fbl m m',
Mem.free_list m fbl = Some m' ->
Mem.nextblock m' = Mem.nextblock m.
Proof.
induction fbl; intros until m'; simpl.
congruence.
destruct a as [[b lo] hi].
case_eq (Mem.free m b lo hi); intros; try congruence.
transitivity (Mem.nextblock m0). eauto. eapply Mem.nextblock_free; eauto.
Qed.
Lemma free_list_freeable:
forall l m m',
Mem.free_list m l = Some m' ->
forall b lo hi,
In (b, lo, hi) l -> Mem.range_perm m b lo hi Cur Freeable.
Proof.
induction l; simpl; intros.
contradiction.
revert H. destruct a as [[b' lo'] hi'].
caseEq (Mem.free m b' lo' hi'); try congruence.
intros m1 FREE1 FREE2.
destruct H0. inv H.
eauto with mem.
red; intros. eapply Mem.perm_free_3; eauto. exploit IHl; eauto.
Qed.
Lemma nextblock_storev:
forall chunk m addr v m',
Mem.storev chunk m addr v = Some m' -> Mem.nextblock m' = Mem.nextblock m.
Proof.
unfold Mem.storev; intros. destruct addr; try discriminate.
eapply Mem.nextblock_store; eauto.
Qed.
(** * Correspondence between C#minor's and Cminor's environments and memory states *)
(** In C#minor, every variable is stored in a separate memory block.
In the corresponding Cminor code, these variables become sub-blocks
of the stack data block. We capture these changes in memory via a
memory injection [f]:
[f b = Some(b', ofs)] means that C#minor block [b] corresponds
to a sub-block of Cminor block [b] at offset [ofs].
A memory injection [f] defines a relation [val_inject f] between
values and a relation [Mem.inject f] between memory states. These
relations will be used intensively in our proof of simulation
between C#minor and Cminor executions. *)
(** ** Matching between Cshaprminor's temporaries and Cminor's variables *)
Definition match_temps (f: meminj) (le: Csharpminor.temp_env) (te: env) : Prop :=
forall id v, le!id = Some v -> exists v', te!(id) = Some v' /\ val_inject f v v'.
Lemma match_temps_invariant:
forall f f' le te,
match_temps f le te ->
inject_incr f f' ->
match_temps f' le te.
Proof.
intros; red; intros. destruct (H _ _ H1) as [v' [A B]]. exists v'; eauto.
Qed.
Lemma match_temps_assign:
forall f le te id v tv,
match_temps f le te ->
val_inject f v tv ->
match_temps f (PTree.set id v le) (PTree.set id tv te).
Proof.
intros; red; intros. rewrite PTree.gsspec in *. destruct (peq id0 id).
inv H1. exists tv; auto.
eauto.
Qed.
(** ** Matching between C#minor's variable environment and Cminor's stack pointer *)
Inductive match_var (f: meminj) (sp: block): option (block * Z) -> option Z -> Prop :=
| match_var_local: forall b sz ofs,
val_inject f (Vptr b Int.zero) (Vptr sp (Int.repr ofs)) ->
match_var f sp (Some(b, sz)) (Some ofs)
| match_var_global:
match_var f sp None None.
(** Matching between a C#minor environment [e] and a Cminor
stack pointer [sp]. The [lo] and [hi] parameters delimit the range
of addresses for the blocks referenced from [te]. *)
Record match_env (f: meminj) (cenv: compilenv)
(e: Csharpminor.env) (sp: block)
(lo hi: block) : Prop :=
mk_match_env {
(** C#minor local variables match sub-blocks of the Cminor stack data block. *)
me_vars:
forall id, match_var f sp (e!id) (cenv!id);
(** [lo, hi] is a proper interval. *)
me_low_high:
Ple lo hi;
(** Every block appearing in the C#minor environment [e] must be
in the range [lo, hi]. *)
me_bounded:
forall id b sz, PTree.get id e = Some(b, sz) -> Ple lo b /\ Plt b hi;
(** All blocks mapped to sub-blocks of the Cminor stack data must be
images of variables from the C#minor environment [e] *)
me_inv:
forall b delta,
f b = Some(sp, delta) ->
exists id, exists sz, PTree.get id e = Some(b, sz);
(** All C#minor blocks below [lo] (i.e. allocated before the blocks
referenced from [e]) must map to blocks that are below [sp]
(i.e. allocated before the stack data for the current Cminor function). *)
me_incr:
forall b tb delta,
f b = Some(tb, delta) -> Plt b lo -> Plt tb sp
}.
Ltac geninv x :=
let H := fresh in (generalize x; intro H; inv H).
Lemma match_env_invariant:
forall f1 cenv e sp lo hi f2,
match_env f1 cenv e sp lo hi ->
inject_incr f1 f2 ->
(forall b delta, f2 b = Some(sp, delta) -> f1 b = Some(sp, delta)) ->
(forall b, Plt b lo -> f2 b = f1 b) ->
match_env f2 cenv e sp lo hi.
Proof.
intros. destruct H. constructor; auto.
(* vars *)
intros. geninv (me_vars0 id); econstructor; eauto.
(* bounded *)
intros. eauto.
(* below *)
intros. rewrite H2 in H; eauto.
Qed.
(** [match_env] and external calls *)
Remark inject_incr_separated_same:
forall f1 f2 m1 m1',
inject_incr f1 f2 -> inject_separated f1 f2 m1 m1' ->
forall b, Mem.valid_block m1 b -> f2 b = f1 b.
Proof.
intros. case_eq (f1 b).
intros [b' delta] EQ. apply H; auto.
intros EQ. case_eq (f2 b).
intros [b'1 delta1] EQ1. exploit H0; eauto. intros [C D]. contradiction.
auto.
Qed.
Remark inject_incr_separated_same':
forall f1 f2 m1 m1',
inject_incr f1 f2 -> inject_separated f1 f2 m1 m1' ->
forall b b' delta,
f2 b = Some(b', delta) -> Mem.valid_block m1' b' -> f1 b = Some(b', delta).
Proof.
intros. case_eq (f1 b).
intros [b'1 delta1] EQ. exploit H; eauto. congruence.
intros. exploit H0; eauto. intros [C D]. contradiction.
Qed.
Lemma match_env_external_call:
forall f1 cenv e sp lo hi f2 m1 m1',
match_env f1 cenv e sp lo hi ->
inject_incr f1 f2 ->
inject_separated f1 f2 m1 m1' ->
Ple hi (Mem.nextblock m1) -> Plt sp (Mem.nextblock m1') ->
match_env f2 cenv e sp lo hi.
Proof.
intros. apply match_env_invariant with f1; auto.
intros. eapply inject_incr_separated_same'; eauto.
intros. eapply inject_incr_separated_same; eauto. red. destruct H. xomega.
Qed.
(** [match_env] and allocations *)
Lemma match_env_alloc:
forall f1 id cenv e sp lo m1 sz m2 b ofs f2,
match_env f1 (PTree.remove id cenv) e sp lo (Mem.nextblock m1) ->
Mem.alloc m1 0 sz = (m2, b) ->
cenv!id = Some ofs ->
inject_incr f1 f2 ->
f2 b = Some(sp, ofs) ->
(forall b', b' <> b -> f2 b' = f1 b') ->
e!id = None ->
match_env f2 cenv (PTree.set id (b, sz) e) sp lo (Mem.nextblock m2).
Proof.
intros until f2; intros ME ALLOC CENV INCR SAME OTHER ENV.
exploit Mem.nextblock_alloc; eauto. intros NEXTBLOCK.
exploit Mem.alloc_result; eauto. intros RES.
inv ME; constructor.
(* vars *)
intros. rewrite PTree.gsspec. destruct (peq id0 id).
(* the new var *)
subst id0. rewrite CENV. constructor. econstructor. eauto.
rewrite Int.add_commut; rewrite Int.add_zero; auto.
(* old vars *)
generalize (me_vars0 id0). rewrite PTree.gro; auto. intros M; inv M.
constructor; eauto.
constructor.
(* low-high *)
rewrite NEXTBLOCK; xomega.
(* bounded *)
intros. rewrite PTree.gsspec in H. destruct (peq id0 id).
inv H. rewrite NEXTBLOCK; xomega.
exploit me_bounded0; eauto. rewrite NEXTBLOCK; xomega.
(* inv *)
intros. destruct (eq_block b (Mem.nextblock m1)).
subst b. rewrite SAME in H; inv H. exists id; exists sz. apply PTree.gss.
rewrite OTHER in H; auto. exploit me_inv0; eauto.
intros [id1 [sz1 EQ]]. exists id1; exists sz1. rewrite PTree.gso; auto. congruence.
(* incr *)
intros. rewrite OTHER in H. eauto. unfold block in *; xomega.
Qed.
(** The sizes of blocks appearing in [e] are respected. *)
Definition match_bounds (e: Csharpminor.env) (m: mem) : Prop :=
forall id b sz ofs p,
PTree.get id e = Some(b, sz) -> Mem.perm m b ofs Max p -> 0 <= ofs < sz.
Lemma match_bounds_invariant:
forall e m1 m2,
match_bounds e m1 ->
(forall id b sz ofs p,
PTree.get id e = Some(b, sz) -> Mem.perm m2 b ofs Max p -> Mem.perm m1 b ofs Max p) ->
match_bounds e m2.
Proof.
intros; red; intros. eapply H; eauto.
Qed.
(** ** Permissions on the Cminor stack block *)
(** The parts of the Cminor stack data block that are not images of
C#minor local variable blocks remain freeable at all times. *)
Inductive is_reachable_from_env (f: meminj) (e: Csharpminor.env) (sp: block) (ofs: Z) : Prop :=
| is_reachable_intro: forall id b sz delta,
e!id = Some(b, sz) ->
f b = Some(sp, delta) ->
delta <= ofs < delta + sz ->
is_reachable_from_env f e sp ofs.
Definition padding_freeable (f: meminj) (e: Csharpminor.env) (tm: mem) (sp: block) (sz: Z) : Prop :=
forall ofs,
0 <= ofs < sz -> Mem.perm tm sp ofs Cur Freeable \/ is_reachable_from_env f e sp ofs.
Lemma padding_freeable_invariant:
forall f1 e tm1 sp sz cenv lo hi f2 tm2,
padding_freeable f1 e tm1 sp sz ->
match_env f1 cenv e sp lo hi ->
(forall ofs, Mem.perm tm1 sp ofs Cur Freeable -> Mem.perm tm2 sp ofs Cur Freeable) ->
(forall b, Plt b hi -> f2 b = f1 b) ->
padding_freeable f2 e tm2 sp sz.
Proof.
intros; red; intros.
exploit H; eauto. intros [A | A].
left; auto.
right. inv A. exploit me_bounded; eauto. intros [D E].
econstructor; eauto. rewrite H2; auto.
Qed.
(** Decidability of the [is_reachable_from_env] predicate. *)
Lemma is_reachable_from_env_dec:
forall f e sp ofs, is_reachable_from_env f e sp ofs \/ ~is_reachable_from_env f e sp ofs.
Proof.
intros.
set (pred := fun id_b_sz : ident * (block * Z) =>
match id_b_sz with
| (id, (b, sz)) =>
match f b with
| None => false
| Some(sp', delta) =>
if eq_block sp sp'
then zle delta ofs && zlt ofs (delta + sz)
else false
end
end).
destruct (List.existsb pred (PTree.elements e)) eqn:?.
(* yes *)
rewrite List.existsb_exists in Heqb.
destruct Heqb as [[id [b sz]] [A B]].
simpl in B. destruct (f b) as [[sp' delta] |] eqn:?; try discriminate.
destruct (eq_block sp sp'); try discriminate.
destruct (andb_prop _ _ B).
left. apply is_reachable_intro with id b sz delta.
apply PTree.elements_complete; auto.
congruence.
split; eapply proj_sumbool_true; eauto.
(* no *)
right; red; intro NE; inv NE.
assert (existsb pred (PTree.elements e) = true).
rewrite List.existsb_exists. exists (id, (b, sz)); split.
apply PTree.elements_correct; auto.
simpl. rewrite H0. rewrite dec_eq_true.
unfold proj_sumbool. destruct H1. rewrite zle_true; auto. rewrite zlt_true; auto.
congruence.
Qed.
(** * Correspondence between global environments *)
(** Global environments match if the memory injection [f] leaves unchanged
the references to global symbols and functions. *)
Inductive match_globalenvs (f: meminj) (bound: block): Prop :=
| mk_match_globalenvs
(DOMAIN: forall b, Plt b bound -> f b = Some(b, 0))
(IMAGE: forall b1 b2 delta, f b1 = Some(b2, delta) -> Plt b2 bound -> b1 = b2)
(SYMBOLS: forall id b, Genv.find_symbol ge id = Some b -> Plt b bound)
(FUNCTIONS: forall b fd, Genv.find_funct_ptr ge b = Some fd -> Plt b bound)
(VARINFOS: forall b gv, Genv.find_var_info ge b = Some gv -> Plt b bound).
Remark inj_preserves_globals:
forall f hi,
match_globalenvs f hi ->
meminj_preserves_globals ge f.
Proof.
intros. inv H.
split. intros. apply DOMAIN. eapply SYMBOLS. eauto.
split. intros. apply DOMAIN. eapply VARINFOS. eauto.
intros. symmetry. eapply IMAGE; eauto.
Qed.
(** * Invariant on abstract call stacks *)
(** Call stacks represent abstractly the execution state of the current
C#minor and Cminor functions, as well as the states of the
calling functions. A call stack is a list of frames, each frame
collecting information on the current execution state of a C#minor
function and its Cminor translation. *)
Inductive frame : Type :=
Frame(cenv: compilenv)
(tf: Cminor.function)
(e: Csharpminor.env)
(le: Csharpminor.temp_env)
(te: Cminor.env)
(sp: block)
(lo hi: block).
Definition callstack : Type := list frame.
(** Matching of call stacks imply:
- matching of environments for each of the frames
- matching of the global environments
- separation conditions over the memory blocks allocated for C#minor local variables;
- separation conditions over the memory blocks allocated for Cminor stack data;
- freeable permissions on the parts of the Cminor stack data blocks
that are not images of C#minor local variable blocks.
*)
Inductive match_callstack (f: meminj) (m: mem) (tm: mem):
callstack -> block -> block -> Prop :=
| mcs_nil:
forall hi bound tbound,
match_globalenvs f hi ->
Ple hi bound -> Ple hi tbound ->
match_callstack f m tm nil bound tbound
| mcs_cons:
forall cenv tf e le te sp lo hi cs bound tbound
(BOUND: Ple hi bound)
(TBOUND: Plt sp tbound)
(MTMP: match_temps f le te)
(MENV: match_env f cenv e sp lo hi)
(BOUND: match_bounds e m)
(PERM: padding_freeable f e tm sp tf.(fn_stackspace))
(MCS: match_callstack f m tm cs lo sp),
match_callstack f m tm (Frame cenv tf e le te sp lo hi :: cs) bound tbound.
(** [match_callstack] implies [match_globalenvs]. *)
Lemma match_callstack_match_globalenvs:
forall f m tm cs bound tbound,
match_callstack f m tm cs bound tbound ->
exists hi, match_globalenvs f hi.
Proof.
induction 1; eauto.
Qed.
(** Invariance properties for [match_callstack]. *)
Lemma match_callstack_invariant:
forall f1 m1 tm1 f2 m2 tm2 cs bound tbound,
match_callstack f1 m1 tm1 cs bound tbound ->
inject_incr f1 f2 ->
(forall b ofs p, Plt b bound -> Mem.perm m2 b ofs Max p -> Mem.perm m1 b ofs Max p) ->
(forall sp ofs, Plt sp tbound -> Mem.perm tm1 sp ofs Cur Freeable -> Mem.perm tm2 sp ofs Cur Freeable) ->
(forall b, Plt b bound -> f2 b = f1 b) ->
(forall b b' delta, f2 b = Some(b', delta) -> Plt b' tbound -> f1 b = Some(b', delta)) ->
match_callstack f2 m2 tm2 cs bound tbound.
Proof.
induction 1; intros.
(* base case *)
econstructor; eauto.
inv H. constructor; intros; eauto.
eapply IMAGE; eauto. eapply H6; eauto. xomega.
(* inductive case *)
assert (Ple lo hi) by (eapply me_low_high; eauto).
econstructor; eauto.
eapply match_temps_invariant; eauto.
eapply match_env_invariant; eauto.
intros. apply H3. xomega.
eapply match_bounds_invariant; eauto.
intros. eapply H1; eauto.
exploit me_bounded; eauto. xomega.
eapply padding_freeable_invariant; eauto.
intros. apply H3. xomega.
eapply IHmatch_callstack; eauto.
intros. eapply H1; eauto. xomega.
intros. eapply H2; eauto. xomega.
intros. eapply H3; eauto. xomega.
intros. eapply H4; eauto. xomega.
Qed.
Lemma match_callstack_incr_bound:
forall f m tm cs bound tbound bound' tbound',
match_callstack f m tm cs bound tbound ->
Ple bound bound' -> Ple tbound tbound' ->
match_callstack f m tm cs bound' tbound'.
Proof.
intros. inv H.
econstructor; eauto. xomega. xomega.
constructor; auto. xomega. xomega.
Qed.
(** Assigning a temporary variable. *)
Lemma match_callstack_set_temp:
forall f cenv e le te sp lo hi cs bound tbound m tm tf id v tv,
val_inject f v tv ->
match_callstack f m tm (Frame cenv tf e le te sp lo hi :: cs) bound tbound ->
match_callstack f m tm (Frame cenv tf e (PTree.set id v le) (PTree.set id tv te) sp lo hi :: cs) bound tbound.
Proof.
intros. inv H0. constructor; auto.
eapply match_temps_assign; eauto.
Qed.
(** Preservation of [match_callstack] by freeing all blocks allocated
for local variables at function entry (on the C#minor side)
and simultaneously freeing the Cminor stack data block. *)
Lemma in_blocks_of_env:
forall e id b sz,
e!id = Some(b, sz) -> In (b, 0, sz) (blocks_of_env e).
Proof.
unfold blocks_of_env; intros.
change (b, 0, sz) with (block_of_binding (id, (b, sz))).
apply List.in_map. apply PTree.elements_correct. auto.
Qed.
Lemma in_blocks_of_env_inv:
forall b lo hi e,
In (b, lo, hi) (blocks_of_env e) ->
exists id, e!id = Some(b, hi) /\ lo = 0.
Proof.
unfold blocks_of_env; intros.
exploit list_in_map_inv; eauto. intros [[id [b' sz]] [A B]].
unfold block_of_binding in A. inv A.
exists id; intuition. apply PTree.elements_complete. auto.
Qed.
Lemma match_callstack_freelist:
forall f cenv tf e le te sp lo hi cs m m' tm,
Mem.inject f m tm ->
Mem.free_list m (blocks_of_env e) = Some m' ->
match_callstack f m tm (Frame cenv tf e le te sp lo hi :: cs) (Mem.nextblock m) (Mem.nextblock tm) ->
exists tm',
Mem.free tm sp 0 tf.(fn_stackspace) = Some tm'
/\ match_callstack f m' tm' cs (Mem.nextblock m') (Mem.nextblock tm')
/\ Mem.inject f m' tm'.
Proof.
intros until tm; intros INJ FREELIST MCS. inv MCS. inv MENV.
assert ({tm' | Mem.free tm sp 0 (fn_stackspace tf) = Some tm'}).
apply Mem.range_perm_free.
red; intros.
exploit PERM; eauto. intros [A | A].
auto.
inv A. assert (Mem.range_perm m b 0 sz Cur Freeable).
eapply free_list_freeable; eauto. eapply in_blocks_of_env; eauto.
replace ofs with ((ofs - delta) + delta) by omega.
eapply Mem.perm_inject; eauto. apply H3. omega.
destruct X as [tm' FREE].
exploit nextblock_freelist; eauto. intro NEXT.
exploit Mem.nextblock_free; eauto. intro NEXT'.
exists tm'. split. auto. split.
rewrite NEXT; rewrite NEXT'.
apply match_callstack_incr_bound with lo sp; try omega.
apply match_callstack_invariant with f m tm; auto.
intros. eapply perm_freelist; eauto.
intros. eapply Mem.perm_free_1; eauto. left; unfold block; xomega. xomega. xomega.
eapply Mem.free_inject; eauto.
intros. exploit me_inv0; eauto. intros [id [sz A]].
exists 0; exists sz; split.
eapply in_blocks_of_env; eauto.
eapply BOUND0; eauto. eapply Mem.perm_max. eauto.
Qed.
(** Preservation of [match_callstack] by external calls. *)
Lemma match_callstack_external_call:
forall f1 f2 m1 m2 m1' m2',
Mem.unchanged_on (loc_unmapped f1) m1 m2 ->
Mem.unchanged_on (loc_out_of_reach f1 m1) m1' m2' ->
inject_incr f1 f2 ->
inject_separated f1 f2 m1 m1' ->
(forall b ofs p, Mem.valid_block m1 b -> Mem.perm m2 b ofs Max p -> Mem.perm m1 b ofs Max p) ->
forall cs bound tbound,
match_callstack f1 m1 m1' cs bound tbound ->
Ple bound (Mem.nextblock m1) -> Ple tbound (Mem.nextblock m1') ->
match_callstack f2 m2 m2' cs bound tbound.
Proof.
intros until m2'.
intros UNMAPPED OUTOFREACH INCR SEPARATED MAXPERMS.
induction 1; intros.
(* base case *)
apply mcs_nil with hi; auto.
inv H. constructor; auto.
intros. case_eq (f1 b1).
intros [b2' delta'] EQ. rewrite (INCR _ _ _ EQ) in H. inv H. eauto.
intro EQ. exploit SEPARATED; eauto. intros [A B]. elim B. red. xomega.
(* inductive case *)
constructor. auto. auto.
eapply match_temps_invariant; eauto.
eapply match_env_invariant; eauto.
red in SEPARATED. intros. destruct (f1 b) as [[b' delta']|] eqn:?.
exploit INCR; eauto. congruence.
exploit SEPARATED; eauto. intros [A B]. elim B. red. xomega.
intros. assert (Ple lo hi) by (eapply me_low_high; eauto).
destruct (f1 b) as [[b' delta']|] eqn:?.
apply INCR; auto.
destruct (f2 b) as [[b' delta']|] eqn:?; auto.
exploit SEPARATED; eauto. intros [A B]. elim A. red. xomega.
eapply match_bounds_invariant; eauto.
intros. eapply MAXPERMS; eauto. red. exploit me_bounded; eauto. xomega.
(* padding-freeable *)
red; intros.
destruct (is_reachable_from_env_dec f1 e sp ofs).
inv H3. right. apply is_reachable_intro with id b sz delta; auto.
exploit PERM; eauto. intros [A|A]; try contradiction.
left. eapply Mem.perm_unchanged_on; eauto.
red; intros; red; intros. elim H3.
exploit me_inv; eauto. intros [id [lv B]].
exploit BOUND0; eauto. intros C.
apply is_reachable_intro with id b0 lv delta; auto; omega.
eauto with mem.
(* induction *)
eapply IHmatch_callstack; eauto. inv MENV; xomega. xomega.
Qed.
(** [match_callstack] and allocations *)
Lemma match_callstack_alloc_right:
forall f m tm cs tf tm' sp le te cenv,
match_callstack f m tm cs (Mem.nextblock m) (Mem.nextblock tm) ->
Mem.alloc tm 0 tf.(fn_stackspace) = (tm', sp) ->
Mem.inject f m tm ->
match_temps f le te ->
(forall id, cenv!id = None) ->
match_callstack f m tm'
(Frame cenv tf empty_env le te sp (Mem.nextblock m) (Mem.nextblock m) :: cs)
(Mem.nextblock m) (Mem.nextblock tm').
Proof.
intros.
exploit Mem.nextblock_alloc; eauto. intros NEXTBLOCK.
exploit Mem.alloc_result; eauto. intros RES.
constructor.
xomega.
unfold block in *; xomega.
auto.
constructor; intros.
rewrite H3. rewrite PTree.gempty. constructor.
xomega.
rewrite PTree.gempty in H4; discriminate.
eelim Mem.fresh_block_alloc; eauto. eapply Mem.valid_block_inject_2; eauto.
rewrite RES. change (Mem.valid_block tm tb). eapply Mem.valid_block_inject_2; eauto.
red; intros. rewrite PTree.gempty in H4. discriminate.
red; intros. left. eapply Mem.perm_alloc_2; eauto.
eapply match_callstack_invariant with (tm1 := tm); eauto.
rewrite RES; auto.
intros. eapply Mem.perm_alloc_1; eauto.
Qed.
Lemma match_callstack_alloc_left:
forall f1 m1 tm id cenv tf e le te sp lo cs sz m2 b f2 ofs,
match_callstack f1 m1 tm
(Frame (PTree.remove id cenv) tf e le te sp lo (Mem.nextblock m1) :: cs)
(Mem.nextblock m1) (Mem.nextblock tm) ->
Mem.alloc m1 0 sz = (m2, b) ->
cenv!id = Some ofs ->
inject_incr f1 f2 ->
f2 b = Some(sp, ofs) ->
(forall b', b' <> b -> f2 b' = f1 b') ->
e!id = None ->
match_callstack f2 m2 tm
(Frame cenv tf (PTree.set id (b, sz) e) le te sp lo (Mem.nextblock m2) :: cs)
(Mem.nextblock m2) (Mem.nextblock tm).
Proof.
intros. inv H.
exploit Mem.nextblock_alloc; eauto. intros NEXTBLOCK.
exploit Mem.alloc_result; eauto. intros RES.
assert (LO: Ple lo (Mem.nextblock m1)) by (eapply me_low_high; eauto).
constructor.
xomega.
auto.
eapply match_temps_invariant; eauto.
eapply match_env_alloc; eauto.
red; intros. rewrite PTree.gsspec in H. destruct (peq id0 id).
inversion H. subst b0 sz0 id0. eapply Mem.perm_alloc_3; eauto.
eapply BOUND0; eauto. eapply Mem.perm_alloc_4; eauto.
exploit me_bounded; eauto. unfold block in *; xomega.
red; intros. exploit PERM; eauto. intros [A|A]. auto. right.
inv A. apply is_reachable_intro with id0 b0 sz0 delta; auto.
rewrite PTree.gso. auto. congruence.
eapply match_callstack_invariant with (m1 := m1); eauto.
intros. eapply Mem.perm_alloc_4; eauto.
unfold block in *; xomega.
intros. apply H4. unfold block in *; xomega.
intros. destruct (eq_block b0 b).
subst b0. rewrite H3 in H. inv H. xomegaContradiction.
rewrite H4 in H; auto.
Qed.
(** * Correctness of stack allocation of local variables *)
(** This section shows the correctness of the translation of Csharpminor
local variables as sub-blocks of the Cminor stack data. This is the most difficult part of the proof. *)
Definition cenv_remove (cenv: compilenv) (vars: list (ident * Z)) : compilenv :=
fold_right (fun id_lv ce => PTree.remove (fst id_lv) ce) cenv vars.
Remark cenv_remove_gso:
forall id vars cenv,
~In id (map fst vars) ->
PTree.get id (cenv_remove cenv vars) = PTree.get id cenv.
Proof.
induction vars; simpl; intros.
auto.
rewrite PTree.gro. apply IHvars. intuition. intuition.
Qed.
Remark cenv_remove_gss:
forall id vars cenv,
In id (map fst vars) ->
PTree.get id (cenv_remove cenv vars) = None.
Proof.
induction vars; simpl; intros.
contradiction.
rewrite PTree.grspec. destruct (PTree.elt_eq id (fst a)). auto.
destruct H. intuition. eauto.
Qed.
Definition cenv_compat (cenv: compilenv) (vars: list (ident * Z)) (tsz: Z) : Prop :=
forall id sz,
In (id, sz) vars ->
exists ofs,
PTree.get id cenv = Some ofs
/\ Mem.inj_offset_aligned ofs sz
/\ 0 <= ofs
/\ ofs + Zmax 0 sz <= tsz.
Definition cenv_separated (cenv: compilenv) (vars: list (ident * Z)) : Prop :=
forall id1 sz1 ofs1 id2 sz2 ofs2,
In (id1, sz1) vars -> In (id2, sz2) vars ->
PTree.get id1 cenv = Some ofs1 -> PTree.get id2 cenv = Some ofs2 ->
id1 <> id2 ->
ofs1 + sz1 <= ofs2 \/ ofs2 + sz2 <= ofs1.
Definition cenv_mem_separated (cenv: compilenv) (vars: list (ident * Z)) (f: meminj) (sp: block) (m: mem) : Prop :=
forall id sz ofs b delta ofs' k p,
In (id, sz) vars -> PTree.get id cenv = Some ofs ->
f b = Some (sp, delta) ->
Mem.perm m b ofs' k p ->
ofs <= ofs' + delta < sz + ofs -> False.
Lemma match_callstack_alloc_variables_rec:
forall tm sp tf cenv le te lo cs,
Mem.valid_block tm sp ->
fn_stackspace tf <= Int.max_unsigned ->
(forall ofs k p, Mem.perm tm sp ofs k p -> 0 <= ofs < fn_stackspace tf) ->
(forall ofs k p, 0 <= ofs < fn_stackspace tf -> Mem.perm tm sp ofs k p) ->
forall e1 m1 vars e2 m2,
alloc_variables e1 m1 vars e2 m2 ->
forall f1,
list_norepet (map fst vars) ->
cenv_compat cenv vars (fn_stackspace tf) ->
cenv_separated cenv vars ->
cenv_mem_separated cenv vars f1 sp m1 ->
(forall id sz, In (id, sz) vars -> e1!id = None) ->
match_callstack f1 m1 tm
(Frame (cenv_remove cenv vars) tf e1 le te sp lo (Mem.nextblock m1) :: cs)
(Mem.nextblock m1) (Mem.nextblock tm) ->
Mem.inject f1 m1 tm ->
exists f2,
match_callstack f2 m2 tm
(Frame cenv tf e2 le te sp lo (Mem.nextblock m2) :: cs)
(Mem.nextblock m2) (Mem.nextblock tm)
/\ Mem.inject f2 m2 tm.
Proof.
intros until cs; intros VALID REPRES STKSIZE STKPERMS.
induction 1; intros f1 NOREPET COMPAT SEP1 SEP2 UNBOUND MCS MINJ.
(* base case *)
simpl in MCS. exists f1; auto.
(* inductive case *)
simpl in NOREPET. inv NOREPET.
(* exploit Mem.alloc_result; eauto. intros RES.
exploit Mem.nextblock_alloc; eauto. intros NB.*)
exploit (COMPAT id sz). auto with coqlib. intros [ofs [CENV [ALIGNED [LOB HIB]]]].
exploit Mem.alloc_left_mapped_inject.
eexact MINJ.
eexact H.
eexact VALID.
instantiate (1 := ofs). zify. omega.
intros. exploit STKSIZE; eauto. omega.
intros. apply STKPERMS. zify. omega.
replace (sz - 0) with sz by omega. auto.
intros. eapply SEP2. eauto with coqlib. eexact CENV. eauto. eauto. omega.
intros [f2 [A [B [C D]]]].
exploit (IHalloc_variables f2); eauto.
red; intros. eapply COMPAT. auto with coqlib.
red; intros. eapply SEP1; eauto with coqlib.
red; intros. exploit Mem.perm_alloc_inv; eauto. destruct (eq_block b b1); intros P.
subst b. rewrite C in H5; inv H5.
exploit SEP1. eapply in_eq. eapply in_cons; eauto. eauto. eauto.
red; intros; subst id0. elim H3. change id with (fst (id, sz0)). apply in_map; auto.
omega.
eapply SEP2. apply in_cons; eauto. eauto.
rewrite D in H5; eauto. eauto. auto.
intros. rewrite PTree.gso. eapply UNBOUND; eauto with coqlib.
red; intros; subst id0. elim H3. change id with (fst (id, sz0)). apply in_map; auto.
eapply match_callstack_alloc_left; eauto.
rewrite cenv_remove_gso; auto.
apply UNBOUND with sz; auto with coqlib.
Qed.
Lemma match_callstack_alloc_variables:
forall tm1 sp tm2 m1 vars e m2 cenv f1 cs fn le te,
Mem.alloc tm1 0 (fn_stackspace fn) = (tm2, sp) ->
fn_stackspace fn <= Int.max_unsigned ->
alloc_variables empty_env m1 vars e m2 ->
list_norepet (map fst vars) ->
cenv_compat cenv vars (fn_stackspace fn) ->
cenv_separated cenv vars ->
(forall id ofs, cenv!id = Some ofs -> In id (map fst vars)) ->
Mem.inject f1 m1 tm1 ->
match_callstack f1 m1 tm1 cs (Mem.nextblock m1) (Mem.nextblock tm1) ->
match_temps f1 le te ->
exists f2,
match_callstack f2 m2 tm2 (Frame cenv fn e le te sp (Mem.nextblock m1) (Mem.nextblock m2) :: cs)
(Mem.nextblock m2) (Mem.nextblock tm2)
/\ Mem.inject f2 m2 tm2.
Proof.
intros.
eapply match_callstack_alloc_variables_rec; eauto.
eapply Mem.valid_new_block; eauto.
intros. eapply Mem.perm_alloc_3; eauto.
intros. apply Mem.perm_implies with Freeable; auto with mem. eapply Mem.perm_alloc_2; eauto.
instantiate (1 := f1). red; intros. eelim Mem.fresh_block_alloc; eauto.
eapply Mem.valid_block_inject_2; eauto.
intros. apply PTree.gempty.
eapply match_callstack_alloc_right; eauto.
intros. destruct (In_dec peq id (map fst vars)).
apply cenv_remove_gss; auto.
rewrite cenv_remove_gso; auto.
destruct (cenv!id) as [ofs|] eqn:?; auto. elim n; eauto.
eapply Mem.alloc_right_inject; eauto.
Qed.
(** Properties of the compilation environment produced by [build_compilenv] *)
Remark block_alignment_pos:
forall sz, block_alignment sz > 0.
Proof.
unfold block_alignment; intros.
destruct (zlt sz 2). omega.
destruct (zlt sz 4). omega.
destruct (zlt sz 8); omega.
Qed.
Remark assign_variable_incr:
forall id sz cenv stksz cenv' stksz',
assign_variable (cenv, stksz) (id, sz) = (cenv', stksz') -> stksz <= stksz'.
Proof.
simpl; intros. inv H.
generalize (align_le stksz (block_alignment sz) (block_alignment_pos sz)).
assert (0 <= Zmax 0 sz). apply Zmax_bound_l. omega.
omega.
Qed.
Remark assign_variables_incr:
forall vars cenv sz cenv' sz',
assign_variables (cenv, sz) vars = (cenv', sz') -> sz <= sz'.
Proof.
induction vars; intros until sz'.
simpl; intros. inv H. omega.
Opaque assign_variable.
destruct a as [id s]. simpl. intros.
destruct (assign_variable (cenv, sz) (id, s)) as [cenv1 sz1] eqn:?.
apply Zle_trans with sz1. eapply assign_variable_incr; eauto. eauto.
Transparent assign_variable.
Qed.
Remark inj_offset_aligned_block:
forall stacksize sz,
Mem.inj_offset_aligned (align stacksize (block_alignment sz)) sz.
Proof.
intros; red; intros.
apply Zdivides_trans with (block_alignment sz).
unfold align_chunk. unfold block_alignment.
generalize Zone_divide; intro.
generalize Zdivide_refl; intro.
assert (2 | 4). exists 2; auto.
assert (2 | 8). exists 4; auto.
assert (4 | 8). exists 2; auto.
destruct (zlt sz 2).
destruct chunk; simpl in *; auto; omegaContradiction.
destruct (zlt sz 4).
destruct chunk; simpl in *; auto; omegaContradiction.
destruct (zlt sz 8).
destruct chunk; simpl in *; auto; omegaContradiction.
destruct chunk; simpl; auto.
apply align_divides. apply block_alignment_pos.
Qed.
Remark inj_offset_aligned_block':
forall stacksize sz,
Mem.inj_offset_aligned (align stacksize (block_alignment sz)) (Zmax 0 sz).
Proof.
intros.
replace (block_alignment sz) with (block_alignment (Zmax 0 sz)).
apply inj_offset_aligned_block.
rewrite Zmax_spec. destruct (zlt sz 0); auto.
transitivity 1. reflexivity. unfold block_alignment. rewrite zlt_true. auto. omega.
Qed.
Lemma assign_variable_sound:
forall cenv1 sz1 id sz cenv2 sz2 vars,
assign_variable (cenv1, sz1) (id, sz) = (cenv2, sz2) ->
~In id (map fst vars) ->
0 <= sz1 ->
cenv_compat cenv1 vars sz1 ->
cenv_separated cenv1 vars ->
cenv_compat cenv2 (vars ++ (id, sz) :: nil) sz2
/\ cenv_separated cenv2 (vars ++ (id, sz) :: nil).
Proof.
unfold assign_variable; intros until vars; intros ASV NOREPET POS COMPAT SEP.
inv ASV.
assert (LE: sz1 <= align sz1 (block_alignment sz)). apply align_le. apply block_alignment_pos.
assert (EITHER: forall id' sz',
In (id', sz') (vars ++ (id, sz) :: nil) ->
In (id', sz') vars /\ id' <> id \/ (id', sz') = (id, sz)).
intros. rewrite in_app in H. destruct H.
left; split; auto. red; intros; subst id'. elim NOREPET.
change id with (fst (id, sz')). apply in_map; auto.
simpl in H. destruct H. auto. contradiction.
split; red; intros.
apply EITHER in H. destruct H as [[P Q] | P].
exploit COMPAT; eauto. intros [ofs [A [B [C D]]]].
exists ofs.
split. rewrite PTree.gso; auto.
split. auto. split. auto. zify; omega.
inv P. exists (align sz1 (block_alignment sz)).
split. apply PTree.gss.
split. apply inj_offset_aligned_block.
split. omega.
omega.
apply EITHER in H; apply EITHER in H0.
destruct H as [[P Q] | P]; destruct H0 as [[R S] | R].
rewrite PTree.gso in *; auto. eapply SEP; eauto.
inv R. rewrite PTree.gso in H1; auto. rewrite PTree.gss in H2; inv H2.
exploit COMPAT; eauto. intros [ofs [A [B [C D]]]].
assert (ofs = ofs1) by congruence. subst ofs.
left. zify; omega.
inv P. rewrite PTree.gso in H2; auto. rewrite PTree.gss in H1; inv H1.
exploit COMPAT; eauto. intros [ofs [A [B [C D]]]].
assert (ofs = ofs2) by congruence. subst ofs.
right. zify; omega.
congruence.
Qed.
Lemma assign_variables_sound:
forall vars' cenv1 sz1 cenv2 sz2 vars,
assign_variables (cenv1, sz1) vars' = (cenv2, sz2) ->
list_norepet (map fst vars' ++ map fst vars) ->
0 <= sz1 ->
cenv_compat cenv1 vars sz1 ->
cenv_separated cenv1 vars ->
cenv_compat cenv2 (vars ++ vars') sz2 /\ cenv_separated cenv2 (vars ++ vars').
Proof.
induction vars'; simpl; intros.
rewrite app_nil_r. inv H; auto.
destruct a as [id sz].
simpl in H0. inv H0. rewrite in_app in H6.
rewrite list_norepet_app in H7. destruct H7 as [P [Q R]].
destruct (assign_variable (cenv1, sz1) (id, sz)) as [cenv' sz'] eqn:?.
exploit assign_variable_sound.
eauto.
instantiate (1 := vars). tauto.
auto. auto. auto.
intros [A B].
exploit IHvars'.
eauto.
instantiate (1 := vars ++ ((id, sz) :: nil)).
rewrite list_norepet_app. split. auto.
split. rewrite map_app. apply list_norepet_append_commut. simpl. constructor; auto.
rewrite map_app. simpl. red; intros. rewrite in_app in H4. destruct H4.
eauto. simpl in H4. destruct H4. subst y. red; intros; subst x. tauto. tauto.
generalize (assign_variable_incr _ _ _ _ _ _ Heqp). omega.
auto. auto.
rewrite app_ass. auto.
Qed.
Remark permutation_norepet:
forall (A: Type) (l l': list A), Permutation l l' -> list_norepet l -> list_norepet l'.
Proof.
induction 1; intros.
constructor.
inv H0. constructor; auto. red; intros; elim H3. apply Permutation_in with l'; auto. apply Permutation_sym; auto.
inv H. simpl in H2. inv H3. constructor. simpl; intuition. constructor. intuition. auto.
eauto.
Qed.
Lemma build_compilenv_sound:
forall f cenv sz,
build_compilenv f = (cenv, sz) ->
list_norepet (map fst (Csharpminor.fn_vars f)) ->
cenv_compat cenv (Csharpminor.fn_vars f) sz /\ cenv_separated cenv (Csharpminor.fn_vars f).
Proof.
unfold build_compilenv; intros.
set (vars1 := Csharpminor.fn_vars f) in *.
generalize (VarSort.Permuted_sort vars1). intros P.
set (vars2 := VarSort.sort vars1) in *.
assert (cenv_compat cenv vars2 sz /\ cenv_separated cenv vars2).
change vars2 with (nil ++ vars2).
eapply assign_variables_sound.
eexact H.
simpl. rewrite app_nil_r. apply permutation_norepet with (map fst vars1); auto.
apply Permutation_map. auto.
omega.
red; intros. contradiction.
red; intros. contradiction.
destruct H1 as [A B]. split.
red; intros. apply A. apply Permutation_in with vars1; auto.
red; intros. eapply B; eauto; apply Permutation_in with vars1; auto.
Qed.
Lemma assign_variables_domain:
forall id vars cesz,
(fst (assign_variables cesz vars))!id <> None ->
(fst cesz)!id <> None \/ In id (map fst vars).
Proof.
induction vars; simpl; intros.
auto.
exploit IHvars; eauto. unfold assign_variable. destruct a as [id1 sz1].
destruct cesz as [cenv stksz]. simpl.
rewrite PTree.gsspec. destruct (peq id id1). auto. tauto.
Qed.
Lemma build_compilenv_domain:
forall f cenv sz id ofs,
build_compilenv f = (cenv, sz) ->
cenv!id = Some ofs -> In id (map fst (Csharpminor.fn_vars f)).
Proof.
unfold build_compilenv; intros.
set (vars1 := Csharpminor.fn_vars f) in *.
generalize (VarSort.Permuted_sort vars1). intros P.
set (vars2 := VarSort.sort vars1) in *.
generalize (assign_variables_domain id vars2 (PTree.empty Z, 0)).
rewrite H. simpl. intros. destruct H1. congruence.
rewrite PTree.gempty in H1. congruence.
apply Permutation_in with (map fst vars2); auto.
apply Permutation_map. apply Permutation_sym; auto.
Qed.
(** Initialization of C#minor temporaries and Cminor local variables. *)
Lemma create_undef_temps_val:
forall id v temps, (create_undef_temps temps)!id = Some v -> In id temps /\ v = Vundef.
Proof.
induction temps; simpl; intros.
rewrite PTree.gempty in H. congruence.
rewrite PTree.gsspec in H. destruct (peq id a).
split. auto. congruence.
exploit IHtemps; eauto. tauto.
Qed.
Fixpoint set_params' (vl: list val) (il: list ident) (te: Cminor.env) : Cminor.env :=
match il, vl with
| i1 :: is, v1 :: vs => set_params' vs is (PTree.set i1 v1 te)
| i1 :: is, nil => set_params' nil is (PTree.set i1 Vundef te)
| _, _ => te
end.
Lemma bind_parameters_agree_rec:
forall f vars vals tvals le1 le2 te,
bind_parameters vars vals le1 = Some le2 ->
val_list_inject f vals tvals ->
match_temps f le1 te ->
match_temps f le2 (set_params' tvals vars te).
Proof.
Opaque PTree.set.
induction vars; simpl; intros.
destruct vals; try discriminate. inv H. auto.
destruct vals; try discriminate. inv H0.
simpl. eapply IHvars; eauto.
red; intros. rewrite PTree.gsspec in *. destruct (peq id a).
inv H0. exists v'; auto.
apply H1; auto.
Qed.
Lemma set_params'_outside:
forall id il vl te, ~In id il -> (set_params' vl il te)!id = te!id.
Proof.
induction il; simpl; intros. auto.
destruct vl; rewrite IHil.
apply PTree.gso. intuition. intuition.
apply PTree.gso. intuition. intuition.
Qed.
Lemma set_params'_inside:
forall id il vl te1 te2,
In id il ->
(set_params' vl il te1)!id = (set_params' vl il te2)!id.
Proof.
induction il; simpl; intros.
contradiction.
destruct vl; destruct (List.in_dec peq id il); auto;
repeat rewrite set_params'_outside; auto;
assert (a = id) by intuition; subst a; repeat rewrite PTree.gss; auto.
Qed.
Lemma set_params_set_params':
forall il vl id,
list_norepet il ->
(set_params vl il)!id = (set_params' vl il (PTree.empty val))!id.
Proof.
induction il; simpl; intros.
auto.
inv H. destruct vl.
rewrite PTree.gsspec. destruct (peq id a).
subst a. rewrite set_params'_outside; auto. rewrite PTree.gss; auto.
rewrite IHil; auto.
destruct (List.in_dec peq id il). apply set_params'_inside; auto.
repeat rewrite set_params'_outside; auto. rewrite PTree.gso; auto.
rewrite PTree.gsspec. destruct (peq id a).
subst a. rewrite set_params'_outside; auto. rewrite PTree.gss; auto.
rewrite IHil; auto.
destruct (List.in_dec peq id il). apply set_params'_inside; auto.
repeat rewrite set_params'_outside; auto. rewrite PTree.gso; auto.
Qed.
Lemma set_locals_outside:
forall e id il,
~In id il -> (set_locals il e)!id = e!id.
Proof.
induction il; simpl; intros.
auto.
rewrite PTree.gso. apply IHil. tauto. intuition.
Qed.
Lemma set_locals_inside:
forall e id il,
In id il -> (set_locals il e)!id = Some Vundef.
Proof.
induction il; simpl; intros.
contradiction.
destruct H. subst a. apply PTree.gss.
rewrite PTree.gsspec. destruct (peq id a). auto. auto.
Qed.
Lemma set_locals_set_params':
forall vars vals params id,
list_norepet params ->
list_disjoint params vars ->
(set_locals vars (set_params vals params)) ! id =
(set_params' vals params (set_locals vars (PTree.empty val))) ! id.
Proof.
intros. destruct (in_dec peq id vars).
assert (~In id params). apply list_disjoint_notin with vars; auto. apply list_disjoint_sym; auto.
rewrite set_locals_inside; auto. rewrite set_params'_outside; auto. rewrite set_locals_inside; auto.
rewrite set_locals_outside; auto. rewrite set_params_set_params'; auto.
destruct (in_dec peq id params).
apply set_params'_inside; auto.
repeat rewrite set_params'_outside; auto.
rewrite set_locals_outside; auto.
Qed.
Lemma bind_parameters_agree:
forall f params temps vals tvals le,
bind_parameters params vals (create_undef_temps temps) = Some le ->
val_list_inject f vals tvals ->
list_norepet params ->
list_disjoint params temps ->
match_temps f le (set_locals temps (set_params tvals params)).
Proof.
intros; red; intros.
exploit bind_parameters_agree_rec; eauto.
instantiate (1 := set_locals temps (PTree.empty val)).
red; intros. exploit create_undef_temps_val; eauto. intros [A B]. subst v0.
exists Vundef; split. apply set_locals_inside; auto. auto.
intros [v' [A B]]. exists v'; split; auto.
rewrite <- A. apply set_locals_set_params'; auto.
Qed.
(** The main result in this section. *)
Theorem match_callstack_function_entry:
forall fn cenv tf m e m' tm tm' sp f cs args targs le,
build_compilenv fn = (cenv, tf.(fn_stackspace)) ->
tf.(fn_stackspace) <= Int.max_unsigned ->
list_norepet (map fst (Csharpminor.fn_vars fn)) ->
list_norepet (Csharpminor.fn_params fn) ->
list_disjoint (Csharpminor.fn_params fn) (Csharpminor.fn_temps fn) ->
alloc_variables Csharpminor.empty_env m (Csharpminor.fn_vars fn) e m' ->
bind_parameters (Csharpminor.fn_params fn) args (create_undef_temps fn.(fn_temps)) = Some le ->
val_list_inject f args targs ->
Mem.alloc tm 0 tf.(fn_stackspace) = (tm', sp) ->
match_callstack f m tm cs (Mem.nextblock m) (Mem.nextblock tm) ->
Mem.inject f m tm ->
let te := set_locals (Csharpminor.fn_temps fn) (set_params targs (Csharpminor.fn_params fn)) in
exists f',
match_callstack f' m' tm'
(Frame cenv tf e le te sp (Mem.nextblock m) (Mem.nextblock m') :: cs)
(Mem.nextblock m') (Mem.nextblock tm')
/\ Mem.inject f' m' tm'.
Proof.
intros.
exploit build_compilenv_sound; eauto. intros [C1 C2].
eapply match_callstack_alloc_variables; eauto.
intros. eapply build_compilenv_domain; eauto.
eapply bind_parameters_agree; eauto.
Qed.
(** * Properties of compile-time approximations of values *)
Definition val_match_approx (a: approx) (v: val) : Prop :=
match a with
| Int1 => v = Val.zero_ext 1 v
| Int7 => v = Val.zero_ext 8 v /\ v = Val.sign_ext 8 v
| Int8u => v = Val.zero_ext 8 v
| Int8s => v = Val.sign_ext 8 v
| Int15 => v = Val.zero_ext 16 v /\ v = Val.sign_ext 16 v
| Int16u => v = Val.zero_ext 16 v
| Int16s => v = Val.sign_ext 16 v
| Float32 => v = Val.singleoffloat v
| Any => True
end.
Remark undef_match_approx: forall a, val_match_approx a Vundef.
Proof.
destruct a; simpl; auto.
Qed.
Lemma val_match_approx_increasing:
forall a1 a2 v,
Approx.bge a1 a2 = true -> val_match_approx a2 v -> val_match_approx a1 v.
Proof.
assert (A: forall v, v = Val.zero_ext 8 v -> v = Val.zero_ext 16 v).
intros. rewrite H.
destruct v; simpl; auto. decEq. symmetry.
apply Int.zero_ext_widen. omega.
assert (B: forall v, v = Val.sign_ext 8 v -> v = Val.sign_ext 16 v).
intros. rewrite H.
destruct v; simpl; auto. decEq. symmetry.
apply Int.sign_ext_widen. omega.
assert (C: forall v, v = Val.zero_ext 8 v -> v = Val.sign_ext 16 v).
intros. rewrite H.
destruct v; simpl; auto. decEq. symmetry.
apply Int.sign_zero_ext_widen. omega.
assert (D: forall v, v = Val.zero_ext 1 v -> v = Val.zero_ext 8 v).
intros. rewrite H.
destruct v; simpl; auto. decEq. symmetry.
apply Int.zero_ext_widen. omega.
assert (E: forall v, v = Val.zero_ext 1 v -> v = Val.sign_ext 8 v).
intros. rewrite H.
destruct v; simpl; auto. decEq. symmetry.
apply Int.sign_zero_ext_widen. omega.
intros.
unfold Approx.bge in H; destruct a1; try discriminate; destruct a2; simpl in *; try discriminate; intuition.
Qed.
Lemma approx_of_int_sound:
forall n, val_match_approx (Approx.of_int n) (Vint n).
Proof.
unfold Approx.of_int; intros.
destruct (Int.eq_dec n Int.zero); simpl. subst; auto.
destruct (Int.eq_dec n Int.one); simpl. subst; auto.
destruct (Int.eq_dec n (Int.zero_ext 7 n)). simpl.
split.
decEq. rewrite e. symmetry. apply Int.zero_ext_widen. omega.
decEq. rewrite e. symmetry. apply Int.sign_zero_ext_widen. omega.
destruct (Int.eq_dec n (Int.zero_ext 8 n)). simpl; congruence.
destruct (Int.eq_dec n (Int.sign_ext 8 n)). simpl; congruence.
destruct (Int.eq_dec n (Int.zero_ext 15 n)). simpl.
split.
decEq. rewrite e. symmetry. apply Int.zero_ext_widen. omega.
decEq. rewrite e. symmetry. apply Int.sign_zero_ext_widen. omega.
destruct (Int.eq_dec n (Int.zero_ext 16 n)). simpl; congruence.
destruct (Int.eq_dec n (Int.sign_ext 16 n)). simpl; congruence.
exact I.
Qed.
Lemma approx_of_float_sound:
forall f, val_match_approx (Approx.of_float f) (Vfloat f).
Proof.
unfold Approx.of_float; intros.
destruct (Float.eq_dec f (Float.singleoffloat f)); simpl; auto. congruence.
Qed.
Lemma approx_of_chunk_sound:
forall chunk m b ofs v,
Mem.load chunk m b ofs = Some v ->
val_match_approx (Approx.of_chunk chunk) v.
Proof.
intros. exploit Mem.load_cast; eauto.
destruct chunk; intros; simpl; auto.
Qed.
Lemma approx_of_unop_sound:
forall op v1 v a1,
eval_unop op v1 = Some v ->
val_match_approx a1 v1 ->
val_match_approx (Approx.unop op a1) v.
Proof.
destruct op; simpl; intros; auto; inv H.
destruct v1; simpl; auto. rewrite Int.zero_ext_idem; auto. omega.
destruct v1; simpl; auto. rewrite Int.sign_ext_idem; auto. omega.
destruct v1; simpl; auto. rewrite Int.zero_ext_idem; auto. omega.
destruct v1; simpl; auto. rewrite Int.sign_ext_idem; auto. omega.
destruct v1; simpl; auto. rewrite Float.singleoffloat_idem; auto.
Qed.
Lemma approx_bitwise_and_sound:
forall a1 v1 a2 v2,
val_match_approx a1 v1 -> val_match_approx a2 v2 ->
val_match_approx (Approx.bitwise_and a1 a2) (Val.and v1 v2).
Proof.
assert (X: forall v1 v2 N, 0 < N < Z_of_nat Int.wordsize ->
v2 = Val.zero_ext N v2 ->
Val.and v1 v2 = Val.zero_ext N (Val.and v1 v2)).
intros. rewrite Val.zero_ext_and in *; auto.
rewrite Val.and_assoc. congruence.
assert (Y: forall v1 v2 N, 0 < N < Z_of_nat Int.wordsize ->
v1 = Val.zero_ext N v1 ->
Val.and v1 v2 = Val.zero_ext N (Val.and v1 v2)).
intros. rewrite (Val.and_commut v1 v2). apply X; auto.
assert (P: forall a v, val_match_approx a v -> Approx.bge Int8u a = true ->
v = Val.zero_ext 8 v).
intros. apply (val_match_approx_increasing Int8u a v); auto.
assert (Q: forall a v, val_match_approx a v -> Approx.bge Int16u a = true ->
v = Val.zero_ext 16 v).
intros. apply (val_match_approx_increasing Int16u a v); auto.
assert (R: forall a v, val_match_approx a v -> Approx.bge Int1 a = true ->
v = Val.zero_ext 1 v).
intros. apply (val_match_approx_increasing Int1 a v); auto.
intros; unfold Approx.bitwise_and.
destruct (Approx.bge Int1 a1) eqn:?. simpl. apply Y; eauto. compute; auto.
destruct (Approx.bge Int1 a2) eqn:?. simpl. apply X; eauto. compute; auto.
destruct (Approx.bge Int8u a1) eqn:?. simpl. apply Y; eauto. compute; auto.
destruct (Approx.bge Int8u a2) eqn:?. simpl. apply X; eauto. compute; auto.
destruct (Approx.bge Int16u a1) eqn:?. simpl. apply Y; eauto. compute; auto.
destruct (Approx.bge Int16u a2) eqn:?. simpl. apply X; eauto. compute; auto.
simpl; auto.
Qed.
Lemma approx_bitwise_or_sound:
forall (sem_op: val -> val -> val) a1 v1 a2 v2,
(forall a b c, sem_op (Val.and a (Vint c)) (Val.and b (Vint c)) =
Val.and (sem_op a b) (Vint c)) ->
val_match_approx a1 v1 -> val_match_approx a2 v2 ->
val_match_approx (Approx.bitwise_or a1 a2) (sem_op v1 v2).
Proof.
intros.
assert (X: forall v v' N, 0 < N < Z_of_nat Int.wordsize ->
v = Val.zero_ext N v ->
v' = Val.zero_ext N v' ->
sem_op v v' = Val.zero_ext N (sem_op v v')).
intros. rewrite Val.zero_ext_and in *; auto.
rewrite H3; rewrite H4. rewrite H. rewrite Val.and_assoc.
simpl. rewrite Int.and_idem. auto.
unfold Approx.bitwise_or.
destruct (Approx.bge Int1 a1 && Approx.bge Int1 a2) eqn:?.
destruct (andb_prop _ _ Heqb).
simpl. apply X. compute; auto.
apply (val_match_approx_increasing Int1 a1 v1); auto.
apply (val_match_approx_increasing Int1 a2 v2); auto.
destruct (Approx.bge Int8u a1 && Approx.bge Int8u a2) eqn:?.
destruct (andb_prop _ _ Heqb0).
simpl. apply X. compute; auto.
apply (val_match_approx_increasing Int8u a1 v1); auto.
apply (val_match_approx_increasing Int8u a2 v2); auto.
destruct (Approx.bge Int16u a1 && Approx.bge Int16u a2) eqn:?.
destruct (andb_prop _ _ Heqb1).
simpl. apply X. compute; auto.
apply (val_match_approx_increasing Int16u a1 v1); auto.
apply (val_match_approx_increasing Int16u a2 v2); auto.
exact I.
Qed.
Lemma approx_of_binop_sound:
forall op v1 a1 v2 a2 m v,
eval_binop op v1 v2 m = Some v ->
val_match_approx a1 v1 -> val_match_approx a2 v2 ->
val_match_approx (Approx.binop op a1 a2) v.
Proof.
assert (OB: forall ob, val_match_approx Int1 (Val.of_optbool ob)).
destruct ob; simpl. destruct b; auto. auto.
destruct op; intros; simpl Approx.binop; simpl in H; try (exact I); inv H.
apply approx_bitwise_and_sound; auto.
apply approx_bitwise_or_sound; auto.
intros. destruct a; destruct b; simpl; auto.
rewrite (Int.and_commut i c); rewrite (Int.and_commut i0 c).
rewrite <- Int.and_or_distrib. rewrite Int.and_commut. auto.
apply approx_bitwise_or_sound; auto.
intros. destruct a; destruct b; simpl; auto.
rewrite (Int.and_commut i c); rewrite (Int.and_commut i0 c).
rewrite <- Int.and_xor_distrib. rewrite Int.and_commut. auto.
apply OB.
apply OB.
apply OB.
Qed.
Lemma approx_unop_is_redundant_sound:
forall op a v,
Approx.unop_is_redundant op a = true ->
val_match_approx a v ->
eval_unop op v = Some v.
Proof.
unfold Approx.unop_is_redundant; intros; destruct op; try discriminate.
(* cast8unsigned *)
assert (V: val_match_approx Int8u v) by (eapply val_match_approx_increasing; eauto).
simpl in *. congruence.
(* cast8signed *)
assert (V: val_match_approx Int8s v) by (eapply val_match_approx_increasing; eauto).
simpl in *. congruence.
(* cast16unsigned *)
assert (V: val_match_approx Int16u v) by (eapply val_match_approx_increasing; eauto).
simpl in *. congruence.
(* cast16signed *)
assert (V: val_match_approx Int16s v) by (eapply val_match_approx_increasing; eauto).
simpl in *. congruence.
(* singleoffloat *)
assert (V: val_match_approx Float32 v) by (eapply val_match_approx_increasing; eauto).
simpl in *. congruence.
Qed.
(** * Compatibility of evaluation functions with respect to memory injections. *)
Remark val_inject_val_of_bool:
forall f b, val_inject f (Val.of_bool b) (Val.of_bool b).
Proof.
intros; destruct b; constructor.
Qed.
Remark val_inject_val_of_optbool:
forall f ob, val_inject f (Val.of_optbool ob) (Val.of_optbool ob).
Proof.
intros; destruct ob; simpl. destruct b; constructor. constructor.
Qed.
Ltac TrivialExists :=
match goal with
| [ |- exists y, Some ?x = Some y /\ val_inject _ _ _ ] =>
exists x; split; [auto | try(econstructor; eauto)]
| [ |- exists y, _ /\ val_inject _ (Vint ?x) _ ] =>
exists (Vint x); split; [eauto with evalexpr | constructor]
| [ |- exists y, _ /\ val_inject _ (Vfloat ?x) _ ] =>
exists (Vfloat x); split; [eauto with evalexpr | constructor]
| [ |- exists y, _ /\ val_inject _ (Vlong ?x) _ ] =>
exists (Vlong x); split; [eauto with evalexpr | constructor]
| _ => idtac
end.
(** Compatibility of [eval_unop] with respect to [val_inject]. *)
Lemma eval_unop_compat:
forall f op v1 tv1 v,
eval_unop op v1 = Some v ->
val_inject f v1 tv1 ->
exists tv,
eval_unop op tv1 = Some tv
/\ val_inject f v tv.
Proof.
destruct op; simpl; intros.
inv H; inv H0; simpl; TrivialExists.
inv H; inv H0; simpl; TrivialExists.
inv H; inv H0; simpl; TrivialExists.
inv H; inv H0; simpl; TrivialExists.
inv H; inv H0; simpl; TrivialExists.
inv H; inv H0; simpl; TrivialExists.
inv H; inv H0; simpl; TrivialExists.
inv H; inv H0; simpl; TrivialExists.
inv H; inv H0; simpl; TrivialExists.
inv H0; simpl in H; inv H. simpl. destruct (Float.intoffloat f0); simpl in *; inv H1. TrivialExists.
inv H0; simpl in H; inv H. simpl. destruct (Float.intuoffloat f0); simpl in *; inv H1. TrivialExists.
inv H0; simpl in H; inv H. simpl. TrivialExists.
inv H0; simpl in H; inv H. simpl. TrivialExists.
inv H; inv H0; simpl; TrivialExists.
inv H; inv H0; simpl; TrivialExists.
inv H; inv H0; simpl; TrivialExists.
inv H; inv H0; simpl; TrivialExists.
inv H; inv H0; simpl; TrivialExists.
inv H0; simpl in H; inv H. simpl. destruct (Float.longoffloat f0); simpl in *; inv H1. TrivialExists.
inv H0; simpl in H; inv H. simpl. destruct (Float.longuoffloat f0); simpl in *; inv H1. TrivialExists.
inv H0; simpl in H; inv H. simpl. TrivialExists.
inv H0; simpl in H; inv H. simpl. TrivialExists.
inv H0; simpl in H; inv H. simpl. TrivialExists.
inv H0; simpl in H; inv H. simpl. TrivialExists.
Qed.
(** Compatibility of [eval_binop] with respect to [val_inject]. *)
Lemma eval_binop_compat:
forall f op v1 tv1 v2 tv2 v m tm,
eval_binop op v1 v2 m = Some v ->
val_inject f v1 tv1 ->
val_inject f v2 tv2 ->
Mem.inject f m tm ->
exists tv,
eval_binop op tv1 tv2 tm = Some tv
/\ val_inject f v tv.
Proof.
destruct op; simpl; intros.
inv H; inv H0; inv H1; TrivialExists.
repeat rewrite Int.add_assoc. decEq. apply Int.add_commut.
repeat rewrite Int.add_assoc. decEq. apply Int.add_commut.
inv H; inv H0; inv H1; TrivialExists.
apply Int.sub_add_l.
simpl. destruct (eq_block b1 b0); auto.
subst b1. rewrite H in H0; inv H0.
rewrite dec_eq_true. rewrite Int.sub_shifted. auto.
inv H; inv H0; inv H1; TrivialExists.
inv H0; try discriminate; inv H1; try discriminate. simpl in *.
destruct (Int.eq i0 Int.zero
|| Int.eq i (Int.repr Int.min_signed) && Int.eq i0 Int.mone); inv H; TrivialExists.
inv H0; try discriminate; inv H1; try discriminate. simpl in *.
destruct (Int.eq i0 Int.zero); inv H. TrivialExists.
inv H0; try discriminate; inv H1; try discriminate. simpl in *.
destruct (Int.eq i0 Int.zero
|| Int.eq i (Int.repr Int.min_signed) && Int.eq i0 Int.mone); inv H; TrivialExists.
inv H0; try discriminate; inv H1; try discriminate. simpl in *.
destruct (Int.eq i0 Int.zero); inv H. TrivialExists.
inv H; inv H0; inv H1; TrivialExists.
inv H; inv H0; inv H1; TrivialExists.
inv H; inv H0; inv H1; TrivialExists.
inv H; inv H0; inv H1; TrivialExists. simpl. destruct (Int.ltu i0 Int.iwordsize); auto.
inv H; inv H0; inv H1; TrivialExists. simpl. destruct (Int.ltu i0 Int.iwordsize); auto.
inv H; inv H0; inv H1; TrivialExists. simpl. destruct (Int.ltu i0 Int.iwordsize); auto.
inv H; inv H0; inv H1; TrivialExists.
inv H; inv H0; inv H1; TrivialExists.
inv H; inv H0; inv H1; TrivialExists.
inv H; inv H0; inv H1; TrivialExists.
inv H; inv H0; inv H1; TrivialExists.
inv H; inv H0; inv H1; TrivialExists.
inv H; inv H0; inv H1; TrivialExists.
inv H0; try discriminate; inv H1; try discriminate. simpl in *.
destruct (Int64.eq i0 Int64.zero
|| Int64.eq i (Int64.repr Int64.min_signed) && Int64.eq i0 Int64.mone); inv H; TrivialExists.
inv H0; try discriminate; inv H1; try discriminate. simpl in *.
destruct (Int64.eq i0 Int64.zero); inv H. TrivialExists.
inv H0; try discriminate; inv H1; try discriminate. simpl in *.
destruct (Int64.eq i0 Int64.zero
|| Int64.eq i (Int64.repr Int64.min_signed) && Int64.eq i0 Int64.mone); inv H; TrivialExists.
inv H0; try discriminate; inv H1; try discriminate. simpl in *.
destruct (Int64.eq i0 Int64.zero); inv H. TrivialExists.
inv H; inv H0; inv H1; TrivialExists.
inv H; inv H0; inv H1; TrivialExists.
inv H; inv H0; inv H1; TrivialExists.
inv H; inv H0; inv H1; TrivialExists. simpl. destruct (Int.ltu i0 Int64.iwordsize'); auto.
inv H; inv H0; inv H1; TrivialExists. simpl. destruct (Int.ltu i0 Int64.iwordsize'); auto.
inv H; inv H0; inv H1; TrivialExists. simpl. destruct (Int.ltu i0 Int64.iwordsize'); auto.
inv H; inv H0; inv H1; TrivialExists. apply val_inject_val_of_optbool.
(* cmpu *)
inv H. econstructor; split; eauto.
unfold Val.cmpu.
destruct (Val.cmpu_bool (Mem.valid_pointer m) c v1 v2) as [b|] eqn:E.
replace (Val.cmpu_bool (Mem.valid_pointer tm) c tv1 tv2) with (Some b).
destruct b; simpl; constructor.
symmetry. eapply val_cmpu_bool_inject; eauto.
intros; eapply Mem.valid_pointer_inject_val; eauto.
intros; eapply Mem.weak_valid_pointer_inject_val; eauto.
intros; eapply Mem.weak_valid_pointer_inject_no_overflow; eauto.
intros; eapply Mem.different_pointers_inject; eauto.
simpl; auto.
(* cmpf *)
inv H; inv H0; inv H1; TrivialExists. apply val_inject_val_of_optbool.
(* cmpl *)
unfold Val.cmpl in *. inv H0; inv H1; simpl in H; inv H.
econstructor; split. simpl; eauto. apply val_inject_val_of_bool.
(* cmplu *)
unfold Val.cmplu in *. inv H0; inv H1; simpl in H; inv H.
econstructor; split. simpl; eauto. apply val_inject_val_of_bool.
Qed.
(** * Correctness of Cminor construction functions *)
Lemma make_stackaddr_correct:
forall sp te tm ofs,
eval_expr tge (Vptr sp Int.zero) te tm
(make_stackaddr ofs) (Vptr sp (Int.repr ofs)).
Proof.
intros; unfold make_stackaddr.
eapply eval_Econst. simpl. decEq. decEq.
rewrite Int.add_commut. apply Int.add_zero.
Qed.
Lemma make_globaladdr_correct:
forall sp te tm id b,
Genv.find_symbol tge id = Some b ->
eval_expr tge (Vptr sp Int.zero) te tm
(make_globaladdr id) (Vptr b Int.zero).
Proof.
intros; unfold make_globaladdr.
eapply eval_Econst. simpl. rewrite H. auto.
Qed.
(** Correctness of [make_store]. *)
Inductive val_lessdef_upto (m: int): val -> val -> Prop :=
| val_lessdef_upto_base:
forall v1 v2, Val.lessdef v1 v2 -> val_lessdef_upto m v1 v2
| val_lessdef_upto_int:
forall n1 n2, Int.and n1 m = Int.and n2 m -> val_lessdef_upto m (Vint n1) (Vint n2).
Hint Resolve val_lessdef_upto_base.
Remark val_lessdef_upto_and:
forall m v1 v2 p,
val_lessdef_upto m v1 v2 -> Int.and p m = m ->
val_lessdef_upto m (Val.and v1 (Vint p)) v2.
Proof.
intros. inversion H; clear H.
inversion H1. destruct v2; simpl; auto.
apply val_lessdef_upto_int. rewrite Int.and_assoc. congruence.
simpl. auto.
simpl. apply val_lessdef_upto_int. rewrite Int.and_assoc. congruence.
Qed.
Remark val_lessdef_upto_zero_ext:
forall m v1 v2 p,
val_lessdef_upto m v1 v2 -> Int.and (Int.repr (two_p p - 1)) m = m -> 0 < p < 32 ->
val_lessdef_upto m (Val.zero_ext p v1) v2.
Proof.
intros. inversion H; clear H.
inversion H2. destruct v2; simpl; auto.
apply val_lessdef_upto_int. rewrite Int.zero_ext_and; auto.
rewrite Int.and_assoc. rewrite H0. auto.
omega.
simpl; auto.
simpl. apply val_lessdef_upto_int. rewrite Int.zero_ext_and; auto.
rewrite Int.and_assoc. rewrite H0. auto. omega.
Qed.
Remark val_lessdef_upto_sign_ext:
forall m v1 v2 p,
val_lessdef_upto m v1 v2 -> Int.and (Int.repr (two_p p - 1)) m = m -> 0 < p < 32 ->
val_lessdef_upto m (Val.sign_ext p v1) v2.
Proof.
intros.
assert (A: forall x, Int.and (Int.sign_ext p x) m = Int.and x m).
intros. transitivity (Int.and (Int.zero_ext p (Int.sign_ext p x)) m).
rewrite Int.zero_ext_and; auto. rewrite Int.and_assoc. congruence. omega.
rewrite Int.zero_ext_sign_ext.
rewrite Int.zero_ext_and; auto. rewrite Int.and_assoc. congruence. omega. omega.
inversion H; clear H.
inversion H2. destruct v2; simpl; auto.
apply val_lessdef_upto_int. auto.
simpl; auto.
simpl. apply val_lessdef_upto_int. rewrite A. auto.
Qed.
Remark val_lessdef_upto_shru:
forall m v1 v2 p,
val_lessdef_upto (Int.shl m p) v1 v2 -> Int.shru (Int.shl m p) p = m ->
val_lessdef_upto m (Val.shru v1 (Vint p)) (Val.shru v2 (Vint p)).
Proof.
intros. inversion H; clear H.
inversion H1; simpl; auto.
simpl. destruct (Int.ltu p Int.iwordsize); auto. apply val_lessdef_upto_int.
rewrite <- H0. repeat rewrite Int.and_shru. congruence.
Qed.
Remark val_lessdef_upto_shr:
forall m v1 v2 p,
val_lessdef_upto (Int.shl m p) v1 v2 -> Int.shru (Int.shl m p) p = m ->
val_lessdef_upto m (Val.shr v1 (Vint p)) (Val.shr v2 (Vint p)).
Proof.
intros. inversion H; clear H.
inversion H1; simpl; auto.
simpl. destruct (Int.ltu p Int.iwordsize); auto. apply val_lessdef_upto_int.
repeat rewrite Int.shr_and_shru_and; auto.
rewrite <- H0. repeat rewrite Int.and_shru. congruence.
Qed.
Lemma eval_uncast_int:
forall m sp te tm a x,
eval_expr tge sp te tm a x ->
exists v, eval_expr tge sp te tm (uncast_int m a) v /\ val_lessdef_upto m x v.
Proof.
assert (EQ: forall p q, Int.eq p q = true -> p = q).
intros. generalize (Int.eq_spec p q). rewrite H; auto.
intros until a. functional induction (uncast_int m a); intros.
(* cast8unsigned *)
inv H. simpl in H4; inv H4. exploit IHe; eauto. intros [v [A B]].
exists v; split; auto. apply val_lessdef_upto_zero_ext; auto.
compute; auto.
exists x; auto.
(* cast8signed *)
inv H. simpl in H4; inv H4. exploit IHe; eauto. intros [v [A B]].
exists v; split; auto. apply val_lessdef_upto_sign_ext; auto.
compute; auto.
exists x; auto.
(* cast16unsigned *)
inv H. simpl in H4; inv H4. exploit IHe; eauto. intros [v [A B]].
exists v; split; auto. apply val_lessdef_upto_zero_ext; auto.
compute; auto.
exists x; auto.
(* cast16signed *)
inv H. simpl in H4; inv H4. exploit IHe; eauto. intros [v [A B]].
exists v; split; auto. apply val_lessdef_upto_sign_ext; auto.
compute; auto.
exists x; auto.
(* and *)
inv H. simpl in H6; inv H6. inv H5. simpl in H0. inv H0.
exploit IHe; eauto. intros [v [A B]].
exists v; split; auto. apply val_lessdef_upto_and; auto.
exists x; auto.
(* shru *)
inv H. simpl in H6; inv H6. inv H5. simpl in H0. inv H0.
exploit IHe; eauto. intros [v [A B]].
exists (Val.shru v (Vint n)); split.
econstructor. eauto. econstructor. simpl; reflexivity. auto.
apply val_lessdef_upto_shru; auto.
exists x; auto.
(* shr *)
inv H. simpl in H6; inv H6. inv H5. simpl in H0. inv H0.
exploit IHe; eauto. intros [v [A B]].
exists (Val.shr v (Vint n)); split.
econstructor. eauto. econstructor. simpl; reflexivity. auto.
apply val_lessdef_upto_shr; auto.
exists x; auto.
(* default *)
exists x; split; auto.
Qed.
Inductive val_lessdef_upto_single: val -> val -> Prop :=
| val_lessdef_upto_single_base:
forall v1 v2, Val.lessdef v1 v2 -> val_lessdef_upto_single v1 v2
| val_lessdef_upto_single_float:
forall n1 n2, Float.singleoffloat n1 = Float.singleoffloat n2 -> val_lessdef_upto_single (Vfloat n1) (Vfloat n2).
Hint Resolve val_lessdef_upto_single_base.
Lemma eval_uncast_float32:
forall sp te tm a x,
eval_expr tge sp te tm a x ->
exists v, eval_expr tge sp te tm (uncast_float32 a) v /\ val_lessdef_upto_single x v.
Proof.
intros until a. functional induction (uncast_float32 a); intros.
(* singleoffloat *)
inv H. simpl in H4; inv H4. exploit IHe; eauto. intros [v [A B]].
exists v; split; auto.
inv B. inv H. destruct v; simpl; auto.
apply val_lessdef_upto_single_float. apply Float.singleoffloat_idem.
simpl; auto.
apply val_lessdef_upto_single_float. rewrite H. apply Float.singleoffloat_idem.
(* default *)
exists x; auto.
Qed.
Inductive val_content_inject (f: meminj): memory_chunk -> val -> val -> Prop :=
| val_content_inject_8_signed:
forall n1 n2, Int.sign_ext 8 n1 = Int.sign_ext 8 n2 ->
val_content_inject f Mint8signed (Vint n1) (Vint n2)
| val_content_inject_8_unsigned:
forall n1 n2, Int.zero_ext 8 n1 = Int.zero_ext 8 n2 ->
val_content_inject f Mint8unsigned (Vint n1) (Vint n2)
| val_content_inject_16_signed:
forall n1 n2, Int.sign_ext 16 n1 = Int.sign_ext 16 n2 ->
val_content_inject f Mint16signed (Vint n1) (Vint n2)
| val_content_inject_16_unsigned:
forall n1 n2, Int.zero_ext 16 n1 = Int.zero_ext 16 n2 ->
val_content_inject f Mint16unsigned (Vint n1) (Vint n2)
| val_content_inject_single:
forall n1 n2, Float.singleoffloat n1 = Float.singleoffloat n2 ->
val_content_inject f Mfloat32 (Vfloat n1) (Vfloat n2)
| val_content_inject_base:
forall chunk v1 v2, val_inject f v1 v2 ->
val_content_inject f chunk v1 v2.
Hint Resolve val_content_inject_base.
Lemma eval_store_arg:
forall f sp te tm a v va chunk,
eval_expr tge sp te tm a va ->
val_inject f v va ->
exists vb,
eval_expr tge sp te tm (store_arg chunk a) vb
/\ val_content_inject f chunk v vb.
Proof.
intros.
assert (DFL: forall v', Val.lessdef va v' -> val_content_inject f chunk v v').
intros. apply val_content_inject_base. inv H1. auto. inv H0. auto.
destruct chunk; simpl.
(* int8signed *)
exploit (eval_uncast_int (Int.repr 255)); eauto. intros [v' [A B]].
exists v'; split; auto.
inv B; auto. inv H0; auto. constructor.
apply Int.sign_ext_equal_if_zero_equal; auto. omega.
repeat rewrite Int.zero_ext_and; auto. omega. omega.
(* int8unsigned *)
exploit (eval_uncast_int (Int.repr 255)); eauto. intros [v' [A B]].
exists v'; split; auto.
inv B; auto. inv H0; auto. constructor.
repeat rewrite Int.zero_ext_and; auto. omega. omega.
(* int16signed *)
exploit (eval_uncast_int (Int.repr 65535)); eauto. intros [v' [A B]].
exists v'; split; auto.
inv B; auto. inv H0; auto. constructor.
apply Int.sign_ext_equal_if_zero_equal; auto. omega.
repeat rewrite Int.zero_ext_and; auto. omega. omega.
(* int16unsigned *)
exploit (eval_uncast_int (Int.repr 65535)); eauto. intros [v' [A B]].
exists v'; split; auto.
inv B; auto. inv H0; auto. constructor.
repeat rewrite Int.zero_ext_and; auto. omega. omega.
(* int32 *)
exists va; auto.
(* int64 *)
exists va; auto.
(* float32 *)
exploit eval_uncast_float32; eauto. intros [v' [A B]].
exists v'; split; auto.
inv B; auto. inv H0; auto. constructor. auto.
(* float64 *)
exists va; auto.
(* float64al32 *)
exists va; auto.
Qed.
Lemma storev_mapped_content_inject:
forall f chunk m1 a1 v1 n1 m2 a2 v2,
Mem.inject f m1 m2 ->
Mem.storev chunk m1 a1 v1 = Some n1 ->
val_inject f a1 a2 ->
val_content_inject f chunk v1 v2 ->
exists n2,
Mem.storev chunk m2 a2 v2 = Some n2 /\ Mem.inject f n1 n2.
Proof.
intros.
assert (forall v1',
(forall b ofs, Mem.store chunk m1 b ofs v1 = Mem.store chunk m1 b ofs v1') ->
Mem.storev chunk m1 a1 v1' = Some n1).
intros. rewrite <- H0. destruct a1; simpl; auto.
inv H2; eapply Mem.storev_mapped_inject;
try eapply H; try eapply H1; try apply H3; intros.
rewrite <- Mem.store_int8_sign_ext. rewrite H4. apply Mem.store_int8_sign_ext.
auto.
rewrite <- Mem.store_int8_zero_ext. rewrite H4. apply Mem.store_int8_zero_ext.
auto.
rewrite <- Mem.store_int16_sign_ext. rewrite H4. apply Mem.store_int16_sign_ext.
auto.
rewrite <- Mem.store_int16_zero_ext. rewrite H4. apply Mem.store_int16_zero_ext.
auto.
rewrite <- Mem.store_float32_truncate. rewrite H4. apply Mem.store_float32_truncate.
auto.
eauto.
auto.
Qed.
Lemma make_store_correct:
forall f sp te tm addr tvaddr rhs tvrhs chunk m vaddr vrhs m' fn k,
eval_expr tge sp te tm addr tvaddr ->
eval_expr tge sp te tm rhs tvrhs ->
Mem.storev chunk m vaddr vrhs = Some m' ->
Mem.inject f m tm ->
val_inject f vaddr tvaddr ->
val_inject f vrhs tvrhs ->
exists tm', exists tvrhs',
step tge (State fn (make_store chunk addr rhs) k sp te tm)
E0 (State fn Sskip k sp te tm')
/\ Mem.storev chunk tm tvaddr tvrhs' = Some tm'
/\ Mem.inject f m' tm'.
Proof.
intros. unfold make_store.
exploit eval_store_arg. eexact H0. eauto.
intros [tv [EVAL VCINJ]].
exploit storev_mapped_content_inject; eauto.
intros [tm' [STORE MEMINJ]].
exists tm'; exists tv.
split. eapply step_store; eauto.
auto.
Qed.
(** Correctness of [make_unop]. *)
Lemma eval_make_unop:
forall sp te tm a v op v',
eval_expr tge sp te tm a v ->
eval_unop op v = Some v' ->
exists v'', eval_expr tge sp te tm (make_unop op a) v'' /\ Val.lessdef v' v''.
Proof.
intros; unfold make_unop.
assert (DFL: exists v'', eval_expr tge sp te tm (Eunop op a) v'' /\ Val.lessdef v' v'').
exists v'; split. econstructor; eauto. auto.
destruct op; auto; simpl in H0; inv H0.
(* cast8unsigned *)
exploit (eval_uncast_int (Int.repr 255)); eauto. intros [v1 [A B]].
exists (Val.zero_ext 8 v1); split. econstructor; eauto.
inv B. apply Val.zero_ext_lessdef; auto. simpl.
repeat rewrite Int.zero_ext_and; auto.
change (two_p 8 - 1) with 255. rewrite H0. auto.
omega. omega.
(* cast8signed *)
exploit (eval_uncast_int (Int.repr 255)); eauto. intros [v1 [A B]].
exists (Val.sign_ext 8 v1); split. econstructor; eauto.
inv B. apply Val.sign_ext_lessdef; auto. simpl.
replace (Int.sign_ext 8 n2) with (Int.sign_ext 8 n1). auto.
apply Int.sign_ext_equal_if_zero_equal; auto. omega.
repeat rewrite Int.zero_ext_and; auto. omega. omega.
(* cast16unsigned *)
exploit (eval_uncast_int (Int.repr 65535)); eauto. intros [v1 [A B]].
exists (Val.zero_ext 16 v1); split. econstructor; eauto.
inv B. apply Val.zero_ext_lessdef; auto. simpl.
repeat rewrite Int.zero_ext_and; auto.
change (two_p 16 - 1) with 65535. rewrite H0. auto.
omega. omega.
(* cast16signed *)
exploit (eval_uncast_int (Int.repr 65535)); eauto. intros [v1 [A B]].
exists (Val.sign_ext 16 v1); split. econstructor; eauto.
inv B. apply Val.sign_ext_lessdef; auto. simpl.
replace (Int.sign_ext 16 n2) with (Int.sign_ext 16 n1). auto.
apply Int.sign_ext_equal_if_zero_equal; auto. omega.
repeat rewrite Int.zero_ext_and; auto. omega. omega.
(* singleoffloat *)
exploit eval_uncast_float32; eauto. intros [v1 [A B]].
exists (Val.singleoffloat v1); split. econstructor; eauto.
inv B. apply Val.singleoffloat_lessdef; auto. simpl. rewrite H0; auto.
Qed.
Lemma make_unop_correct:
forall f sp te tm a v op v' tv,
eval_expr tge sp te tm a tv ->
eval_unop op v = Some v' ->
val_inject f v tv ->
exists tv', eval_expr tge sp te tm (make_unop op a) tv' /\ val_inject f v' tv'.
Proof.
intros. exploit eval_unop_compat; eauto. intros [tv' [A B]].
exploit eval_make_unop; eauto. intros [tv'' [C D]].
exists tv''; split; auto.
inv D. auto. inv B. auto.
Qed.
(** Correctness of the variable accessor [var_addr] *)
Lemma var_addr_correct:
forall cenv id f tf e le te sp lo hi m cs tm b,
match_callstack f m tm (Frame cenv tf e le te sp lo hi :: cs) (Mem.nextblock m) (Mem.nextblock tm) ->
eval_var_addr ge e id b ->
exists tv,
eval_expr tge (Vptr sp Int.zero) te tm (var_addr cenv id) tv
/\ val_inject f (Vptr b Int.zero) tv.
Proof.
unfold var_addr; intros.
assert (match_var f sp e!id cenv!id).
inv H. inv MENV. auto.
inv H1; inv H0; try congruence.
(* local *)
exists (Vptr sp (Int.repr ofs)); split.
eapply make_stackaddr_correct.
congruence.
(* global *)
exploit match_callstack_match_globalenvs; eauto. intros [bnd MG]. inv MG.
exists (Vptr b Int.zero); split.
eapply make_globaladdr_correct; eauto. rewrite symbols_preserved; auto.
econstructor; eauto.
Qed.
(** * Semantic preservation for the translation *)
(** The proof of semantic preservation uses simulation diagrams of the
following form:
<<
e, m1, s ----------------- sp, te1, tm1, ts
| |
t| |t
v v
e, m2, out --------------- sp, te2, tm2, tout
>>
where [ts] is the Cminor statement obtained by translating the
C#minor statement [s]. The left vertical arrow is an execution
of a C#minor statement. The right vertical arrow is an execution
of a Cminor statement. The precondition (top vertical bar)
includes a [mem_inject] relation between the memory states [m1] and [tm1],
and a [match_callstack] relation for any callstack having
[e], [te1], [sp] as top frame. The postcondition (bottom vertical bar)
is the existence of a memory injection [f2] that extends the injection
[f1] we started with, preserves the [match_callstack] relation for
the transformed callstack at the final state, and validates a
[outcome_inject] relation between the outcomes [out] and [tout].
*)
(** ** Semantic preservation for expressions *)
Remark bool_of_val_inject:
forall f v tv b,
Val.bool_of_val v b -> val_inject f v tv -> Val.bool_of_val tv b.
Proof.
intros. inv H0; inv H; constructor; auto.
Qed.
Lemma transl_constant_correct:
forall f sp cst v,
Csharpminor.eval_constant cst = Some v ->
let (tcst, a) := transl_constant cst in
exists tv,
eval_constant tge sp tcst = Some tv
/\ val_inject f v tv
/\ val_match_approx a v.
Proof.
destruct cst; simpl; intros; inv H.
exists (Vint i); intuition. apply approx_of_int_sound.
exists (Vfloat f0); intuition. apply approx_of_float_sound.
exists (Vlong i); intuition.
Qed.
Lemma transl_expr_correct:
forall f m tm cenv tf e le te sp lo hi cs
(MINJ: Mem.inject f m tm)
(MATCH: match_callstack f m tm
(Frame cenv tf e le te sp lo hi :: cs)
(Mem.nextblock m) (Mem.nextblock tm)),
forall a v,
Csharpminor.eval_expr ge e le m a v ->
forall ta app
(TR: transl_expr cenv a = OK (ta, app)),
exists tv,
eval_expr tge (Vptr sp Int.zero) te tm ta tv
/\ val_inject f v tv
/\ val_match_approx app v.
Proof.
induction 3; intros; simpl in TR; try (monadInv TR).
(* Etempvar *)
inv MATCH. exploit MTMP; eauto. intros [tv [A B]].
exists tv; split. constructor; auto. split. auto. exact I.
(* Eaddrof *)
exploit var_addr_correct; eauto. intros [tv [A B]].
exists tv; split. auto. split. auto. red. auto.
(* Econst *)
exploit transl_constant_correct; eauto.
destruct (transl_constant cst) as [tcst a]; inv TR.
intros [tv [A [B C]]].
exists tv; split. constructor; eauto. eauto.
(* Eunop *)
exploit IHeval_expr; eauto. intros [tv1 [EVAL1 [INJ1 APP1]]].
unfold Csharpminor.eval_unop in H0.
destruct (Approx.unop_is_redundant op x0) eqn:?; inv EQ0.
(* -- eliminated *)
exploit approx_unop_is_redundant_sound; eauto. intros.
replace v with v1 by congruence.
exists tv1; auto.
(* -- preserved *)
exploit make_unop_correct; eauto. intros [tv [A B]].
exists tv; split. auto. split. auto. eapply approx_of_unop_sound; eauto.
(* Ebinop *)
exploit IHeval_expr1; eauto. intros [tv1 [EVAL1 [INJ1 APP1]]].
exploit IHeval_expr2; eauto. intros [tv2 [EVAL2 [INJ2 APP2]]].
exploit eval_binop_compat; eauto. intros [tv [EVAL INJ]].
exists tv; split. econstructor; eauto. split. auto. eapply approx_of_binop_sound; eauto.
(* Eload *)
exploit IHeval_expr; eauto. intros [tv1 [EVAL1 [INJ1 APP1]]].
exploit Mem.loadv_inject; eauto. intros [tv [LOAD INJ]].
exists tv; split. econstructor; eauto. split. auto.
destruct v1; simpl in H0; try discriminate. eapply approx_of_chunk_sound; eauto.
Qed.
Lemma transl_exprlist_correct:
forall f m tm cenv tf e le te sp lo hi cs
(MINJ: Mem.inject f m tm)
(MATCH: match_callstack f m tm
(Frame cenv tf e le te sp lo hi :: cs)
(Mem.nextblock m) (Mem.nextblock tm)),
forall a v,
Csharpminor.eval_exprlist ge e le m a v ->
forall ta
(TR: transl_exprlist cenv a = OK ta),
exists tv,
eval_exprlist tge (Vptr sp Int.zero) te tm ta tv
/\ val_list_inject f v tv.
Proof.
induction 3; intros; monadInv TR.
exists (@nil val); split. constructor. constructor.
exploit transl_expr_correct; eauto. intros [tv1 [EVAL1 [VINJ1 APP1]]].
exploit IHeval_exprlist; eauto. intros [tv2 [EVAL2 VINJ2]].
exists (tv1 :: tv2); split. constructor; auto. constructor; auto.
Qed.
(** ** Semantic preservation for statements and functions *)
Inductive match_cont: Csharpminor.cont -> Cminor.cont -> compilenv -> exit_env -> callstack -> Prop :=
| match_Kstop: forall cenv xenv,
match_cont Csharpminor.Kstop Kstop cenv xenv nil
| match_Kseq: forall s k ts tk cenv xenv cs,
transl_stmt cenv xenv s = OK ts ->
match_cont k tk cenv xenv cs ->
match_cont (Csharpminor.Kseq s k) (Kseq ts tk) cenv xenv cs
| match_Kseq2: forall s1 s2 k ts1 tk cenv xenv cs,
transl_stmt cenv xenv s1 = OK ts1 ->
match_cont (Csharpminor.Kseq s2 k) tk cenv xenv cs ->
match_cont (Csharpminor.Kseq (Csharpminor.Sseq s1 s2) k)
(Kseq ts1 tk) cenv xenv cs
| match_Kblock: forall k tk cenv xenv cs,
match_cont k tk cenv xenv cs ->
match_cont (Csharpminor.Kblock k) (Kblock tk) cenv (true :: xenv) cs
| match_Kblock2: forall k tk cenv xenv cs,
match_cont k tk cenv xenv cs ->
match_cont k (Kblock tk) cenv (false :: xenv) cs
| match_Kcall: forall optid fn e le k tfn sp te tk cenv xenv lo hi cs sz cenv',
transl_funbody cenv sz fn = OK tfn ->
match_cont k tk cenv xenv cs ->
match_cont (Csharpminor.Kcall optid fn e le k)
(Kcall optid tfn (Vptr sp Int.zero) te tk)
cenv' nil
(Frame cenv tfn e le te sp lo hi :: cs).
Inductive match_states: Csharpminor.state -> Cminor.state -> Prop :=
| match_state:
forall fn s k e le m tfn ts tk sp te tm cenv xenv f lo hi cs sz
(TRF: transl_funbody cenv sz fn = OK tfn)
(TR: transl_stmt cenv xenv s = OK ts)
(MINJ: Mem.inject f m tm)
(MCS: match_callstack f m tm
(Frame cenv tfn e le te sp lo hi :: cs)
(Mem.nextblock m) (Mem.nextblock tm))
(MK: match_cont k tk cenv xenv cs),
match_states (Csharpminor.State fn s k e le m)
(State tfn ts tk (Vptr sp Int.zero) te tm)
| match_state_seq:
forall fn s1 s2 k e le m tfn ts1 tk sp te tm cenv xenv f lo hi cs sz
(TRF: transl_funbody cenv sz fn = OK tfn)
(TR: transl_stmt cenv xenv s1 = OK ts1)
(MINJ: Mem.inject f m tm)
(MCS: match_callstack f m tm
(Frame cenv tfn e le te sp lo hi :: cs)
(Mem.nextblock m) (Mem.nextblock tm))
(MK: match_cont (Csharpminor.Kseq s2 k) tk cenv xenv cs),
match_states (Csharpminor.State fn (Csharpminor.Sseq s1 s2) k e le m)
(State tfn ts1 tk (Vptr sp Int.zero) te tm)
| match_callstate:
forall fd args k m tfd targs tk tm f cs cenv
(TR: transl_fundef fd = OK tfd)
(MINJ: Mem.inject f m tm)
(MCS: match_callstack f m tm cs (Mem.nextblock m) (Mem.nextblock tm))
(MK: match_cont k tk cenv nil cs)
(ISCC: Csharpminor.is_call_cont k)
(ARGSINJ: val_list_inject f args targs),
match_states (Csharpminor.Callstate fd args k m)
(Callstate tfd targs tk tm)
| match_returnstate:
forall v k m tv tk tm f cs cenv
(MINJ: Mem.inject f m tm)
(MCS: match_callstack f m tm cs (Mem.nextblock m) (Mem.nextblock tm))
(MK: match_cont k tk cenv nil cs)
(RESINJ: val_inject f v tv),
match_states (Csharpminor.Returnstate v k m)
(Returnstate tv tk tm).
Remark val_inject_function_pointer:
forall bound v fd f tv,
Genv.find_funct ge v = Some fd ->
match_globalenvs f bound ->
val_inject f v tv ->
tv = v.
Proof.
intros. exploit Genv.find_funct_inv; eauto. intros [b EQ]. subst v.
rewrite Genv.find_funct_find_funct_ptr in H.
assert (f b = Some(b, 0)). inv H0. apply DOMAIN. eapply FUNCTIONS; eauto.
inv H1. rewrite H2 in H5; inv H5. reflexivity.
Qed.
Lemma match_call_cont:
forall k tk cenv xenv cs,
match_cont k tk cenv xenv cs ->
match_cont (Csharpminor.call_cont k) (call_cont tk) cenv nil cs.
Proof.
induction 1; simpl; auto; econstructor; eauto.
Qed.
Lemma match_is_call_cont:
forall tfn te sp tm k tk cenv xenv cs,
match_cont k tk cenv xenv cs ->
Csharpminor.is_call_cont k ->
exists tk',
star step tge (State tfn Sskip tk sp te tm)
E0 (State tfn Sskip tk' sp te tm)
/\ is_call_cont tk'
/\ match_cont k tk' cenv nil cs.
Proof.
induction 1; simpl; intros; try contradiction.
econstructor; split. apply star_refl. split. exact I. econstructor; eauto.
exploit IHmatch_cont; eauto.
intros [tk' [A B]]. exists tk'; split.
eapply star_left; eauto. constructor. traceEq. auto.
econstructor; split. apply star_refl. split. exact I. econstructor; eauto.
Qed.
(** Properties of [switch] compilation *)
Remark switch_table_shift:
forall n sl base dfl,
switch_target n (S dfl) (switch_table sl (S base)) =
S (switch_target n dfl (switch_table sl base)).
Proof.
induction sl; intros; simpl. auto. destruct (Int.eq n i); auto.
Qed.
Remark length_switch_table:
forall sl base1 base2,
length (switch_table sl base1) = length (switch_table sl base2).
Proof.
induction sl; intros; simpl. auto. decEq; auto.
Qed.
Inductive transl_lblstmt_cont(cenv: compilenv) (xenv: exit_env): lbl_stmt -> cont -> cont -> Prop :=
| tlsc_default: forall s k ts,
transl_stmt cenv (switch_env (LSdefault s) xenv) s = OK ts ->
transl_lblstmt_cont cenv xenv (LSdefault s) k (Kblock (Kseq ts k))
| tlsc_case: forall i s ls k ts k',
transl_stmt cenv (switch_env (LScase i s ls) xenv) s = OK ts ->
transl_lblstmt_cont cenv xenv ls k k' ->
transl_lblstmt_cont cenv xenv (LScase i s ls) k (Kblock (Kseq ts k')).
Lemma switch_descent:
forall cenv xenv k ls body s,
transl_lblstmt cenv (switch_env ls xenv) ls body = OK s ->
exists k',
transl_lblstmt_cont cenv xenv ls k k'
/\ (forall f sp e m,
plus step tge (State f s k sp e m) E0 (State f body k' sp e m)).
Proof.
induction ls; intros.
monadInv H. econstructor; split.
econstructor; eauto.
intros. eapply plus_left. constructor. apply star_one. constructor. traceEq.
monadInv H. exploit IHls; eauto. intros [k' [A B]].
econstructor; split.
econstructor; eauto.
intros. eapply plus_star_trans. eauto.
eapply star_left. constructor. apply star_one. constructor.
reflexivity. traceEq.
Qed.
Lemma switch_ascent:
forall f n sp e m cenv xenv k ls k1,
let tbl := switch_table ls O in
let ls' := select_switch n ls in
transl_lblstmt_cont cenv xenv ls k k1 ->
exists k2,
star step tge (State f (Sexit (switch_target n (length tbl) tbl)) k1 sp e m)
E0 (State f (Sexit O) k2 sp e m)
/\ transl_lblstmt_cont cenv xenv ls' k k2.
Proof.
induction ls; intros; unfold tbl, ls'; simpl.
inv H. econstructor; split. apply star_refl. econstructor; eauto.
simpl in H. inv H.
rewrite Int.eq_sym. destruct (Int.eq i n).
econstructor; split. apply star_refl. econstructor; eauto.
exploit IHls; eauto. intros [k2 [A B]].
rewrite (length_switch_table ls 1%nat 0%nat).
rewrite switch_table_shift.
econstructor; split.
eapply star_left. constructor. eapply star_left. constructor. eexact A.
reflexivity. traceEq.
exact B.
Qed.
Lemma switch_match_cont:
forall cenv xenv k cs tk ls tk',
match_cont k tk cenv xenv cs ->
transl_lblstmt_cont cenv xenv ls tk tk' ->
match_cont (Csharpminor.Kseq (seq_of_lbl_stmt ls) k) tk' cenv (false :: switch_env ls xenv) cs.
Proof.
induction ls; intros; simpl.
inv H0. apply match_Kblock2. econstructor; eauto.
inv H0. apply match_Kblock2. eapply match_Kseq2. auto. eauto.
Qed.
Lemma transl_lblstmt_suffix:
forall n cenv xenv ls body ts,
transl_lblstmt cenv (switch_env ls xenv) ls body = OK ts ->
let ls' := select_switch n ls in
exists body', exists ts',
transl_lblstmt cenv (switch_env ls' xenv) ls' body' = OK ts'.
Proof.
induction ls; simpl; intros.
monadInv H.
exists body; econstructor. rewrite EQ; eauto. simpl. reflexivity.
monadInv H.
destruct (Int.eq i n).
exists body; econstructor. simpl. rewrite EQ; simpl. rewrite EQ0; simpl. reflexivity.
eauto.
Qed.
Lemma switch_match_states:
forall fn k e le m tfn ts tk sp te tm cenv xenv f lo hi cs sz ls body tk'
(TRF: transl_funbody cenv sz fn = OK tfn)
(TR: transl_lblstmt cenv (switch_env ls xenv) ls body = OK ts)
(MINJ: Mem.inject f m tm)
(MCS: match_callstack f m tm
(Frame cenv tfn e le te sp lo hi :: cs)
(Mem.nextblock m) (Mem.nextblock tm))
(MK: match_cont k tk cenv xenv cs)
(TK: transl_lblstmt_cont cenv xenv ls tk tk'),
exists S,
plus step tge (State tfn (Sexit O) tk' (Vptr sp Int.zero) te tm) E0 S
/\ match_states (Csharpminor.State fn (seq_of_lbl_stmt ls) k e le m) S.
Proof.
intros. destruct ls; simpl.
inv TK. econstructor; split.
eapply plus_left. constructor. apply star_one. constructor. traceEq.
eapply match_state; eauto.
inv TK. econstructor; split.
eapply plus_left. constructor. apply star_one. constructor. traceEq.
eapply match_state_seq; eauto.
simpl. eapply switch_match_cont; eauto.
Qed.
(** Commutation between [find_label] and compilation *)
Section FIND_LABEL.
Variable lbl: label.
Variable cenv: compilenv.
Variable cs: callstack.
Lemma transl_lblstmt_find_label_context:
forall xenv ls body ts tk1 tk2 ts' tk',
transl_lblstmt cenv (switch_env ls xenv) ls body = OK ts ->
transl_lblstmt_cont cenv xenv ls tk1 tk2 ->
find_label lbl body tk2 = Some (ts', tk') ->
find_label lbl ts tk1 = Some (ts', tk').
Proof.
induction ls; intros.
monadInv H. inv H0. simpl. simpl in H2. replace x with ts by congruence. rewrite H1. auto.
monadInv H. inv H0.
eapply IHls. eauto. eauto. simpl in H6. replace x with ts0 by congruence. simpl.
rewrite H1. auto.
Qed.
Lemma transl_find_label:
forall s k xenv ts tk,
transl_stmt cenv xenv s = OK ts ->
match_cont k tk cenv xenv cs ->
match Csharpminor.find_label lbl s k with
| None => find_label lbl ts tk = None
| Some(s', k') =>
exists ts', exists tk', exists xenv',
find_label lbl ts tk = Some(ts', tk')
/\ transl_stmt cenv xenv' s' = OK ts'
/\ match_cont k' tk' cenv xenv' cs
end
with transl_lblstmt_find_label:
forall ls xenv body k ts tk tk1,
transl_lblstmt cenv (switch_env ls xenv) ls body = OK ts ->
match_cont k tk cenv xenv cs ->
transl_lblstmt_cont cenv xenv ls tk tk1 ->
find_label lbl body tk1 = None ->
match Csharpminor.find_label_ls lbl ls k with
| None => find_label lbl ts tk = None
| Some(s', k') =>
exists ts', exists tk', exists xenv',
find_label lbl ts tk = Some(ts', tk')
/\ transl_stmt cenv xenv' s' = OK ts'
/\ match_cont k' tk' cenv xenv' cs
end.
Proof.
intros. destruct s; try (monadInv H); simpl; auto.
(* seq *)
exploit (transl_find_label s1). eauto. eapply match_Kseq. eexact EQ1. eauto.
destruct (Csharpminor.find_label lbl s1 (Csharpminor.Kseq s2 k)) as [[s' k'] | ].
intros [ts' [tk' [xenv' [A [B C]]]]].
exists ts'; exists tk'; exists xenv'. intuition. rewrite A; auto.
intro. rewrite H. apply transl_find_label with xenv; auto.
(* ifthenelse *)
exploit (transl_find_label s1). eauto. eauto.
destruct (Csharpminor.find_label lbl s1 k) as [[s' k'] | ].
intros [ts' [tk' [xenv' [A [B C]]]]].
exists ts'; exists tk'; exists xenv'. intuition. rewrite A; auto.
intro. rewrite H. apply transl_find_label with xenv; auto.
(* loop *)
apply transl_find_label with xenv. auto. econstructor; eauto. simpl. rewrite EQ; auto.
(* block *)
apply transl_find_label with (true :: xenv). auto. constructor; auto.
(* switch *)
exploit switch_descent; eauto. intros [k' [A B]].
eapply transl_lblstmt_find_label. eauto. eauto. eauto. reflexivity.
(* return *)
destruct o; monadInv H; auto.
(* label *)
destruct (ident_eq lbl l).
exists x; exists tk; exists xenv; auto.
apply transl_find_label with xenv; auto.
intros. destruct ls; monadInv H; simpl.
(* default *)
inv H1. simpl in H3. replace x with ts by congruence. rewrite H2.
eapply transl_find_label; eauto.
(* case *)
inv H1. simpl in H7.
exploit (transl_find_label s). eauto. eapply switch_match_cont; eauto.
destruct (Csharpminor.find_label lbl s (Csharpminor.Kseq (seq_of_lbl_stmt ls) k)) as [[s' k''] | ].
intros [ts' [tk' [xenv' [A [B C]]]]].
exists ts'; exists tk'; exists xenv'; intuition.
eapply transl_lblstmt_find_label_context; eauto.
simpl. replace x with ts0 by congruence. rewrite H2. auto.
intro.
eapply transl_lblstmt_find_label. eauto. auto. eauto.
simpl. replace x with ts0 by congruence. rewrite H2. auto.
Qed.
End FIND_LABEL.
Lemma transl_find_label_body:
forall cenv xenv size f tf k tk cs lbl s' k',
transl_funbody cenv size f = OK tf ->
match_cont k tk cenv xenv cs ->
Csharpminor.find_label lbl f.(Csharpminor.fn_body) (Csharpminor.call_cont k) = Some (s', k') ->
exists ts', exists tk', exists xenv',
find_label lbl tf.(fn_body) (call_cont tk) = Some(ts', tk')
/\ transl_stmt cenv xenv' s' = OK ts'
/\ match_cont k' tk' cenv xenv' cs.
Proof.
intros. monadInv H. simpl.
exploit transl_find_label. eexact EQ. eapply match_call_cont. eexact H0.
instantiate (1 := lbl). rewrite H1. auto.
Qed.
(** The simulation diagram. *)
Fixpoint seq_left_depth (s: Csharpminor.stmt) : nat :=
match s with
| Csharpminor.Sseq s1 s2 => S (seq_left_depth s1)
| _ => O
end.
Definition measure (S: Csharpminor.state) : nat :=
match S with
| Csharpminor.State fn s k e le m => seq_left_depth s
| _ => O
end.
Lemma transl_step_correct:
forall S1 t S2, Csharpminor.step ge S1 t S2 ->
forall T1, match_states S1 T1 ->
(exists T2, plus step tge T1 t T2 /\ match_states S2 T2)
\/ (measure S2 < measure S1 /\ t = E0 /\ match_states S2 T1)%nat.
Proof.
induction 1; intros T1 MSTATE; inv MSTATE.
(* skip seq *)
monadInv TR. left.
dependent induction MK.
econstructor; split.
apply plus_one. constructor.
econstructor; eauto.
econstructor; split.
apply plus_one. constructor.
eapply match_state_seq; eauto.
exploit IHMK; eauto. intros [T2 [A B]].
exists T2; split. eapply plus_left. constructor. apply plus_star; eauto. traceEq.
auto.
(* skip block *)
monadInv TR. left.
dependent induction MK.
econstructor; split.
apply plus_one. constructor.
econstructor; eauto.
exploit IHMK; eauto. intros [T2 [A B]].
exists T2; split. eapply plus_left. constructor. apply plus_star; eauto. traceEq.
auto.
(* skip call *)
monadInv TR. left.
exploit match_is_call_cont; eauto. intros [tk' [A [B C]]].
exploit match_callstack_freelist; eauto. intros [tm' [P [Q R]]].
econstructor; split.
eapply plus_right. eexact A. apply step_skip_call. auto. eauto. traceEq.
econstructor; eauto.
(* set *)
monadInv TR.
exploit transl_expr_correct; eauto. intros [tv [EVAL [VINJ APP]]].
left; econstructor; split.
apply plus_one. econstructor; eauto.
econstructor; eauto.
eapply match_callstack_set_temp; eauto.
(* store *)
monadInv TR.
exploit transl_expr_correct. eauto. eauto. eexact H. eauto.
intros [tv1 [EVAL1 [VINJ1 APP1]]].
exploit transl_expr_correct. eauto. eauto. eexact H0. eauto.
intros [tv2 [EVAL2 [VINJ2 APP2]]].
exploit make_store_correct. eexact EVAL1. eexact EVAL2. eauto. eauto. auto. auto.
intros [tm' [tv' [EXEC [STORE' MINJ']]]].
left; econstructor; split.
apply plus_one. eexact EXEC.
econstructor; eauto.
inv VINJ1; simpl in H1; try discriminate. unfold Mem.storev in STORE'.
rewrite (Mem.nextblock_store _ _ _ _ _ _ H1).
rewrite (Mem.nextblock_store _ _ _ _ _ _ STORE').
eapply match_callstack_invariant with f0 m tm; eauto.
intros. eapply Mem.perm_store_2; eauto.
intros. eapply Mem.perm_store_1; eauto.
(* call *)
simpl in H1. exploit functions_translated; eauto. intros [tfd [FIND TRANS]].
monadInv TR.
exploit transl_expr_correct; eauto. intros [tvf [EVAL1 [VINJ1 APP1]]].
assert (tvf = vf).
exploit match_callstack_match_globalenvs; eauto. intros [bnd MG].
eapply val_inject_function_pointer; eauto.
subst tvf.
exploit transl_exprlist_correct; eauto.
intros [tvargs [EVAL2 VINJ2]].
left; econstructor; split.
apply plus_one. eapply step_call; eauto.
apply sig_preserved; eauto.
econstructor; eauto.
eapply match_Kcall with (cenv' := cenv); eauto.
red; auto.
(* builtin *)
monadInv TR.
exploit transl_exprlist_correct; eauto.
intros [tvargs [EVAL2 VINJ2]].
exploit match_callstack_match_globalenvs; eauto. intros [hi' MG].
exploit external_call_mem_inject; eauto.
eapply inj_preserves_globals; eauto.
intros [f' [vres' [tm' [EC [VINJ [MINJ' [UNMAPPED [OUTOFREACH [INCR SEPARATED]]]]]]]]].
left; econstructor; split.
apply plus_one. econstructor. eauto.
eapply external_call_symbols_preserved; eauto.
exact symbols_preserved. eexact varinfo_preserved.
assert (MCS': match_callstack f' m' tm'
(Frame cenv tfn e le te sp lo hi :: cs)
(Mem.nextblock m') (Mem.nextblock tm')).
apply match_callstack_incr_bound with (Mem.nextblock m) (Mem.nextblock tm).
eapply match_callstack_external_call; eauto.
intros. eapply external_call_max_perm; eauto.
xomega. xomega.
eapply external_call_nextblock; eauto.
eapply external_call_nextblock; eauto.
econstructor; eauto.
Opaque PTree.set.
unfold set_optvar. destruct optid; simpl.
eapply match_callstack_set_temp; eauto.
auto.
(* seq *)
monadInv TR.
left; econstructor; split.
apply plus_one. constructor.
econstructor; eauto.
econstructor; eauto.
(* seq 2 *)
right. split. auto. split. auto. econstructor; eauto.
(* ifthenelse *)
monadInv TR.
exploit transl_expr_correct; eauto. intros [tv [EVAL [VINJ APP]]].
left; exists (State tfn (if b then x1 else x2) tk (Vptr sp Int.zero) te tm); split.
apply plus_one. eapply step_ifthenelse; eauto. eapply bool_of_val_inject; eauto.
econstructor; eauto. destruct b; auto.
(* loop *)
monadInv TR.
left; econstructor; split.
apply plus_one. constructor.
econstructor; eauto.
econstructor; eauto. simpl. rewrite EQ; auto.
(* block *)
monadInv TR.
left; econstructor; split.
apply plus_one. constructor.
econstructor; eauto.
econstructor; eauto.
(* exit seq *)
monadInv TR. left.
dependent induction MK.
econstructor; split.
apply plus_one. constructor.
econstructor; eauto. simpl. auto.
exploit IHMK; eauto. intros [T2 [A B]].
exists T2; split; auto. eapply plus_left. constructor. apply plus_star; eauto. traceEq.
exploit IHMK; eauto. intros [T2 [A B]].
exists T2; split; auto. eapply plus_left.
simpl. constructor. apply plus_star; eauto. traceEq.
(* exit block 0 *)
monadInv TR. left.
dependent induction MK.
econstructor; split.
simpl. apply plus_one. constructor.
econstructor; eauto.
exploit IHMK; eauto. intros [T2 [A B]].
exists T2; split; auto. simpl.
eapply plus_left. constructor. apply plus_star; eauto. traceEq.
(* exit block n+1 *)
monadInv TR. left.
dependent induction MK.
econstructor; split.
simpl. apply plus_one. constructor.
econstructor; eauto. auto.
exploit IHMK; eauto. intros [T2 [A B]].
exists T2; split; auto. simpl.
eapply plus_left. constructor. apply plus_star; eauto. traceEq.
(* switch *)
monadInv TR. left.
exploit transl_expr_correct; eauto. intros [tv [EVAL [VINJ APP]]].
inv VINJ.
exploit switch_descent; eauto. intros [k1 [A B]].
exploit switch_ascent; eauto. intros [k2 [C D]].
exploit transl_lblstmt_suffix; eauto. simpl. intros [body' [ts' E]].
exploit switch_match_states; eauto. intros [T2 [F G]].
exists T2; split.
eapply plus_star_trans. eapply B.
eapply star_left. econstructor; eauto.
eapply star_trans. eexact C.
apply plus_star. eexact F.
reflexivity. reflexivity. traceEq.
auto.
(* return none *)
monadInv TR. left.
exploit match_callstack_freelist; eauto. intros [tm' [A [B C]]].
econstructor; split.
apply plus_one. eapply step_return_0. eauto.
econstructor; eauto. eapply match_call_cont; eauto.
simpl; auto.
(* return some *)
monadInv TR. left.
exploit transl_expr_correct; eauto. intros [tv [EVAL [VINJ APP]]].
exploit match_callstack_freelist; eauto. intros [tm' [A [B C]]].
econstructor; split.
apply plus_one. eapply step_return_1. eauto. eauto.
econstructor; eauto. eapply match_call_cont; eauto.
(* label *)
monadInv TR.
left; econstructor; split.
apply plus_one. constructor.
econstructor; eauto.
(* goto *)
monadInv TR.
exploit transl_find_label_body; eauto.
intros [ts' [tk' [xenv' [A [B C]]]]].
left; econstructor; split.
apply plus_one. apply step_goto. eexact A.
econstructor; eauto.
(* internal call *)
monadInv TR. generalize EQ; clear EQ; unfold transl_function.
caseEq (build_compilenv f). intros ce sz BC.
destruct (zle sz Int.max_unsigned); try congruence.
intro TRBODY.
generalize TRBODY; intro TMP. monadInv TMP.
set (tf := mkfunction (Csharpminor.fn_sig f)
(Csharpminor.fn_params f)
(Csharpminor.fn_temps f)
sz
x0) in *.
caseEq (Mem.alloc tm 0 (fn_stackspace tf)). intros tm' sp ALLOC'.
exploit match_callstack_function_entry; eauto. simpl; eauto. simpl; auto.
intros [f2 [MCS2 MINJ2]].
left; econstructor; split.
apply plus_one. constructor; simpl; eauto.
econstructor. eexact TRBODY. eauto. eexact MINJ2. eexact MCS2.
inv MK; simpl in ISCC; contradiction || econstructor; eauto.
(* external call *)
monadInv TR.
exploit match_callstack_match_globalenvs; eauto. intros [hi MG].
exploit external_call_mem_inject; eauto.
eapply inj_preserves_globals; eauto.
intros [f' [vres' [tm' [EC [VINJ [MINJ' [UNMAPPED [OUTOFREACH [INCR SEPARATED]]]]]]]]].
left; econstructor; split.
apply plus_one. econstructor.
eapply external_call_symbols_preserved; eauto.
exact symbols_preserved. eexact varinfo_preserved.
econstructor; eauto.
apply match_callstack_incr_bound with (Mem.nextblock m) (Mem.nextblock tm).
eapply match_callstack_external_call; eauto.
intros. eapply external_call_max_perm; eauto.
xomega. xomega.
eapply external_call_nextblock; eauto.
eapply external_call_nextblock; eauto.
(* return *)
inv MK. simpl.
left; econstructor; split.
apply plus_one. econstructor; eauto.
unfold set_optvar. destruct optid; simpl; econstructor; eauto.
eapply match_callstack_set_temp; eauto.
Qed.
Lemma match_globalenvs_init:
forall m,
Genv.init_mem prog = Some m ->
match_globalenvs (Mem.flat_inj (Mem.nextblock m)) (Mem.nextblock m).
Proof.
intros. constructor.
intros. unfold Mem.flat_inj. apply pred_dec_true; auto.
intros. unfold Mem.flat_inj in H0.
destruct (plt b1 (Mem.nextblock m)); congruence.
intros. eapply Genv.find_symbol_not_fresh; eauto.
intros. eapply Genv.find_funct_ptr_not_fresh; eauto.
intros. eapply Genv.find_var_info_not_fresh; eauto.
Qed.
Lemma transl_initial_states:
forall S, Csharpminor.initial_state prog S ->
exists R, Cminor.initial_state tprog R /\ match_states S R.
Proof.
induction 1.
exploit function_ptr_translated; eauto. intros [tf [FIND TR]].
econstructor; split.
econstructor.
apply (Genv.init_mem_transf_partial _ _ TRANSL). eauto.
simpl. fold tge. rewrite symbols_preserved.
replace (prog_main tprog) with (prog_main prog). eexact H0.
symmetry. unfold transl_program in TRANSL.
eapply transform_partial_program_main; eauto.
eexact FIND.
rewrite <- H2. apply sig_preserved; auto.
eapply match_callstate with (f := Mem.flat_inj (Mem.nextblock m0)) (cs := @nil frame) (cenv := PTree.empty Z).
auto.
eapply Genv.initmem_inject; eauto.
apply mcs_nil with (Mem.nextblock m0). apply match_globalenvs_init; auto. xomega. xomega.
constructor. red; auto.
constructor.
Qed.
Lemma transl_final_states:
forall S R r,
match_states S R -> Csharpminor.final_state S r -> Cminor.final_state R r.
Proof.
intros. inv H0. inv H. inv MK. inv RESINJ. constructor.
Qed.
Theorem transl_program_correct:
forward_simulation (Csharpminor.semantics prog) (Cminor.semantics tprog).
Proof.
eapply forward_simulation_star; eauto.
eexact symbols_preserved.
eexact transl_initial_states.
eexact transl_final_states.
eexact transl_step_correct.
Qed.
End TRANSLATION.
|