1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
|
(* *********************************************************************)
(* *)
(* The Compcert verified compiler *)
(* *)
(* Xavier Leroy, INRIA Paris-Rocquencourt *)
(* *)
(* Copyright Institut National de Recherche en Informatique et en *)
(* Automatique. All rights reserved. This file is distributed *)
(* under the terms of the INRIA Non-Commercial License Agreement. *)
(* *)
(* *********************************************************************)
(** Animating the CompCert C semantics *)
Require Import Axioms.
Require Import Coqlib.
Require Import Errors.
Require Import Maps.
Require Import Integers.
Require Import Floats.
Require Import Values.
Require Import AST.
Require Import Memory.
Require Import Events.
Require Import Globalenvs.
Require Import Determinism.
Require Import Csyntax.
Require Import Csem.
Require Cstrategy.
Lemma type_eq: forall (ty1 ty2: type), {ty1=ty2} + {ty1<>ty2}
with typelist_eq: forall (tyl1 tyl2: typelist), {tyl1=tyl2} + {tyl1<>tyl2}
with fieldlist_eq: forall (fld1 fld2: fieldlist), {fld1=fld2} + {fld1<>fld2}.
Proof.
assert (forall (x y: intsize), {x=y} + {x<>y}). decide equality.
assert (forall (x y: signedness), {x=y} + {x<>y}). decide equality.
assert (forall (x y: floatsize), {x=y} + {x<>y}). decide equality.
generalize ident_eq zeq. intros E1 E2.
decide equality.
decide equality.
generalize ident_eq. intros E1.
decide equality.
Defined.
Opaque type_eq.
(** Error monad with options or lists *)
Notation "'do' X <- A ; B" := (match A with Some X => B | None => None end)
(at level 200, X ident, A at level 100, B at level 200)
: option_monad_scope.
Notation " 'check' A ; B" := (if A then B else None)
(at level 200, A at level 100, B at level 200)
: option_monad_scope.
Notation "'do' X <- A ; B" := (match A with Some X => B | None => nil end)
(at level 200, X ident, A at level 100, B at level 200)
: list_monad_scope.
Notation " 'check' A ; B" := (if A then B else nil)
(at level 200, A at level 100, B at level 200)
: list_monad_scope.
Definition is_val (a: expr) : option (val * type) :=
match a with
| Eval v ty => Some(v, ty)
| _ => None
end.
Lemma is_val_inv:
forall a v ty, is_val a = Some(v, ty) -> a = Eval v ty.
Proof.
intros until ty. destruct a; simpl; congruence.
Qed.
Definition is_loc (a: expr) : option (block * int * type) :=
match a with
| Eloc b ofs ty => Some(b, ofs, ty)
| _ => None
end.
Lemma is_loc_inv:
forall a b ofs ty, is_loc a = Some(b, ofs, ty) -> a = Eloc b ofs ty.
Proof.
intros until ty. destruct a; simpl; congruence.
Qed.
Local Open Scope option_monad_scope.
Fixpoint is_val_list (al: exprlist) : option (list (val * type)) :=
match al with
| Enil => Some nil
| Econs a1 al => do vt1 <- is_val a1; do vtl <- is_val_list al; Some(vt1::vtl)
end.
Definition is_skip (s: statement) : {s = Sskip} + {s <> Sskip}.
Proof.
destruct s; (left; congruence) || (right; congruence).
Qed.
(** * Reduction of expressions *)
Section EXEC.
Variable ge: genv.
Inductive reduction: Type :=
| Lred (l': expr) (m': mem)
| Rred (r': expr) (m': mem)
| Callred (fd: fundef) (args: list val) (tyres: type) (m': mem).
Section EXPRS.
Variable e: env.
Fixpoint sem_cast_arguments (vtl: list (val * type)) (tl: typelist) : option (list val) :=
match vtl, tl with
| nil, Tnil => Some nil
| (v1,t1)::vtl, Tcons t1' tl =>
do v <- sem_cast v1 t1 t1'; do vl <- sem_cast_arguments vtl tl; Some(v::vl)
| _, _ => None
end.
(** The result of stepping an expression can be
- [None] denoting that the expression is stuck;
- [Some nil] meaning that the expression is fully reduced
(it's [Eval] for a r-value and [Eloc] for a l-value);
- [Some ll] meaning that the expression can reduce to any of
the elements of [ll]. Each element is a pair of a context
and a reduction inside this context (see type [reduction] above).
*)
Definition reducts (A: Type): Type := option (list ((expr -> A) * reduction)).
Definition topred (r: reduction) : reducts expr :=
Some (((fun (x: expr) => x), r) :: nil).
Definition incontext {A B: Type} (ctx: A -> B) (r: reducts A) : reducts B :=
match r with
| None => None
| Some l => Some (map (fun z => ((fun (x: expr) => ctx(fst z x)), snd z)) l)
end.
Definition incontext2 {A1 A2 B: Type}
(ctx1: A1 -> B) (r1: reducts A1)
(ctx2: A2 -> B) (r2: reducts A2) : reducts B :=
match r1, r2 with
| None, _ => None
| _, None => None
| Some l1, Some l2 =>
Some (map (fun z => ((fun (x: expr) => ctx1(fst z x)), snd z)) l1
++ map (fun z => ((fun (x: expr) => ctx2(fst z x)), snd z)) l2)
end.
Fixpoint step_expr (k: kind) (a: expr) (m: mem): reducts expr :=
match k, a with
| LV, Eloc b ofs ty =>
Some nil
| LV, Evar x ty =>
match e!x with
| Some(b, ty') =>
check type_eq ty ty';
topred (Lred (Eloc b Int.zero ty) m)
| None =>
do b <- Genv.find_symbol ge x;
do ty' <- type_of_global ge b;
check type_eq ty ty';
topred (Lred (Eloc b Int.zero ty) m)
end
| LV, Ederef r ty =>
match is_val r with
| Some(Vptr b ofs, ty') =>
topred (Lred (Eloc b ofs ty) m)
| Some _ =>
None
| None =>
incontext (fun x => Ederef x ty) (step_expr RV r m)
end
| LV, Efield l f ty =>
match is_loc l with
| Some(b, ofs, ty') =>
match ty' with
| Tstruct id fList =>
match field_offset f fList with
| Error _ => None
| OK delta => topred (Lred (Eloc b (Int.add ofs (Int.repr delta)) ty) m)
end
| Tunion id fList =>
topred (Lred (Eloc b ofs ty) m)
| _ => None
end
| None =>
incontext (fun x => Efield x f ty) (step_expr LV l m)
end
| RV, Eval v ty =>
Some nil
| RV, Evalof l ty =>
match is_loc l with
| Some(b, ofs, ty') =>
check type_eq ty ty';
do v <- load_value_of_type ty m b ofs;
topred (Rred (Eval v ty) m)
| None =>
incontext (fun x => Evalof x ty) (step_expr LV l m)
end
| RV, Eaddrof l ty =>
match is_loc l with
| Some(b, ofs, ty') => topred (Rred (Eval (Vptr b ofs) ty) m)
| None => incontext (fun x => Eaddrof x ty) (step_expr LV l m)
end
| RV, Eunop op r1 ty =>
match is_val r1 with
| Some(v1, ty1) =>
do v <- sem_unary_operation op v1 ty1;
topred (Rred (Eval v ty) m)
| None =>
incontext (fun x => Eunop op x ty) (step_expr RV r1 m)
end
| RV, Ebinop op r1 r2 ty =>
match is_val r1, is_val r2 with
| Some(v1, ty1), Some(v2, ty2) =>
do v <- sem_binary_operation op v1 ty1 v2 ty2 m;
topred (Rred (Eval v ty) m)
| _, _ =>
incontext2 (fun x => Ebinop op x r2 ty) (step_expr RV r1 m)
(fun x => Ebinop op r1 x ty) (step_expr RV r2 m)
end
| RV, Ecast r1 ty =>
match is_val r1 with
| Some(v1, ty1) =>
do v <- sem_cast v1 ty1 ty;
topred (Rred (Eval v ty) m)
| None =>
incontext (fun x => Ecast x ty) (step_expr RV r1 m)
end
| RV, Econdition r1 r2 r3 ty =>
match is_val r1 with
| Some(v1, ty1) =>
do b <- bool_val v1 ty1;
topred (Rred (Eparen (if b then r2 else r3) ty) m)
| None =>
incontext (fun x => Econdition x r2 r3 ty) (step_expr RV r1 m)
end
| RV, Esizeof ty' ty =>
topred (Rred (Eval (Vint (Int.repr (sizeof ty'))) ty) m)
| RV, Eassign l1 r2 ty =>
match is_loc l1, is_val r2 with
| Some(b, ofs, ty1), Some(v2, ty2) =>
check type_eq ty1 ty;
do v <- sem_cast v2 ty2 ty1;
do m' <- store_value_of_type ty1 m b ofs v;
topred (Rred (Eval v ty) m')
| _, _ =>
incontext2 (fun x => Eassign x r2 ty) (step_expr LV l1 m)
(fun x => Eassign l1 x ty) (step_expr RV r2 m)
end
| RV, Eassignop op l1 r2 tyres ty =>
match is_loc l1, is_val r2 with
| Some(b, ofs, ty1), Some(v2, ty2) =>
check type_eq ty1 ty;
do v1 <- load_value_of_type ty1 m b ofs;
do v <- sem_binary_operation op v1 ty1 v2 ty2 m;
do v' <- sem_cast v tyres ty1;
do m' <- store_value_of_type ty1 m b ofs v';
topred (Rred (Eval v' ty) m')
| _, _ =>
incontext2 (fun x => Eassignop op x r2 tyres ty) (step_expr LV l1 m)
(fun x => Eassignop op l1 x tyres ty) (step_expr RV r2 m)
end
| RV, Epostincr id l ty =>
match is_loc l with
| Some(b, ofs, ty1) =>
check type_eq ty1 ty;
do v1 <- load_value_of_type ty m b ofs;
do v2 <- sem_incrdecr id v1 ty;
do v3 <- sem_cast v2 (typeconv ty) ty;
do m' <- store_value_of_type ty m b ofs v3;
topred (Rred (Eval v1 ty) m')
| None =>
incontext (fun x => Epostincr id x ty) (step_expr LV l m)
end
| RV, Ecomma r1 r2 ty =>
match is_val r1 with
| Some _ =>
check type_eq (typeof r2) ty;
topred (Rred r2 m)
| None =>
incontext (fun x => Ecomma x r2 ty) (step_expr RV r1 m)
end
| RV, Eparen r1 ty =>
match is_val r1 with
| Some (v1, ty1) =>
do v <- sem_cast v1 ty1 ty;
topred (Rred (Eval v ty) m)
| None =>
incontext (fun x => Eparen x ty) (step_expr RV r1 m)
end
| RV, Ecall r1 rargs ty =>
match is_val r1, is_val_list rargs with
| Some(vf, tyf), Some vtl =>
match classify_fun tyf with
| fun_case_f tyargs tyres =>
do fd <- Genv.find_funct ge vf;
do vargs <- sem_cast_arguments vtl tyargs;
check type_eq (type_of_fundef fd) (Tfunction tyargs tyres);
topred (Callred fd vargs ty m)
| _ => None
end
| _, _ =>
incontext2 (fun x => Ecall x rargs ty) (step_expr RV r1 m)
(fun x => Ecall r1 x ty) (step_exprlist rargs m)
end
| _, _ => None
end
with step_exprlist (rl: exprlist) (m: mem): reducts exprlist :=
match rl with
| Enil =>
Some nil
| Econs r1 rs =>
incontext2 (fun x => Econs x rs) (step_expr RV r1 m)
(fun x => Econs r1 x) (step_exprlist rs m)
end.
(** Soundness: if [step_expr] returns [Some ll], then every element
of [ll] is a reduct. *)
Lemma context_compose:
forall k2 k3 C2, context k2 k3 C2 ->
forall k1 C1, context k1 k2 C1 ->
context k1 k3 (fun x => C2(C1 x))
with contextlist_compose:
forall k2 C2, contextlist k2 C2 ->
forall k1 C1, context k1 k2 C1 ->
contextlist k1 (fun x => C2(C1 x)).
Proof.
induction 1; intros; try (constructor; eauto).
replace (fun x => C1 x) with C1. auto. apply extensionality; auto.
induction 1; intros; constructor; eauto.
Qed.
Hint Constructors context contextlist.
Hint Resolve context_compose contextlist_compose.
Definition reduction_ok (a: expr) (m: mem) (rd: reduction) : Prop :=
match rd with
| Lred l' m' => lred ge e a m l' m'
| Rred r' m' => rred a m r' m'
| Callred fd args tyres m' => callred ge a fd args tyres /\ m' = m
end.
Definition reduction_kind (rd: reduction): kind :=
match rd with
| Lred l' m' => LV
| Rred r' m' => RV
| Callred fd args tyres m' => RV
end.
Ltac monadInv :=
match goal with
| [ H: match ?x with Some _ => _ | None => None end = Some ?y |- _ ] =>
destruct x as []_eqn; [monadInv|discriminate]
| [ H: match ?x with left _ => _ | right _ => None end = Some ?y |- _ ] =>
destruct x; [monadInv|discriminate]
| _ => idtac
end.
Lemma sem_cast_arguments_sound:
forall rargs vtl tyargs vargs,
is_val_list rargs = Some vtl ->
sem_cast_arguments vtl tyargs = Some vargs ->
cast_arguments rargs tyargs vargs.
Proof.
induction rargs; simpl; intros.
inv H. destruct tyargs; simpl in H0; inv H0. constructor.
monadInv. inv H. simpl in H0. destruct p as [v1 t1]. destruct tyargs; try congruence. monadInv.
inv H0. rewrite (is_val_inv _ _ _ Heqo). constructor. auto. eauto.
Qed.
Definition reducts_ok (k: kind) (a: expr) (m: mem) (res: reducts expr) : Prop :=
match res with
| None => True
| Some nil => match k with LV => is_loc a <> None | RV => is_val a <> None end
| Some ll =>
forall C rd,
In (C, rd) ll ->
context (reduction_kind rd) k C /\ exists a', a = C a' /\ reduction_ok a' m rd
end.
Definition list_reducts_ok (al: exprlist) (m: mem) (res: reducts exprlist) : Prop :=
match res with
| None => True
| Some nil => is_val_list al <> None
| Some ll =>
forall C rd,
In (C, rd) ll ->
contextlist (reduction_kind rd) C /\ exists a', al = C a' /\ reduction_ok a' m rd
end.
Lemma topred_ok:
forall k a m rd,
reduction_ok a m rd ->
k = reduction_kind rd ->
reducts_ok k a m (topred rd).
Proof.
intros. unfold topred; red. simpl; intros. destruct H1; try contradiction.
inv H1. split. auto. exists a; auto.
Qed.
Lemma incontext_ok:
forall k a m C res k' a',
reducts_ok k' a' m res ->
a = C a' ->
context k' k C ->
match k' with LV => is_loc a' = None | RV => is_val a' = None end ->
reducts_ok k a m (incontext C res).
Proof.
unfold reducts_ok; intros. destruct res; simpl. destruct l.
(* res = Some nil *)
destruct k'; congruence.
(* res = Some nonempty-list *)
simpl map at 1. hnf. intros.
exploit list_in_map_inv; eauto. intros [[C1 rd1] [P Q]]. inv P.
exploit H; eauto. intros [U [a'' [V W]]].
split. eapply context_compose; eauto. exists a''; split; auto. congruence.
(* res = None *)
auto.
Qed.
Remark incontext2_inv:
forall {A1 A2 B: Type} (C1: A1 -> B) res1 (C2: A2 -> B) res2,
match incontext2 C1 res1 C2 res2 with
| None => res1 = None \/ res2 = None
| Some nil => res1 = Some nil /\ res2 = Some nil
| Some ll =>
exists ll1, exists ll2,
res1 = Some ll1 /\ res2 = Some ll2 /\
forall C rd, In (C, rd) ll ->
(exists C', C = (fun x => C1(C' x)) /\ In (C', rd) ll1)
\/ (exists C', C = (fun x => C2(C' x)) /\ In (C', rd) ll2)
end.
Proof.
intros. unfold incontext2. destruct res1 as [ll1|]; auto. destruct res2 as [ll2|]; auto.
set (ll := map
(fun z : (expr -> A1) * reduction =>
(fun x : expr => C1 (fst z x), snd z)) ll1 ++
map
(fun z : (expr -> A2) * reduction =>
(fun x : expr => C2 (fst z x), snd z)) ll2).
destruct ll as []_eqn.
destruct (app_eq_nil _ _ Heql).
split. destruct ll1; auto || discriminate. destruct ll2; auto || discriminate.
rewrite <- Heql. exists ll1; exists ll2. split. auto. split. auto.
unfold ll; intros.
rewrite in_app in H. destruct H.
exploit list_in_map_inv; eauto. intros [[C' rd'] [P Q]]. inv P.
left; exists C'; auto.
exploit list_in_map_inv; eauto. intros [[C' rd'] [P Q]]. inv P.
right; exists C'; auto.
Qed.
Lemma incontext2_ok:
forall k a m k1 a1 res1 k2 a2 res2 C1 C2,
reducts_ok k1 a1 m res1 ->
reducts_ok k2 a2 m res2 ->
a = C1 a1 -> a = C2 a2 ->
context k1 k C1 -> context k2 k C2 ->
match k1 with LV => is_loc a1 = None | RV => is_val a1 = None end
\/ match k2 with LV => is_loc a2 = None | RV => is_val a2 = None end ->
reducts_ok k a m (incontext2 C1 res1 C2 res2).
Proof.
unfold reducts_ok; intros.
generalize (incontext2_inv C1 res1 C2 res2).
destruct (incontext2 C1 res1 C2 res2) as [ll|]; auto.
destruct ll.
intros [EQ1 EQ2]. subst. destruct H5. destruct k1; congruence. destruct k2; congruence.
intros [ll1 [ll2 [EQ1 [EQ2 IN]]]]. subst. intros.
exploit IN; eauto. intros [[C' [P Q]] | [C' [P Q]]]; subst.
destruct ll1; try contradiction. exploit H; eauto.
intros [U [a' [V W]]]. split. eauto. exists a'; split. congruence. auto.
destruct ll2; try contradiction. exploit H0; eauto.
intros [U [a' [V W]]]. split. eauto. exists a'; split. congruence. auto.
Qed.
Lemma incontext2_list_ok:
forall a1 a2 ty m res1 res2,
reducts_ok RV a1 m res1 ->
list_reducts_ok a2 m res2 ->
is_val a1 = None \/ is_val_list a2 = None ->
reducts_ok RV (Ecall a1 a2 ty) m
(incontext2 (fun x => Ecall x a2 ty) res1
(fun x => Ecall a1 x ty) res2).
Proof.
unfold reducts_ok, list_reducts_ok; intros.
set (C1 := fun x => Ecall x a2 ty). set (C2 := fun x => Ecall a1 x ty).
generalize (incontext2_inv C1 res1 C2 res2).
destruct (incontext2 C1 res1 C2 res2) as [ll|]; auto.
destruct ll.
intros [EQ1 EQ2]. subst. intuition congruence.
intros [ll1 [ll2 [EQ1 [EQ2 IN]]]]. subst. intros.
exploit IN; eauto. intros [[C' [P Q]] | [C' [P Q]]]; subst.
destruct ll1; try contradiction. exploit H; eauto.
intros [U [a' [V W]]]. split. unfold C1. auto. exists a'; split. unfold C1; congruence. auto.
destruct ll2; try contradiction. exploit H0; eauto.
intros [U [a' [V W]]]. split. unfold C2. auto. exists a'; split. unfold C2; congruence. auto.
Qed.
Lemma incontext2_list_ok':
forall a1 a2 m res1 res2,
reducts_ok RV a1 m res1 ->
list_reducts_ok a2 m res2 ->
list_reducts_ok (Econs a1 a2) m
(incontext2 (fun x => Econs x a2) res1
(fun x => Econs a1 x) res2).
Proof.
unfold reducts_ok, list_reducts_ok; intros.
set (C1 := fun x => Econs x a2). set (C2 := fun x => Econs a1 x).
generalize (incontext2_inv C1 res1 C2 res2).
destruct (incontext2 C1 res1 C2 res2) as [ll|]; auto.
destruct ll.
intros [EQ1 EQ2]. subst.
simpl. destruct (is_val a1); try congruence. destruct (is_val_list a2); congruence.
intros [ll1 [ll2 [EQ1 [EQ2 IN]]]]. subst. intros.
exploit IN; eauto. intros [[C' [P Q]] | [C' [P Q]]]; subst.
destruct ll1; try contradiction. exploit H; eauto.
intros [U [a' [V W]]]. split. unfold C1. auto. exists a'; split. unfold C1; congruence. auto.
destruct ll2; try contradiction. exploit H0; eauto.
intros [U [a' [V W]]]. split. unfold C2. auto. exists a'; split. unfold C2; congruence. auto.
Qed.
Ltac mysimpl :=
match goal with
| [ |- reducts_ok _ _ _ (match ?x with Some _ => _ | None => None end) ] =>
destruct x as []_eqn; [mysimpl|exact I]
| [ |- reducts_ok _ _ _ (match ?x with left _ => _ | right _ => None end) ] =>
destruct x as []_eqn; [subst;mysimpl|exact I]
| _ =>
idtac
end.
Theorem step_expr_sound:
forall a k m, reducts_ok k a m (step_expr k a m)
with step_exprlist_sound:
forall al m, list_reducts_ok al m (step_exprlist al m).
Proof with try (exact I).
induction a; destruct k; intros; simpl...
(* Eval *)
congruence.
(* Evar *)
destruct (e!x) as [[b ty'] | ]_eqn; mysimpl.
apply topred_ok; auto. apply red_var_local; auto.
apply topred_ok; auto. apply red_var_global; auto.
(* Efield *)
destruct (is_loc a) as [[[b ofs] ty'] | ]_eqn.
destruct ty'...
(* top struct *)
destruct (field_offset f f0) as [delta|]_eqn...
rewrite (is_loc_inv _ _ _ _ Heqo). apply topred_ok; auto. apply red_field_struct; auto.
(* top union *)
rewrite (is_loc_inv _ _ _ _ Heqo). apply topred_ok; auto. apply red_field_union; auto.
(* in depth *)
eapply incontext_ok; eauto.
(* Evalof *)
destruct (is_loc a) as [[[b ofs] ty'] | ]_eqn.
(* top *)
mysimpl. apply topred_ok; auto. rewrite (is_loc_inv _ _ _ _ Heqo). apply red_rvalof; auto.
(* depth *)
eapply incontext_ok; eauto.
(* Ederef *)
destruct (is_val a) as [[v ty'] | ]_eqn.
(* top *)
destruct v... mysimpl. apply topred_ok; auto. rewrite (is_val_inv _ _ _ Heqo). apply red_deref; auto.
(* depth *)
eapply incontext_ok; eauto.
(* Eaddrof *)
destruct (is_loc a) as [[[b ofs] ty'] | ]_eqn.
(* top *)
apply topred_ok; auto. rewrite (is_loc_inv _ _ _ _ Heqo). apply red_addrof; auto.
(* depth *)
eapply incontext_ok; eauto.
(* unop *)
destruct (is_val a) as [[v ty'] | ]_eqn.
(* top *)
mysimpl. apply topred_ok; auto. rewrite (is_val_inv _ _ _ Heqo). apply red_unop; auto.
(* depth *)
eapply incontext_ok; eauto.
(* binop *)
destruct (is_val a1) as [[v1 ty1] | ]_eqn.
destruct (is_val a2) as [[v2 ty2] | ]_eqn.
(* top *)
mysimpl. apply topred_ok; auto.
rewrite (is_val_inv _ _ _ Heqo). rewrite (is_val_inv _ _ _ Heqo0). apply red_binop; auto.
(* depth *)
eapply incontext2_ok; eauto.
eapply incontext2_ok; eauto.
(* cast *)
destruct (is_val a) as [[v ty'] | ]_eqn.
(* top *)
mysimpl. apply topred_ok; auto.
rewrite (is_val_inv _ _ _ Heqo). apply red_cast; auto.
(* depth *)
eapply incontext_ok; eauto.
(* condition *)
destruct (is_val a1) as [[v ty'] | ]_eqn.
(* top *)
mysimpl. apply topred_ok; auto.
rewrite (is_val_inv _ _ _ Heqo). eapply red_condition; eauto.
(* depth *)
eapply incontext_ok; eauto.
(* sizeof *)
apply topred_ok; auto. apply red_sizeof.
(* assign *)
destruct (is_loc a1) as [[[b ofs] ty1] | ]_eqn.
destruct (is_val a2) as [[v2 ty2] | ]_eqn.
(* top *)
mysimpl. apply topred_ok; auto.
rewrite (is_loc_inv _ _ _ _ Heqo). rewrite (is_val_inv _ _ _ Heqo0). apply red_assign; auto.
(* depth *)
eapply incontext2_ok; eauto.
eapply incontext2_ok; eauto.
(* assignop *)
destruct (is_loc a1) as [[[b ofs] ty1] | ]_eqn.
destruct (is_val a2) as [[v2 ty2] | ]_eqn.
(* top *)
mysimpl. apply topred_ok; auto.
rewrite (is_loc_inv _ _ _ _ Heqo). rewrite (is_val_inv _ _ _ Heqo0). eapply red_assignop; eauto.
(* depth *)
eapply incontext2_ok; eauto.
eapply incontext2_ok; eauto.
(* postincr *)
destruct (is_loc a) as [[[b ofs] ty'] | ]_eqn.
(* top *)
mysimpl. apply topred_ok; auto.
rewrite (is_loc_inv _ _ _ _ Heqo). eapply red_postincr; eauto.
(* depth *)
eapply incontext_ok; eauto.
(* comma *)
destruct (is_val a1) as [[v ty'] | ]_eqn.
(* top *)
mysimpl. apply topred_ok; auto.
rewrite (is_val_inv _ _ _ Heqo). apply red_comma; auto.
(* depth *)
eapply incontext_ok; eauto.
(* call *)
destruct (is_val a) as [[vf tyf] | ]_eqn.
destruct (is_val_list rargs) as [vtl | ]_eqn.
(* top *)
destruct (classify_fun tyf) as [tyargs tyres|]_eqn...
mysimpl. apply topred_ok; auto.
rewrite (is_val_inv _ _ _ Heqo). red. split; auto. eapply red_Ecall; eauto.
eapply sem_cast_arguments_sound; eauto.
(* depth *)
eapply incontext2_list_ok; eauto.
eapply incontext2_list_ok; eauto.
(* loc *)
congruence.
(* paren *)
destruct (is_val a) as [[v ty'] | ]_eqn.
(* top *)
mysimpl. apply topred_ok; auto.
rewrite (is_val_inv _ _ _ Heqo). apply red_paren; auto.
(* depth *)
eapply incontext_ok; eauto.
induction al; simpl; intros.
(* nil *)
congruence.
(* cons *)
eapply incontext2_list_ok'; eauto.
Qed.
Lemma step_exprlist_val_list:
forall m al, is_val_list al <> None -> step_exprlist al m = Some nil.
Proof.
induction al; simpl; intros.
auto.
destruct (is_val r1) as [[v1 ty1]|]_eqn; try congruence.
destruct (is_val_list al) as []_eqn; try congruence.
rewrite (is_val_inv _ _ _ Heqo).
rewrite IHal. auto. congruence.
Qed.
(** Completeness, part 1: if [step_expr] returns [Some ll],
then [ll] contains all possible reducts. *)
Lemma lred_topred:
forall l1 m1 l2 m2,
lred ge e l1 m1 l2 m2 ->
step_expr LV l1 m1 = topred (Lred l2 m2).
Proof.
induction 1; simpl.
(* var local *)
rewrite H. rewrite dec_eq_true; auto.
(* var global *)
rewrite H; rewrite H0; rewrite H1. rewrite dec_eq_true; auto.
(* deref *)
auto.
(* field struct *)
rewrite H; auto.
(* field union *)
auto.
Qed.
Lemma rred_topred:
forall r1 m1 r2 m2,
rred r1 m1 r2 m2 ->
step_expr RV r1 m1 = topred (Rred r2 m2).
Proof.
induction 1; simpl.
(* valof *)
rewrite dec_eq_true; auto. rewrite H; auto.
(* addrof *)
auto.
(* unop *)
rewrite H; auto.
(* binop *)
rewrite H; auto.
(* cast *)
rewrite H; auto.
(* condition *)
rewrite H; auto.
(* sizeof *)
auto.
(* assign *)
rewrite dec_eq_true; auto. rewrite H; rewrite H0; auto.
(* assignop *)
rewrite dec_eq_true; auto. rewrite H; rewrite H0; rewrite H1; rewrite H2; auto.
(* postincr *)
rewrite dec_eq_true; auto. rewrite H; rewrite H0; rewrite H1; rewrite H2; auto.
(* comma *)
rewrite H; rewrite dec_eq_true; auto.
(* paren *)
rewrite H; auto.
Qed.
Lemma sem_cast_arguments_complete:
forall al tyl vl,
cast_arguments al tyl vl ->
exists vtl, is_val_list al = Some vtl /\ sem_cast_arguments vtl tyl = Some vl.
Proof.
induction 1.
exists (@nil (val * type)); auto.
destruct IHcast_arguments as [vtl [A B]].
exists ((v, ty) :: vtl); simpl. rewrite A; rewrite B; rewrite H. auto.
Qed.
Lemma callred_topred:
forall a fd args ty m,
callred ge a fd args ty ->
step_expr RV a m = topred (Callred fd args ty m).
Proof.
induction 1; simpl.
rewrite H2. exploit sem_cast_arguments_complete; eauto. intros [vtl [A B]].
rewrite A; rewrite H; rewrite B; rewrite H1; rewrite dec_eq_true. auto.
Qed.
Definition reducts_incl {A B: Type} (C: A -> B) (res1: reducts A) (res2: reducts B) : Prop :=
match res1, res2 with
| Some ll1, Some ll2 =>
forall C1 rd, In (C1, rd) ll1 -> In ((fun x => C(C1 x)), rd) ll2
| None, Some ll2 => False
| _, None => True
end.
Lemma reducts_incl_trans:
forall (A1 A2: Type) (C: A1 -> A2) res1 res2, reducts_incl C res1 res2 ->
forall (A3: Type) (C': A2 -> A3) res3,
reducts_incl C' res2 res3 ->
reducts_incl (fun x => C'(C x)) res1 res3.
Proof.
unfold reducts_incl; intros. destruct res1; destruct res2; destruct res3; auto. contradiction.
Qed.
Lemma reducts_incl_nil:
forall (A B: Type) (C: A -> B) res,
reducts_incl C (Some nil) res.
Proof.
intros; red. destruct res; auto. intros; contradiction.
Qed.
Lemma reducts_incl_val:
forall (A: Type) a m v ty (C: expr -> A) res,
is_val a = Some(v, ty) -> reducts_incl C (step_expr RV a m) res.
Proof.
intros. rewrite (is_val_inv _ _ _ H). apply reducts_incl_nil.
Qed.
Lemma reducts_incl_loc:
forall (A: Type) a m b ofs ty (C: expr -> A) res,
is_loc a = Some(b, ofs, ty) -> reducts_incl C (step_expr LV a m) res.
Proof.
intros. rewrite (is_loc_inv _ _ _ _ H). apply reducts_incl_nil.
Qed.
Lemma reducts_incl_listval:
forall (A: Type) a m vtl (C: exprlist -> A) res,
is_val_list a = Some vtl -> reducts_incl C (step_exprlist a m) res.
Proof.
intros. rewrite step_exprlist_val_list. apply reducts_incl_nil. congruence.
Qed.
Lemma reducts_incl_incontext:
forall (A B: Type) (C: A -> B) res,
reducts_incl C res (incontext C res).
Proof.
intros; unfold reducts_incl. destruct res; simpl; auto.
intros. set (f := fun z : (expr -> A) * reduction => (fun x : expr => C (fst z x), snd z)).
change (In (f (C1, rd)) (map f l)). apply in_map. auto.
Qed.
Lemma reducts_incl_incontext2_left:
forall (A1 A2 B: Type) (C1: A1 -> B) res1 (C2: A2 -> B) res2,
reducts_incl C1 res1 (incontext2 C1 res1 C2 res2).
Proof.
intros. destruct res1; simpl; auto. destruct res2; auto.
intros. rewrite in_app_iff. left.
set (f := fun z : (expr -> A1) * reduction => (fun x : expr => C1 (fst z x), snd z)).
change (In (f (C0, rd)) (map f l)). apply in_map; auto.
Qed.
Lemma reducts_incl_incontext2_right:
forall (A1 A2 B: Type) (C1: A1 -> B) res1 (C2: A2 -> B) res2,
reducts_incl C2 res2 (incontext2 C1 res1 C2 res2).
Proof.
intros. destruct res1; destruct res2; simpl; auto.
intros. rewrite in_app_iff. right.
set (f := fun z : (expr -> A2) * reduction => (fun x : expr => C2 (fst z x), snd z)).
change (In (f (C0, rd)) (map f l0)). apply in_map; auto.
Qed.
Hint Resolve reducts_incl_val reducts_incl_loc reducts_incl_listval
reducts_incl_incontext reducts_incl_incontext2_left reducts_incl_incontext2_right.
Lemma step_expr_context:
forall from to C, context from to C ->
forall a m, reducts_incl C (step_expr from a m) (step_expr to (C a) m)
with step_exprlist_context:
forall from C, contextlist from C ->
forall a m, reducts_incl C (step_expr from a m) (step_exprlist (C a) m).
Proof.
induction 1; simpl; intros.
(* top *)
red. destruct (step_expr k a m); auto. intros.
replace (fun x => C1 x) with C1; auto. apply extensionality; auto.
(* deref *)
eapply reducts_incl_trans with (C' := fun x => Ederef x ty); eauto.
destruct (is_val (C a)) as [[v ty']|]_eqn; eauto.
(* field *)
eapply reducts_incl_trans with (C' := fun x => Efield x f ty); eauto.
destruct (is_loc (C a)) as [[[b ofs] ty']|]_eqn; eauto.
(* valof *)
eapply reducts_incl_trans with (C' := fun x => Evalof x ty); eauto.
destruct (is_loc (C a)) as [[[b ofs] ty']|]_eqn; eauto.
(* addrof *)
eapply reducts_incl_trans with (C' := fun x => Eaddrof x ty); eauto.
destruct (is_loc (C a)) as [[[b ofs] ty']|]_eqn; eauto.
(* unop *)
eapply reducts_incl_trans with (C' := fun x => Eunop op x ty); eauto.
destruct (is_val (C a)) as [[v ty']|]_eqn; eauto.
(* binop left *)
eapply reducts_incl_trans with (C' := fun x => Ebinop op x e2 ty); eauto.
destruct (is_val (C a)) as [[v ty']|]_eqn; eauto.
(* binop right *)
eapply reducts_incl_trans with (C' := fun x => Ebinop op e1 x ty); eauto.
destruct (is_val e1) as [[v1 ty1]|]_eqn; eauto.
destruct (is_val (C a)) as [[v2 ty2]|]_eqn; eauto.
(* cast *)
eapply reducts_incl_trans with (C' := fun x => Ecast x ty); eauto.
destruct (is_val (C a)) as [[v ty']|]_eqn; eauto.
(* condition *)
eapply reducts_incl_trans with (C' := fun x => Econdition x r2 r3 ty); eauto.
destruct (is_val (C a)) as [[v ty']|]_eqn; eauto.
(* assign left *)
eapply reducts_incl_trans with (C' := fun x => Eassign x e2 ty); eauto.
destruct (is_loc (C a)) as [[[b ofs] ty']|]_eqn; eauto.
(* assign right *)
eapply reducts_incl_trans with (C' := fun x => Eassign e1 x ty); eauto.
destruct (is_loc e1) as [[[b ofs] ty1]|]_eqn; eauto.
destruct (is_val (C a)) as [[v2 ty2]|]_eqn; eauto.
(* assignop left *)
eapply reducts_incl_trans with (C' := fun x => Eassignop op x e2 tyres ty); eauto.
destruct (is_loc (C a)) as [[[b ofs] ty']|]_eqn; eauto.
(* assignop right *)
eapply reducts_incl_trans with (C' := fun x => Eassignop op e1 x tyres ty); eauto.
destruct (is_loc e1) as [[[b ofs] ty1]|]_eqn; eauto.
destruct (is_val (C a)) as [[v2 ty2]|]_eqn; eauto.
(* postincr *)
eapply reducts_incl_trans with (C' := fun x => Epostincr id x ty); eauto.
destruct (is_loc (C a)) as [[[b ofs] ty']|]_eqn; eauto.
(* call left *)
eapply reducts_incl_trans with (C' := fun x => Ecall x el ty); eauto.
destruct (is_val (C a)) as [[v ty']|]_eqn; eauto.
(* call right *)
eapply reducts_incl_trans with (C' := fun x => Ecall e1 x ty). apply step_exprlist_context. auto.
destruct (is_val e1) as [[v1 ty1]|]_eqn; eauto.
destruct (is_val_list (C a)) as [vl|]_eqn; eauto.
(* comma *)
eapply reducts_incl_trans with (C' := fun x => Ecomma x e2 ty); eauto.
destruct (is_val (C a)) as [[v ty']|]_eqn; eauto.
(* paren *)
eapply reducts_incl_trans with (C' := fun x => Eparen x ty); eauto.
destruct (is_val (C a)) as [[v ty']|]_eqn; eauto.
induction 1; simpl; intros.
(* cons left *)
eapply reducts_incl_trans with (C' := fun x => Econs x el).
apply step_expr_context; eauto. eauto.
(* binop right *)
eapply reducts_incl_trans with (C' := fun x => Econs e1 x).
apply step_exprlist_context; eauto. eauto.
Qed.
(** Completeness, part 2: given a safe expression, [step_expr] does not return [None]. *)
Lemma topred_none:
forall rd, topred rd <> None.
Proof.
intros; unfold topred; congruence.
Qed.
Lemma incontext_none:
forall (A B: Type) (C: A -> B) rds,
rds <> None -> incontext C rds <> None.
Proof.
unfold incontext; intros. destruct rds; congruence.
Qed.
Lemma incontext2_none:
forall (A1 A2 B: Type) (C1: A1 -> B) rds1 (C2: A2 -> B) rds2,
rds1 <> None -> rds2 <> None -> incontext2 C1 rds1 C2 rds2 <> None.
Proof.
unfold incontext2; intros. destruct rds1; destruct rds2; congruence.
Qed.
Lemma safe_expr_kind:
forall k C a m,
context k RV C ->
not_stuck ge e (C a) m ->
k = Cstrategy.expr_kind a.
Proof.
intros.
symmetry. eapply Cstrategy.not_imm_stuck_kind; eauto.
Qed.
Lemma safe_inversion:
forall k C a m,
context k RV C ->
not_stuck ge e (C a) m ->
match a with
| Eloc _ _ _ => True
| Eval _ _ => True
| _ => Cstrategy.invert_expr_prop ge e a m
end.
Proof.
intros. eapply Cstrategy.not_imm_stuck_inv; eauto.
Qed.
Lemma is_val_list_all_values:
forall al vtl, is_val_list al = Some vtl -> Cstrategy.exprlist_all_values al.
Proof.
induction al; simpl; intros. auto.
destruct (is_val r1) as [[v ty]|]_eqn; try discriminate.
destruct (is_val_list al) as [vtl'|]_eqn; try discriminate.
rewrite (is_val_inv _ _ _ Heqo). eauto.
Qed.
Theorem step_expr_defined:
forall a k m C,
context k RV C ->
not_stuck ge e (C a) m ->
step_expr k a m <> None
with step_exprlist_defined:
forall al m C,
Cstrategy.contextlist' C ->
not_stuck ge e (C al) m ->
step_exprlist al m <> None.
Proof.
induction a; intros k m C CTX NS;
rewrite (safe_expr_kind _ _ _ _ CTX NS);
rewrite (safe_expr_kind _ _ _ _ CTX NS) in CTX;
simpl in *;
generalize (safe_inversion _ _ _ _ CTX NS); intro INV.
(* val *)
congruence.
(* var *)
red in INV. destruct INV as [b [P | [P [Q R]]]].
rewrite P; rewrite dec_eq_true. apply topred_none.
rewrite P; rewrite Q; rewrite R; rewrite dec_eq_true. apply topred_none.
(* field *)
destruct (is_loc a) as [[[b ofs] ty']|]_eqn.
rewrite (is_loc_inv _ _ _ _ Heqo) in INV. red in INV.
destruct ty'; try contradiction. destruct INV as [delta EQ]. rewrite EQ. apply topred_none.
apply topred_none.
apply incontext_none. apply IHa with (C := fun x => C(Efield x f ty)); eauto.
(* valof *)
destruct (is_loc a) as [[[b ofs] ty']|]_eqn.
rewrite (is_loc_inv _ _ _ _ Heqo) in INV. red in INV. destruct INV as [EQ [v LD]]. subst.
rewrite dec_eq_true; rewrite LD; apply topred_none.
apply incontext_none. apply IHa with (C := fun x => C(Evalof x ty)); eauto.
(* deref *)
destruct (is_val a) as [[v ty']|]_eqn.
rewrite (is_val_inv _ _ _ Heqo) in INV. red in INV. destruct INV as [b [ofs EQ]]. subst.
apply topred_none.
apply incontext_none. apply IHa with (C := fun x => C(Ederef x ty)); eauto.
(* addrof *)
destruct (is_loc a) as [[[b ofs] ty']|]_eqn.
apply topred_none.
apply incontext_none. apply IHa with (C := fun x => C(Eaddrof x ty)); eauto.
(* unop *)
destruct (is_val a) as [[v1 ty1]|]_eqn.
rewrite (is_val_inv _ _ _ Heqo) in INV. red in INV. destruct INV as [v EQ].
rewrite EQ; apply topred_none.
apply incontext_none. apply IHa with (C := fun x => C(Eunop op x ty)); eauto.
(* binop *)
destruct (is_val a1) as [[v1 ty1]|]_eqn.
destruct (is_val a2) as [[v2 ty2]|]_eqn.
rewrite (is_val_inv _ _ _ Heqo) in INV.
rewrite (is_val_inv _ _ _ Heqo0) in INV. red in INV. destruct INV as [v EQ].
rewrite EQ; apply topred_none.
apply incontext2_none. apply IHa1 with (C := fun x => C(Ebinop op x a2 ty)); eauto. apply IHa2 with (C := fun x => C(Ebinop op a1 x ty)); eauto.
apply incontext2_none. apply IHa1 with (C := fun x => C(Ebinop op x a2 ty)); eauto. apply IHa2 with (C := fun x => C(Ebinop op a1 x ty)); eauto.
(* cast *)
destruct (is_val a) as [[v1 ty1]|]_eqn.
rewrite (is_val_inv _ _ _ Heqo) in INV. red in INV. destruct INV as [v EQ].
rewrite EQ; apply topred_none.
apply incontext_none. apply IHa with (C := fun x => C(Ecast x ty)); eauto.
(* condition *)
destruct (is_val a1) as [[v1 ty1]|]_eqn.
rewrite (is_val_inv _ _ _ Heqo) in INV. red in INV. destruct INV as [v EQ].
rewrite EQ; apply topred_none.
apply incontext_none. apply IHa1 with (C := fun x => C(Econdition x a2 a3 ty)); eauto.
(* sizeof *)
apply topred_none.
(* assign *)
destruct (is_loc a1) as [[[b ofs] ty1]|]_eqn.
destruct (is_val a2) as [[v2 ty2]|]_eqn.
rewrite (is_loc_inv _ _ _ _ Heqo) in INV.
rewrite (is_val_inv _ _ _ Heqo0) in INV. red in INV.
destruct INV as [v [m' [P [Q R]]]].
subst. rewrite dec_eq_true; rewrite Q; rewrite R; apply topred_none.
apply incontext2_none. apply IHa1 with (C := fun x => C(Eassign x a2 ty)); eauto. apply IHa2 with (C := fun x => C(Eassign a1 x ty)); eauto.
apply incontext2_none. apply IHa1 with (C := fun x => C(Eassign x a2 ty)); eauto. apply IHa2 with (C := fun x => C(Eassign a1 x ty)); eauto.
(* assignop *)
destruct (is_loc a1) as [[[b ofs] ty1]|]_eqn.
destruct (is_val a2) as [[v2 ty2]|]_eqn.
rewrite (is_loc_inv _ _ _ _ Heqo) in INV.
rewrite (is_val_inv _ _ _ Heqo0) in INV. red in INV.
destruct INV as [v1 [v [v' [m' [P [Q [R [S T]]]]]]]].
subst. rewrite dec_eq_true; rewrite Q; rewrite R; rewrite S; rewrite T; apply topred_none.
apply incontext2_none. apply IHa1 with (C := fun x => C(Eassignop op x a2 tyres ty)); eauto. apply IHa2 with (C := fun x => C(Eassignop op a1 x tyres ty)); eauto.
apply incontext2_none. apply IHa1 with (C := fun x => C(Eassignop op x a2 tyres ty)); eauto. apply IHa2 with (C := fun x => C(Eassignop op a1 x tyres ty)); eauto.
(* postincr *)
destruct (is_loc a) as [[[b ofs] ty1]|]_eqn.
rewrite (is_loc_inv _ _ _ _ Heqo) in INV. red in INV.
destruct INV as [v1 [v2 [v3 [m' [P [Q [R [S T]]]]]]]].
subst. rewrite dec_eq_true; rewrite Q; rewrite R; rewrite S; rewrite T; apply topred_none.
apply incontext_none. apply IHa with (C := fun x => C(Epostincr id x ty)); eauto.
(* comma *)
destruct (is_val a1) as [[v1 ty1]|]_eqn.
rewrite (is_val_inv _ _ _ Heqo) in INV. red in INV. rewrite INV.
rewrite dec_eq_true; apply topred_none.
apply incontext_none. apply IHa1 with (C := fun x => C(Ecomma x a2 ty)); eauto.
(* call *)
destruct (is_val a) as [[vf tyf]|]_eqn.
destruct (is_val_list rargs) as [vtl|]_eqn.
rewrite (is_val_inv _ _ _ Heqo) in INV. red in INV.
destruct INV as [tyargs [tyres [fd [vl [P [Q [R S]]]]]]].
eapply is_val_list_all_values; eauto.
rewrite P; rewrite Q.
exploit sem_cast_arguments_complete; eauto. intros [vtl' [U V]].
assert (vtl' = vtl) by congruence. subst. rewrite V. rewrite S. rewrite dec_eq_true.
apply topred_none.
apply incontext2_none. apply IHa with (C := fun x => C(Ecall x rargs ty)); eauto.
apply step_exprlist_defined with (C := fun x => C(Ecall a x ty)); auto.
apply Cstrategy.contextlist'_intro with (rl0 := Enil). auto.
apply incontext2_none. apply IHa with (C := fun x => C(Ecall x rargs ty)); eauto.
apply step_exprlist_defined with (C := fun x => C(Ecall a x ty)); auto.
apply Cstrategy.contextlist'_intro with (rl0 := Enil). auto.
(* loc *)
congruence.
(* paren *)
destruct (is_val a) as [[v1 ty1]|]_eqn.
rewrite (is_val_inv _ _ _ Heqo) in INV. red in INV. destruct INV as [v EQ].
rewrite EQ; apply topred_none.
apply incontext_none. apply IHa with (C := fun x => C(Eparen x ty)); eauto.
induction al; intros; simpl.
(* nil *)
congruence.
(* cons *)
apply incontext2_none.
apply step_expr_defined with (C := fun x => C(Econs x al)); eauto.
apply Cstrategy.contextlist'_head; auto.
apply IHal with (C := fun x => C(Econs r1 x)); auto.
apply Cstrategy.contextlist'_tail; auto.
Qed.
(** Connections between [not_stuck] and [step_expr]. *)
Lemma step_expr_not_imm_stuck:
forall k a m,
step_expr k a m <> None ->
not_imm_stuck ge e k a m.
Proof.
intros. generalize (step_expr_sound a k m). unfold reducts_ok.
destruct (step_expr k a m) as [ll|]. destruct ll.
(* value or location *)
destruct k; destruct a; simpl; intros; try congruence.
apply not_stuck_loc.
apply Csem.not_stuck_val.
(* reducible *)
intros R. destruct p as [C1 rd1]. destruct (R C1 rd1) as [P [a' [U V]]]; auto with coqlib.
subst a. red in V. destruct rd1.
eapply not_stuck_lred; eauto.
eapply not_stuck_rred; eauto.
destruct V. subst m'. eapply not_stuck_callred; eauto.
(* stuck *)
congruence.
Qed.
Lemma step_expr_not_stuck:
forall a m,
step_expr RV a m <> None ->
not_stuck ge e a m.
Proof.
intros; red; intros. subst a.
apply step_expr_not_imm_stuck.
generalize (step_expr_context _ _ C H0 e' m). unfold reducts_incl.
destruct (step_expr k e' m). congruence.
destruct (step_expr RV (C e') m). tauto. congruence.
Qed.
Lemma not_stuck_step_expr:
forall a m,
not_stuck ge e a m ->
step_expr RV a m <> None.
Proof.
intros. apply step_expr_defined with (C := fun x => x); auto.
Qed.
End EXPRS.
(** * External functions and events. *)
Section EVENTS.
Variable F V: Type.
Variable genv: Genv.t F V.
Definition eventval_of_val (v: val) (t: typ) : option eventval :=
match v, t with
| Vint i, AST.Tint => Some (EVint i)
| Vfloat f, AST.Tfloat => Some (EVfloat f)
| Vptr b ofs, AST.Tint => do id <- Genv.invert_symbol genv b; Some (EVptr_global id ofs)
| _, _ => None
end.
Fixpoint list_eventval_of_val (vl: list val) (tl: list typ) : option (list eventval) :=
match vl, tl with
| nil, nil => Some nil
| v1::vl, t1::tl =>
do ev1 <- eventval_of_val v1 t1;
do evl <- list_eventval_of_val vl tl;
Some (ev1 :: evl)
| _, _ => None
end.
Definition val_of_eventval (ev: eventval) (t: typ) : option val :=
match ev, t with
| EVint i, AST.Tint => Some (Vint i)
| EVfloat f, AST.Tfloat => Some (Vfloat f)
| EVptr_global id ofs, AST.Tint => do b <- Genv.find_symbol genv id; Some (Vptr b ofs)
| _, _ => None
end.
Lemma eventval_of_val_sound:
forall v t ev, eventval_of_val v t = Some ev -> eventval_match genv ev t v.
Proof.
intros. destruct v; destruct t; simpl in H; inv H.
constructor.
constructor.
destruct (Genv.invert_symbol genv b) as [id|]_eqn; inv H1.
constructor. apply Genv.invert_find_symbol; auto.
Qed.
Lemma eventval_of_val_complete:
forall ev t v, eventval_match genv ev t v -> eventval_of_val v t = Some ev.
Proof.
induction 1; simpl; auto.
rewrite (Genv.find_invert_symbol _ _ H). auto.
Qed.
Lemma list_eventval_of_val_sound:
forall vl tl evl, list_eventval_of_val vl tl = Some evl -> eventval_list_match genv evl tl vl.
Proof with try discriminate.
induction vl; destruct tl; simpl; intros; inv H.
constructor.
destruct (eventval_of_val a t) as [ev1|]_eqn...
destruct (list_eventval_of_val vl tl) as [evl'|]_eqn...
inv H1. constructor. apply eventval_of_val_sound; auto. eauto.
Qed.
Lemma list_eventval_of_val_complete:
forall evl tl vl, eventval_list_match genv evl tl vl -> list_eventval_of_val vl tl = Some evl.
Proof.
induction 1; simpl. auto.
rewrite (eventval_of_val_complete _ _ _ H). rewrite IHeventval_list_match. auto.
Qed.
Lemma val_of_eventval_sound:
forall ev t v, val_of_eventval ev t = Some v -> eventval_match genv ev t v.
Proof.
intros. destruct ev; destruct t; simpl in H; inv H.
constructor.
constructor.
destruct (Genv.find_symbol genv i) as [b|]_eqn; inv H1.
constructor. auto.
Qed.
Lemma val_of_eventval_complete:
forall ev t v, eventval_match genv ev t v -> val_of_eventval ev t = Some v.
Proof.
induction 1; simpl; auto. rewrite H; auto.
Qed.
(** System calls and library functions *)
Definition do_ef_external (name: ident) (sg: signature)
(w: world) (vargs: list val) (m: mem) : option (world * trace * val * mem) :=
do args <- list_eventval_of_val vargs (sig_args sg);
match nextworld_io w name args with
| None => None
| Some(res, w') =>
do vres <- val_of_eventval res (proj_sig_res sg);
Some(w', Event_syscall name args res :: E0, vres, m)
end.
Definition do_ef_volatile_load (chunk: memory_chunk)
(w: world) (vargs: list val) (m: mem) : option (world * trace * val * mem) :=
match vargs with
| Vptr b ofs :: nil =>
if block_is_volatile genv b then
do id <- Genv.invert_symbol genv b;
match nextworld_vload w chunk id ofs with
| None => None
| Some(res, w') =>
do vres <- val_of_eventval res (type_of_chunk chunk);
Some(w', Event_vload chunk id ofs res :: nil, Val.load_result chunk vres, m)
end
else
do v <- Mem.load chunk m b (Int.unsigned ofs);
Some(w, E0, v, m)
| _ => None
end.
Definition do_ef_volatile_store (chunk: memory_chunk)
(w: world) (vargs: list val) (m: mem) : option (world * trace * val * mem) :=
match vargs with
| Vptr b ofs :: v :: nil =>
if block_is_volatile genv b then
do id <- Genv.invert_symbol genv b;
do ev <- eventval_of_val v (type_of_chunk chunk);
do w' <- nextworld_vstore w chunk id ofs ev;
Some(w', Event_vstore chunk id ofs ev :: nil, Vundef, m)
else
do m' <- Mem.store chunk m b (Int.unsigned ofs) v;
Some(w, E0, Vundef, m')
| _ => None
end.
Definition do_ef_malloc
(w: world) (vargs: list val) (m: mem) : option (world * trace * val * mem) :=
match vargs with
| Vint n :: nil =>
let (m', b) := Mem.alloc m (-4) (Int.unsigned n) in
do m'' <- Mem.store Mint32 m' b (-4) (Vint n);
Some(w, E0, Vptr b Int.zero, m'')
| _ => None
end.
Definition do_ef_free
(w: world) (vargs: list val) (m: mem) : option (world * trace * val * mem) :=
match vargs with
| Vptr b lo :: nil =>
do vsz <- Mem.load Mint32 m b (Int.unsigned lo - 4);
match vsz with
| Vint sz =>
check (zlt 0 (Int.unsigned sz));
do m' <- Mem.free m b (Int.unsigned lo - 4) (Int.unsigned lo + Int.unsigned sz);
Some(w, E0, Vundef, m')
| _ => None
end
| _ => None
end.
Definition memcpy_args_ok
(sz al: Z) (bdst: block) (odst: Z) (bsrc: block) (osrc: Z) : Prop :=
(al = 1 \/ al = 2 \/ al = 4)
/\ sz > 0
/\ (al | sz) /\ (al | osrc) /\ (al | odst)
/\ (bsrc <> bdst \/ osrc = odst \/ osrc + sz <= odst \/ odst + sz <= osrc).
Remark memcpy_check_args:
forall sz al bdst odst bsrc osrc,
{memcpy_args_ok sz al bdst odst bsrc osrc} + {~memcpy_args_ok sz al bdst odst bsrc osrc}.
Proof with try (right; intuition omega).
intros.
assert (X: {al = 1 \/ al = 2 \/ al = 4} + {~(al = 1 \/ al = 2 \/ al = 4)}).
destruct (zeq al 1); auto. destruct (zeq al 2); auto. destruct (zeq al 4); auto...
unfold memcpy_args_ok. destruct X...
assert (al > 0) by (intuition omega).
destruct (zlt 0 sz)...
destruct (Zdivide_dec al sz); auto...
destruct (Zdivide_dec al osrc); auto...
destruct (Zdivide_dec al odst); auto...
assert (Y: {bsrc <> bdst \/ osrc = odst \/ osrc + sz <= odst \/ odst + sz <= osrc}
+{~(bsrc <> bdst \/ osrc = odst \/ osrc + sz <= odst \/ odst + sz <= osrc)}).
destruct (eq_block bsrc bdst); auto.
destruct (zeq osrc odst); auto.
destruct (zle (osrc + sz) odst); auto.
destruct (zle (odst + sz) osrc); auto.
right; intuition omega.
destruct Y... left; intuition omega.
Qed.
Definition do_ef_memcpy (sz al: Z)
(w: world) (vargs: list val) (m: mem) : option (world * trace * val * mem) :=
match vargs with
| Vptr bdst odst :: Vptr bsrc osrc :: nil =>
if memcpy_check_args sz al bdst (Int.unsigned odst) bsrc (Int.unsigned osrc) then
do bytes <- Mem.loadbytes m bsrc (Int.unsigned osrc) sz;
do m' <- Mem.storebytes m bdst (Int.unsigned odst) bytes;
Some(w, E0, Vundef, m')
else None
| _ => None
end.
Definition do_ef_annot (text: ident) (targs: list typ)
(w: world) (vargs: list val) (m: mem) : option (world * trace * val * mem) :=
do args <- list_eventval_of_val vargs targs;
Some(w, Event_annot text args :: E0, Vundef, m).
Definition do_ef_annot_val (text: ident) (targ: typ)
(w: world) (vargs: list val) (m: mem) : option (world * trace * val * mem) :=
match vargs with
| varg :: nil =>
do arg <- eventval_of_val varg targ;
Some(w, Event_annot text (arg :: nil) :: E0, varg, m)
| _ => None
end.
Definition do_external (ef: external_function):
world -> list val -> mem -> option (world * trace * val * mem) :=
match ef with
| EF_external name sg => do_ef_external name sg
| EF_builtin name sg => do_ef_external name sg
| EF_vload chunk => do_ef_volatile_load chunk
| EF_vstore chunk => do_ef_volatile_store chunk
| EF_malloc => do_ef_malloc
| EF_free => do_ef_free
| EF_memcpy sz al => do_ef_memcpy sz al
| EF_annot text targs => do_ef_annot text targs
| EF_annot_val text targ => do_ef_annot_val text targ
end.
Ltac mydestr :=
match goal with
| [ |- None = Some _ -> _ ] => intro X; discriminate
| [ |- Some _ = Some _ -> _ ] => intro X; inv X
| [ |- match ?x with Some _ => _ | None => _ end = Some _ -> _ ] => destruct x as []_eqn; mydestr
| [ |- match ?x with true => _ | false => _ end = Some _ -> _ ] => destruct x as []_eqn; mydestr
| [ |- match ?x with left _ => _ | right _ => _ end = Some _ -> _ ] => destruct x; mydestr
| _ => idtac
end.
Lemma do_ef_external_sound:
forall ef w vargs m w' t vres m',
do_external ef w vargs m = Some(w', t, vres, m') ->
external_call ef genv vargs m t vres m' /\ possible_trace w t w'.
Proof with try congruence.
intros until m'.
assert (IO: forall name sg,
do_ef_external name sg w vargs m = Some(w', t, vres, m') ->
extcall_io_sem name sg genv vargs m t vres m' /\ possible_trace w t w').
intros until sg. unfold do_ef_external. mydestr. destruct p as [res w'']; mydestr.
split. econstructor. apply list_eventval_of_val_sound; auto.
apply val_of_eventval_sound; auto.
econstructor. constructor; eauto. constructor.
destruct ef; simpl.
(* EF_external *)
auto.
(* EF_builtin *)
auto.
(* EF_vload *)
unfold do_ef_volatile_load. destruct vargs... destruct v... destruct vargs...
mydestr. destruct p as [res w'']; mydestr.
split. constructor. apply Genv.invert_find_symbol; auto. auto.
apply val_of_eventval_sound; auto.
econstructor. constructor; eauto. constructor.
split. constructor; auto. constructor.
(* EF_vstore *)
unfold do_ef_volatile_store. destruct vargs... destruct v... destruct vargs... destruct vargs...
mydestr.
split. constructor. apply Genv.invert_find_symbol; auto. auto.
apply eventval_of_val_sound; auto.
econstructor. constructor; eauto. constructor.
split. constructor; auto. constructor.
(* EF_malloc *)
unfold do_ef_malloc. destruct vargs... destruct v... destruct vargs...
destruct (Mem.alloc m (-4) (Int.unsigned i)) as [m1 b]_eqn. mydestr.
split. econstructor; eauto. constructor.
(* EF_free *)
unfold do_ef_free. destruct vargs... destruct v... destruct vargs...
mydestr. destruct v... mydestr.
split. econstructor; eauto. omega. constructor.
(* EF_memcpy *)
unfold do_ef_memcpy. destruct vargs... destruct v... destruct vargs...
destruct v... destruct vargs... mydestr. red in m0.
split. econstructor; eauto; tauto. constructor.
(* EF_annot *)
unfold do_ef_annot. mydestr.
split. constructor. apply list_eventval_of_val_sound; auto.
econstructor. constructor; eauto. constructor.
(* EF_annot_val *)
unfold do_ef_annot_val. destruct vargs... destruct vargs... mydestr.
split. constructor. apply eventval_of_val_sound; auto.
econstructor. constructor; eauto. constructor.
Qed.
Lemma do_ef_external_complete:
forall ef w vargs m w' t vres m',
external_call ef genv vargs m t vres m' -> possible_trace w t w' ->
do_external ef w vargs m = Some(w', t, vres, m').
Proof.
intros.
assert (IO: forall name sg,
extcall_io_sem name sg genv vargs m t vres m' ->
do_ef_external name sg w vargs m = Some (w', t, vres, m')).
intros. inv H1. inv H0. inv H8. inv H6.
unfold do_ef_external. rewrite (list_eventval_of_val_complete _ _ _ H2). rewrite H8.
rewrite (val_of_eventval_complete _ _ _ H3). auto.
destruct ef; simpl in *.
(* EF_external *)
auto.
(* EF_builtin *)
auto.
(* EF_vload *)
inv H; unfold do_ef_volatile_load.
inv H0. inv H8. inv H6.
rewrite H2. rewrite (Genv.find_invert_symbol _ _ H1). rewrite H9.
rewrite (val_of_eventval_complete _ _ _ H3). auto.
inv H0. rewrite H1. rewrite H2. auto.
(* EF_vstore *)
inv H; unfold do_ef_volatile_store.
inv H0. inv H8. inv H6.
rewrite H2. rewrite (Genv.find_invert_symbol _ _ H1).
rewrite (eventval_of_val_complete _ _ _ H3). rewrite H9. auto.
inv H0. rewrite H1. rewrite H2. auto.
(* EF_malloc *)
inv H; unfold do_ef_malloc.
inv H0. rewrite H1. rewrite H2. auto.
(* EF_free *)
inv H; unfold do_ef_free.
inv H0. rewrite H1. rewrite zlt_true. rewrite H3. auto. omega.
(* EF_memcpy *)
inv H; unfold do_ef_memcpy.
inv H0. rewrite pred_dec_true. rewrite H7; rewrite H8; auto.
red. tauto.
(* EF_annot *)
inv H; unfold do_ef_annot. inv H0. inv H6. inv H4.
rewrite (list_eventval_of_val_complete _ _ _ H1). auto.
(* EF_annot_val *)
inv H; unfold do_ef_annot_val. inv H0. inv H6. inv H4.
rewrite (eventval_of_val_complete _ _ _ H1). auto.
Qed.
End EVENTS.
(** * Transitions over states. *)
Fixpoint do_alloc_variables (e: env) (m: mem) (l: list (ident * type)) {struct l} : env * mem :=
match l with
| nil => (e,m)
| (id, ty) :: l' =>
let (m1,b1) := Mem.alloc m 0 (sizeof ty) in
do_alloc_variables (PTree.set id (b1, ty) e) m1 l'
end.
Lemma do_alloc_variables_sound:
forall l e m, alloc_variables e m l (fst (do_alloc_variables e m l)) (snd (do_alloc_variables e m l)).
Proof.
induction l; intros; simpl.
constructor.
destruct a as [id ty]. destruct (Mem.alloc m 0 (sizeof ty)) as [m1 b1]_eqn; simpl.
econstructor; eauto.
Qed.
Lemma do_alloc_variables_complete:
forall e1 m1 l e2 m2, alloc_variables e1 m1 l e2 m2 ->
do_alloc_variables e1 m1 l = (e2, m2).
Proof.
induction 1; simpl.
auto.
rewrite H; rewrite IHalloc_variables; auto.
Qed.
Function sem_bind_parameters (e: env) (m: mem) (l: list (ident * type)) (lv: list val)
{struct l} : option mem :=
match l, lv with
| nil, nil => Some m
| (id, ty) :: params, v1::lv =>
match PTree.get id e with
| Some (b, ty') =>
check (type_eq ty ty');
do m1 <- store_value_of_type ty m b Int.zero v1;
sem_bind_parameters e m1 params lv
| None => None
end
| _, _ => None
end.
Lemma sem_bind_parameters_sound : forall e m l lv m',
sem_bind_parameters e m l lv = Some m' ->
bind_parameters e m l lv m'.
Proof.
intros; functional induction (sem_bind_parameters e m l lv); try discriminate.
inversion H; constructor; auto.
econstructor; eauto.
Qed.
Lemma sem_bind_parameters_complete : forall e m l lv m',
bind_parameters e m l lv m' ->
sem_bind_parameters e m l lv = Some m'.
Proof.
induction 1; simpl; auto.
rewrite H. rewrite dec_eq_true.
destruct (store_value_of_type ty m b Int.zero v1); try discriminate.
inv H0; auto.
Qed.
Definition expr_final_state (f: function) (k: cont) (e: env) (C_rd: (expr -> expr) * reduction) :=
match snd C_rd with
| Lred a m => (E0, ExprState f (fst C_rd a) k e m)
| Rred a m => (E0, ExprState f (fst C_rd a) k e m)
| Callred fd vargs ty m => (E0, Callstate fd vargs (Kcall f e (fst C_rd) ty k) m)
end.
Local Open Scope list_monad_scope.
Definition ret (S: state) : list (trace * state) := (E0, S) :: nil.
Definition do_step (w: world) (s: state) : list (trace * state) :=
match s with
| ExprState f a k e m =>
match is_val a with
| Some(v, ty) =>
match k with
| Kdo k => ret (State f Sskip k e m )
| Kifthenelse s1 s2 k =>
do b <- bool_val v ty; ret (State f (if b then s1 else s2) k e m)
| Kwhile1 x s k =>
do b <- bool_val v ty;
if b then ret (State f s (Kwhile2 x s k) e m) else ret (State f Sskip k e m)
| Kdowhile2 x s k =>
do b <- bool_val v ty;
if b then ret (State f (Sdowhile x s) k e m) else ret (State f Sskip k e m)
| Kfor2 a2 a3 s k =>
do b <- bool_val v ty;
if b then ret (State f s (Kfor3 a2 a3 s k) e m) else ret (State f Sskip k e m)
| Kreturn k =>
do v' <- sem_cast v ty f.(fn_return);
do m' <- Mem.free_list m (blocks_of_env e);
ret (Returnstate v' (call_cont k) m')
| Kswitch1 sl k =>
match v with
| Vint n => ret (State f (seq_of_labeled_statement (select_switch n sl)) (Kswitch2 k) e m)
| _ => nil
end
| _ => nil
end
| None =>
match step_expr e RV a m with
| None => nil
| Some ll => map (expr_final_state f k e) ll
end
end
| State f (Sdo x) k e m => ret(ExprState f x (Kdo k) e m)
| State f (Ssequence s1 s2) k e m => ret(State f s1 (Kseq s2 k) e m)
| State f Sskip (Kseq s k) e m => ret (State f s k e m)
| State f Scontinue (Kseq s k) e m => ret (State f Scontinue k e m)
| State f Sbreak (Kseq s k) e m => ret (State f Sbreak k e m)
| State f (Sifthenelse a s1 s2) k e m => ret (ExprState f a (Kifthenelse s1 s2 k) e m)
| State f (Swhile x s) k e m => ret (ExprState f x (Kwhile1 x s k) e m)
| State f (Sskip|Scontinue) (Kwhile2 x s k) e m => ret (State f (Swhile x s) k e m)
| State f Sbreak (Kwhile2 x s k) e m => ret (State f Sskip k e m)
| State f (Sdowhile a s) k e m => ret (State f s (Kdowhile1 a s k) e m)
| State f (Sskip|Scontinue) (Kdowhile1 x s k) e m => ret (ExprState f x (Kdowhile2 x s k) e m)
| State f Sbreak (Kdowhile1 x s k) e m => ret (State f Sskip k e m)
| State f (Sfor a1 a2 a3 s) k e m =>
if is_skip a1
then ret (ExprState f a2 (Kfor2 a2 a3 s k) e m)
else ret (State f a1 (Kseq (Sfor Sskip a2 a3 s) k) e m)
| State f Sskip (Kfor3 a2 a3 s k) e m => ret (State f a3 (Kfor4 a2 a3 s k) e m)
| State f Scontinue (Kfor3 a2 a3 s k) e m => ret (State f a3 (Kfor4 a2 a3 s k) e m)
| State f Sbreak (Kfor3 a2 a3 s k) e m => ret (State f Sskip k e m)
| State f Sskip (Kfor4 a2 a3 s k) e m => ret (State f (Sfor Sskip a2 a3 s) k e m)
| State f (Sreturn None) k e m =>
do m' <- Mem.free_list m (blocks_of_env e);
ret (Returnstate Vundef (call_cont k) m')
| State f (Sreturn (Some x)) k e m => ret (ExprState f x (Kreturn k) e m)
| State f Sskip ((Kstop | Kcall _ _ _ _ _) as k) e m =>
check (type_eq f.(fn_return) Tvoid);
do m' <- Mem.free_list m (blocks_of_env e);
ret (Returnstate Vundef k m')
| State f (Sswitch x sl) k e m => ret (ExprState f x (Kswitch1 sl k) e m)
| State f (Sskip|Sbreak) (Kswitch2 k) e m => ret (State f Sskip k e m)
| State f Scontinue (Kswitch2 k) e m => ret (State f Scontinue k e m)
| State f (Slabel lbl s) k e m => ret (State f s k e m)
| State f (Sgoto lbl) k e m =>
match find_label lbl f.(fn_body) (call_cont k) with
| Some(s', k') => ret (State f s' k' e m)
| None => nil
end
| Callstate (Internal f) vargs k m =>
check (list_norepet_dec ident_eq (var_names (fn_params f) ++ var_names (fn_vars f)));
let (e,m1) := do_alloc_variables empty_env m (f.(fn_params) ++ f.(fn_vars)) in
do m2 <- sem_bind_parameters e m1 f.(fn_params) vargs;
ret (State f f.(fn_body) k e m2)
| Callstate (External ef _ _) vargs k m =>
match do_external _ _ ge ef w vargs m with
| None => nil
| Some(w',t,v,m') => (t, Returnstate v k m') :: nil
end
| Returnstate v (Kcall f e C ty k) m => ret (ExprState f (C (Eval v ty)) k e m)
| _ => nil
end.
Ltac myinv :=
match goal with
| [ |- In _ nil -> _ ] => intro X; elim X
| [ |- In _ (ret _) -> _ ] =>
intro X; elim X; clear X;
[intro EQ; unfold ret in EQ; inv EQ; myinv | myinv]
| [ |- In _ (_ :: nil) -> _ ] =>
intro X; elim X; clear X; [intro EQ; inv EQ; myinv | myinv]
| [ |- In _ (match ?x with Some _ => _ | None => _ end) -> _ ] => destruct x as []_eqn; myinv
| [ |- In _ (match ?x with false => _ | true => _ end) -> _ ] => destruct x as []_eqn; myinv
| [ |- In _ (match ?x with left _ => _ | right _ => _ end) -> _ ] => destruct x; myinv
| _ => idtac
end.
Hint Extern 3 => exact I.
Lemma do_step_sound:
forall w S t S', In (t, S') (do_step w S) -> Csem.step ge S t S'.
Proof with try (right; econstructor; eauto; fail).
intros until S'. destruct S; simpl.
(* State *)
destruct s; myinv...
(* skip *)
destruct k; myinv...
(* break *)
destruct k; myinv...
(* continue *)
destruct k; myinv...
(* goto *)
destruct p as [s' k']. myinv...
(* ExprState *)
destruct (is_val r) as [[v ty]|]_eqn.
(* expression is a value *)
rewrite (is_val_inv _ _ _ Heqo).
destruct k; myinv...
destruct v; myinv...
(* expression reduces *)
destruct (step_expr e RV r m) as [ll|]_eqn; try contradiction. intros.
exploit list_in_map_inv; eauto. intros [[C rd] [A B]].
generalize (step_expr_sound e r RV m). unfold reducts_ok. rewrite Heqr0.
destruct ll; try contradiction. intros SOUND.
exploit SOUND; eauto. intros [CTX [a [EQ RD]]]. subst r.
unfold expr_final_state in A. simpl in A. left.
destruct rd; inv A; simpl in RD.
apply step_lred. auto. apply step_expr_not_stuck; congruence. auto.
apply step_rred. auto. apply step_expr_not_stuck; congruence. auto.
destruct RD; subst m'. apply Csem.step_call. auto. apply step_expr_not_stuck; congruence. auto.
(* callstate *)
destruct fd; myinv.
(* internal *)
destruct (do_alloc_variables empty_env m (fn_params f ++ fn_vars f)) as [e m1]_eqn.
myinv. right; apply step_internal_function with m1. auto.
change e with (fst (e,m1)). change m1 with (snd (e,m1)) at 2. rewrite <- Heqp.
apply do_alloc_variables_sound. apply sem_bind_parameters_sound; auto.
(* external *)
destruct p as [[[w' tr] v] m']. myinv. right; constructor.
eapply do_ef_external_sound; eauto.
(* returnstate *)
destruct k; myinv...
Qed.
Remark estep_not_val:
forall f a k e m t S, estep ge (ExprState f a k e m) t S -> is_val a = None.
Proof.
intros.
assert (forall b from to C, context from to C -> (C = fun x => x) \/ is_val (C b) = None).
induction 1; simpl; auto.
inv H.
destruct (H0 a0 _ _ _ H10). subst. inv H8; auto. auto.
destruct (H0 a0 _ _ _ H10). subst. inv H8; auto. auto.
destruct (H0 a0 _ _ _ H10). subst. inv H8; auto. auto.
Qed.
Lemma do_step_complete:
forall w S t S' w', possible_trace w t w' -> Csem.step ge S t S' -> In (t, S') (do_step w S).
Proof with (unfold ret; auto with coqlib).
intros until w'; intro PT; intros.
destruct H.
(* Expression step *)
inversion H; subst; exploit estep_not_val; eauto; intro NOTVAL.
(* lred *)
unfold do_step; rewrite NOTVAL.
destruct (step_expr e RV (C a) m) as [ll|]_eqn.
change (E0, ExprState f (C a') k e m') with (expr_final_state f k e (C, Lred a' m')).
apply in_map.
generalize (step_expr_context e _ _ _ H2 a m). unfold reducts_incl.
rewrite Heqr. destruct (step_expr e LV a m) as [ll'|]_eqn; try tauto.
intro. replace C with (fun x => C x). apply H3.
rewrite (lred_topred _ _ _ _ _ H0) in Heqr0. inv Heqr0. auto with coqlib.
apply extensionality; auto.
exploit not_stuck_step_expr; eauto.
(* rred *)
unfold do_step; rewrite NOTVAL.
destruct (step_expr e RV (C a) m) as [ll|]_eqn.
change (E0, ExprState f (C a') k e m') with (expr_final_state f k e (C, Rred a' m')).
apply in_map.
generalize (step_expr_context e _ _ _ H2 a m). unfold reducts_incl.
rewrite Heqr. destruct (step_expr e RV a m) as [ll'|]_eqn; try tauto.
intro. replace C with (fun x => C x). apply H3.
rewrite (rred_topred _ _ _ _ _ H0) in Heqr0. inv Heqr0. auto with coqlib.
apply extensionality; auto.
exploit not_stuck_step_expr; eauto.
(* callred *)
unfold do_step; rewrite NOTVAL.
destruct (step_expr e RV (C a) m) as [ll|]_eqn.
change (E0, Callstate fd vargs (Kcall f e C ty k) m) with (expr_final_state f k e (C, Callred fd vargs ty m)).
apply in_map.
generalize (step_expr_context e _ _ _ H2 a m). unfold reducts_incl.
rewrite Heqr. destruct (step_expr e RV a m) as [ll'|]_eqn; try tauto.
intro. replace C with (fun x => C x). apply H3.
rewrite (callred_topred _ _ _ _ _ _ H0) in Heqr0. inv Heqr0. auto with coqlib.
apply extensionality; auto.
exploit not_stuck_step_expr; eauto.
(* Statement step *)
inv H; simpl...
rewrite H0...
rewrite H0...
rewrite H0...
destruct H0; subst s0...
destruct H0; subst s0...
rewrite H0...
rewrite H0...
rewrite pred_dec_false...
rewrite pred_dec_true...
rewrite H0...
rewrite H0...
destruct H0; subst x...
rewrite H0...
rewrite H0; rewrite H1...
rewrite pred_dec_true; auto. rewrite H2. red in H0. destruct k; try contradiction...
destruct H0; subst x...
rewrite H0...
(* Call step *)
rewrite pred_dec_true; auto. rewrite (do_alloc_variables_complete _ _ _ _ _ H1).
rewrite (sem_bind_parameters_complete _ _ _ _ _ H2)...
exploit do_ef_external_complete; eauto. intro EQ; rewrite EQ. auto with coqlib.
Qed.
End EXEC.
Local Open Scope option_monad_scope.
Definition do_initial_state (p: program): option (genv * state) :=
let ge := Genv.globalenv p in
do m0 <- Genv.init_mem p;
do b <- Genv.find_symbol ge p.(prog_main);
do f <- Genv.find_funct_ptr ge b;
check (type_eq (type_of_fundef f) (Tfunction Tnil (Tint I32 Signed)));
Some (ge, Callstate f nil Kstop m0).
Definition at_final_state (S: state): option int :=
match S with
| Returnstate (Vint r) Kstop m => Some r
| _ => None
end.
|