1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
|
(* *********************************************************************)
(* *)
(* The Compcert verified compiler *)
(* *)
(* Xavier Leroy, INRIA Paris-Rocquencourt *)
(* *)
(* Copyright Institut National de Recherche en Informatique et en *)
(* Automatique. All rights reserved. This file is distributed *)
(* under the terms of the INRIA Non-Commercial License Agreement. *)
(* *)
(* *********************************************************************)
(** Correctness proof for RTL generation. *)
Require Import Coqlib.
Require Import Maps.
Require Import AST.
Require Import Integers.
Require Import Values.
Require Import Memory.
Require Import Events.
Require Import Smallstep.
Require Import Globalenvs.
Require Import Switch.
Require Import Registers.
Require Import Cminor.
Require Import Op.
Require Import CminorSel.
Require Import RTL.
Require Import RTLgen.
Require Import RTLgenspec.
(** * Correspondence between Cminor environments and RTL register sets *)
(** A compilation environment (mapping) is well-formed if
the following properties hold:
- Two distinct Cminor local variables are mapped to distinct pseudo-registers.
- A Cminor local variable and a let-bound variable are mapped to
distinct pseudo-registers.
*)
Record map_wf (m: mapping) : Prop :=
mk_map_wf {
map_wf_inj:
(forall id1 id2 r,
m.(map_vars)!id1 = Some r -> m.(map_vars)!id2 = Some r -> id1 = id2);
map_wf_disj:
(forall id r,
m.(map_vars)!id = Some r -> In r m.(map_letvars) -> False)
}.
Lemma init_mapping_wf:
map_wf init_mapping.
Proof.
unfold init_mapping; split; simpl.
intros until r. rewrite PTree.gempty. congruence.
tauto.
Qed.
Lemma add_var_wf:
forall s1 s2 map name r map' i,
add_var map name s1 = OK (r,map') s2 i ->
map_wf map -> map_valid map s1 -> map_wf map'.
Proof.
intros. monadInv H.
apply mk_map_wf; simpl.
intros until r0. repeat rewrite PTree.gsspec.
destruct (peq id1 name); destruct (peq id2 name).
congruence.
intros. inv H. elimtype False.
apply valid_fresh_absurd with r0 s1.
apply H1. left; exists id2; auto.
eauto with rtlg.
intros. inv H2. elimtype False.
apply valid_fresh_absurd with r0 s1.
apply H1. left; exists id1; auto.
eauto with rtlg.
inv H0. eauto.
intros until r0. rewrite PTree.gsspec.
destruct (peq id name).
intros. inv H.
apply valid_fresh_absurd with r0 s1.
apply H1. right; auto.
eauto with rtlg.
inv H0; eauto.
Qed.
Lemma add_vars_wf:
forall names s1 s2 map map' rl i,
add_vars map names s1 = OK (rl,map') s2 i ->
map_wf map -> map_valid map s1 -> map_wf map'.
Proof.
induction names; simpl; intros; monadInv H.
auto.
exploit add_vars_valid; eauto. intros [A B].
eapply add_var_wf; eauto.
Qed.
Lemma add_letvar_wf:
forall map r,
map_wf map -> ~reg_in_map map r -> map_wf (add_letvar map r).
Proof.
intros. inv H. unfold add_letvar; constructor; simpl.
auto.
intros. elim H1; intro. subst r0. elim H0. left; exists id; auto.
eauto.
Qed.
(** An RTL register environment matches a CminorSel local environment and
let-environment if the value of every local or let-bound variable in
the CminorSel environments is identical to the value of the
corresponding pseudo-register in the RTL register environment. *)
Record match_env
(map: mapping) (e: env) (le: letenv) (rs: regset) : Prop :=
mk_match_env {
me_vars:
(forall id v,
e!id = Some v -> exists r, map.(map_vars)!id = Some r /\ rs#r = v);
me_letvars:
rs##(map.(map_letvars)) = le
}.
Lemma match_env_find_var:
forall map e le rs id v r,
match_env map e le rs ->
e!id = Some v ->
map.(map_vars)!id = Some r ->
rs#r = v.
Proof.
intros. exploit me_vars; eauto. intros [r' [EQ' RS]].
replace r with r'. auto. congruence.
Qed.
Lemma match_env_find_letvar:
forall map e le rs idx v r,
match_env map e le rs ->
List.nth_error le idx = Some v ->
List.nth_error map.(map_letvars) idx = Some r ->
rs#r = v.
Proof.
intros. exploit me_letvars; eauto. intros.
rewrite <- H2 in H0. rewrite list_map_nth in H0.
change reg with positive in H1. rewrite H1 in H0.
simpl in H0. congruence.
Qed.
Lemma match_env_invariant:
forall map e le rs rs',
match_env map e le rs ->
(forall r, (reg_in_map map r) -> rs'#r = rs#r) ->
match_env map e le rs'.
Proof.
intros. inversion H. apply mk_match_env.
intros. exploit me_vars0; eauto. intros [r [A B]].
exists r; split. auto. rewrite H0; auto. left; exists id; auto.
rewrite <- me_letvars0. apply list_map_exten. intros.
symmetry. apply H0. right; auto.
Qed.
(** Matching between environments is preserved when an unmapped register
(not corresponding to any Cminor variable) is assigned in the RTL
execution. *)
Lemma match_env_update_temp:
forall map e le rs r v,
match_env map e le rs ->
~(reg_in_map map r) ->
match_env map e le (rs#r <- v).
Proof.
intros. apply match_env_invariant with rs; auto.
intros. case (Reg.eq r r0); intro.
subst r0; contradiction.
apply Regmap.gso; auto.
Qed.
Hint Resolve match_env_update_temp: rtlg.
(** Matching between environments is preserved by simultaneous
assignment to a Cminor local variable (in the Cminor environments)
and to the corresponding RTL pseudo-register (in the RTL register
environment). *)
Lemma match_env_update_var:
forall map e le rs id r v,
map_wf map ->
map.(map_vars)!id = Some r ->
match_env map e le rs ->
match_env map (PTree.set id v e) le (rs#r <- v).
Proof.
intros. inversion H. inversion H1. apply mk_match_env.
intros id' v'. rewrite PTree.gsspec. destruct (peq id' id); intros.
subst id'. inv H2. exists r; split. auto. apply PMap.gss.
exploit me_vars0; eauto. intros [r' [A B]].
exists r'; split. auto. rewrite PMap.gso; auto.
red; intros. subst r'. elim n. eauto.
rewrite <- me_letvars0. apply list_map_exten; intros.
symmetry. apply PMap.gso. red; intros. subst x. eauto.
Qed.
(** A variant of [match_env_update_var] where a variable is optionally
assigned to, depending on the [dst] parameter. *)
Lemma match_env_update_dest:
forall map e le rs dst r v,
map_wf map ->
reg_map_ok map r dst ->
match_env map e le rs ->
match_env map (set_optvar dst v e) le (rs#r <- v).
Proof.
intros. inv H0; simpl.
eapply match_env_update_temp; eauto.
eapply match_env_update_var; eauto.
Qed.
Hint Resolve match_env_update_dest: rtlg.
(** Matching and [let]-bound variables. *)
Lemma match_env_bind_letvar:
forall map e le rs r v,
match_env map e le rs ->
rs#r = v ->
match_env (add_letvar map r) e (v :: le) rs.
Proof.
intros. inv H. unfold add_letvar. apply mk_match_env; simpl; auto.
Qed.
Lemma match_env_unbind_letvar:
forall map e le rs r v,
match_env (add_letvar map r) e (v :: le) rs ->
match_env map e le rs.
Proof.
unfold add_letvar; intros. inv H. simpl in *.
constructor. auto. congruence.
Qed.
(** Matching between initial environments. *)
Lemma match_env_empty:
forall map,
map.(map_letvars) = nil ->
match_env map (PTree.empty val) nil (Regmap.init Vundef).
Proof.
intros. apply mk_match_env.
intros. rewrite PTree.gempty in H0. discriminate.
rewrite H. reflexivity.
Qed.
(** The assignment of function arguments to local variables (on the Cminor
side) and pseudo-registers (on the RTL side) preserves matching
between environments. *)
Lemma match_set_params_init_regs:
forall il rl s1 map2 s2 vl i,
add_vars init_mapping il s1 = OK (rl, map2) s2 i ->
match_env map2 (set_params vl il) nil (init_regs vl rl)
/\ (forall r, reg_fresh r s2 -> (init_regs vl rl)#r = Vundef).
Proof.
induction il; intros.
inv H. split. apply match_env_empty. auto. intros.
simpl. apply Regmap.gi.
monadInv H. simpl.
exploit add_vars_valid; eauto. apply init_mapping_valid. intros [A B].
exploit add_var_valid; eauto. intros [A' B']. clear B'.
monadInv EQ1.
destruct vl as [ | v1 vs].
(* vl = nil *)
destruct (IHil _ _ _ _ nil _ EQ) as [ME UNDEF]. inv ME. split.
constructor; simpl.
intros id v. repeat rewrite PTree.gsspec. destruct (peq id a); intros.
subst a. inv H. exists x1; split. auto. apply Regmap.gi.
replace (init_regs nil x) with (Regmap.init Vundef) in me_vars0. eauto.
destruct x; reflexivity.
destruct (map_letvars x0). auto. simpl in me_letvars0. congruence.
intros. apply Regmap.gi.
(* vl = v1 :: vs *)
destruct (IHil _ _ _ _ vs _ EQ) as [ME UNDEF]. inv ME. split.
constructor; simpl.
intros id v. repeat rewrite PTree.gsspec. destruct (peq id a); intros.
subst a. inv H. exists x1; split. auto. apply Regmap.gss.
exploit me_vars0; eauto. intros [r' [C D]].
exists r'; split. auto. rewrite Regmap.gso. auto.
apply valid_fresh_different with s.
apply B. left; exists id; auto.
eauto with rtlg.
destruct (map_letvars x0). auto. simpl in me_letvars0. congruence.
intros. rewrite Regmap.gso. apply UNDEF.
apply reg_fresh_decr with s2; eauto with rtlg.
apply sym_not_equal. apply valid_fresh_different with s2; auto.
Qed.
Lemma match_set_locals:
forall map1 s1,
map_wf map1 ->
forall il rl map2 s2 e le rs i,
match_env map1 e le rs ->
(forall r, reg_fresh r s1 -> rs#r = Vundef) ->
add_vars map1 il s1 = OK (rl, map2) s2 i ->
match_env map2 (set_locals il e) le rs.
Proof.
induction il; simpl in *; intros.
inv H2. auto.
monadInv H2.
exploit IHil; eauto. intro.
monadInv EQ1.
constructor.
intros id v. simpl. repeat rewrite PTree.gsspec.
destruct (peq id a). subst a. intro.
exists x1. split. auto. inv H3.
apply H1. apply reg_fresh_decr with s. auto.
eauto with rtlg.
intros. eapply me_vars; eauto.
simpl. eapply me_letvars; eauto.
Qed.
Lemma match_init_env_init_reg:
forall params s0 rparams map1 s1 i1 vars rvars map2 s2 i2 vparams,
add_vars init_mapping params s0 = OK (rparams, map1) s1 i1 ->
add_vars map1 vars s1 = OK (rvars, map2) s2 i2 ->
match_env map2 (set_locals vars (set_params vparams params))
nil (init_regs vparams rparams).
Proof.
intros.
exploit match_set_params_init_regs; eauto. intros [A B].
eapply match_set_locals; eauto.
eapply add_vars_wf; eauto. apply init_mapping_wf.
apply init_mapping_valid.
Qed.
(** * The simulation argument *)
Require Import Errors.
Section CORRECTNESS.
Variable prog: CminorSel.program.
Variable tprog: RTL.program.
Hypothesis TRANSL: transl_program prog = OK tprog.
Let ge : CminorSel.genv := Genv.globalenv prog.
Let tge : RTL.genv := Genv.globalenv tprog.
(** Relationship between the global environments for the original
CminorSel program and the generated RTL program. *)
Lemma symbols_preserved:
forall (s: ident), Genv.find_symbol tge s = Genv.find_symbol ge s.
Proof
(Genv.find_symbol_transf_partial transl_fundef _ TRANSL).
Lemma function_ptr_translated:
forall (b: block) (f: CminorSel.fundef),
Genv.find_funct_ptr ge b = Some f ->
exists tf,
Genv.find_funct_ptr tge b = Some tf /\ transl_fundef f = OK tf.
Proof
(Genv.find_funct_ptr_transf_partial transl_fundef _ TRANSL).
Lemma functions_translated:
forall (v: val) (f: CminorSel.fundef),
Genv.find_funct ge v = Some f ->
exists tf,
Genv.find_funct tge v = Some tf /\ transl_fundef f = OK tf.
Proof
(Genv.find_funct_transf_partial transl_fundef _ TRANSL).
Lemma sig_transl_function:
forall (f: CminorSel.fundef) (tf: RTL.fundef),
transl_fundef f = OK tf ->
RTL.funsig tf = CminorSel.funsig f.
Proof.
intros until tf. unfold transl_fundef, transf_partial_fundef.
case f; intro.
unfold transl_function.
destruct (reserve_labels (fn_body f0) (PTree.empty node, init_state)) as [ngoto s0].
case (transl_fun f0 ngoto s0); simpl; intros.
discriminate.
destruct p. simpl in H. inversion H. reflexivity.
intro. inversion H. reflexivity.
Qed.
Lemma varinfo_preserved:
forall b, Genv.find_var_info tge b = Genv.find_var_info ge b.
Proof
(Genv.find_var_info_transf_partial transl_fundef _ TRANSL).
(** Correctness of the code generated by [add_move]. *)
Lemma tr_move_correct:
forall r1 ns r2 nd cs f sp rs m,
tr_move f.(fn_code) ns r1 nd r2 ->
exists rs',
star step tge (State cs f sp ns rs m) E0 (State cs f sp nd rs' m) /\
rs'#r2 = rs#r1 /\
(forall r, r <> r2 -> rs'#r = rs#r).
Proof.
intros. inv H.
exists rs; split. constructor. auto.
exists (rs#r2 <- (rs#r1)); split.
apply star_one. eapply exec_Iop. eauto. auto.
split. apply Regmap.gss. intros; apply Regmap.gso; auto.
Qed.
(** Correctness of the translation of [switch] statements *)
Lemma transl_switch_correct:
forall cs sp e m f map r nexits t ns,
tr_switch f.(fn_code) map r nexits t ns ->
forall rs i act,
rs#r = Vint i ->
map_wf map ->
match_env map e nil rs ->
comptree_match i t = Some act ->
exists nd, exists rs',
star step tge (State cs f sp ns rs m) E0 (State cs f sp nd rs' m) /\
nth_error nexits act = Some nd /\
match_env map e nil rs'.
Proof.
Opaque Int.sub.
induction 1; simpl; intros.
(* action *)
inv H3. exists n; exists rs; intuition.
apply star_refl.
(* ifeq *)
caseEq (Int.eq i key); intro EQ; rewrite EQ in H5.
inv H5. exists nfound; exists rs; intuition.
apply star_one. eapply exec_Icond_true; eauto.
simpl. rewrite H2. congruence.
exploit IHtr_switch; eauto. intros [nd1 [rs1 [EX [NTH ME]]]].
exists nd1; exists rs1; intuition.
eapply star_step. eapply exec_Icond_false; eauto.
simpl. rewrite H2. congruence. eexact EX. traceEq.
(* iflt *)
caseEq (Int.ltu i key); intro EQ; rewrite EQ in H5.
exploit IHtr_switch1; eauto. intros [nd1 [rs1 [EX [NTH ME]]]].
exists nd1; exists rs1; intuition.
eapply star_step. eapply exec_Icond_true; eauto.
simpl. rewrite H2. congruence. eexact EX. traceEq.
exploit IHtr_switch2; eauto. intros [nd1 [rs1 [EX [NTH ME]]]].
exists nd1; exists rs1; intuition.
eapply star_step. eapply exec_Icond_false; eauto.
simpl. rewrite H2. congruence. eexact EX. traceEq.
(* jumptable *)
set (rs1 := rs#rt <- (Vint(Int.sub i ofs))).
assert (ME1: match_env map e nil rs1).
unfold rs1. eauto with rtlg.
assert (EX1: step tge (State cs f sp n rs m) E0 (State cs f sp n1 rs1 m)).
eapply exec_Iop; eauto.
predSpec Int.eq Int.eq_spec ofs Int.zero; simpl.
rewrite H10. rewrite Int.sub_zero_l. congruence.
rewrite H6. rewrite <- Int.sub_add_opp. auto.
caseEq (Int.ltu (Int.sub i ofs) sz); intro EQ; rewrite EQ in H9.
exploit H5; eauto. intros [nd [A B]].
exists nd; exists rs1; intuition.
eapply star_step. eexact EX1.
eapply star_step. eapply exec_Icond_true; eauto.
simpl. unfold rs1. rewrite Regmap.gss. congruence.
apply star_one. eapply exec_Ijumptable; eauto. unfold rs1. apply Regmap.gss.
reflexivity. traceEq.
exploit (IHtr_switch rs1); eauto. unfold rs1. rewrite Regmap.gso; auto.
intros [nd [rs' [EX [NTH ME]]]].
exists nd; exists rs'; intuition.
eapply star_step. eexact EX1.
eapply star_step. eapply exec_Icond_false; eauto.
simpl. unfold rs1. rewrite Regmap.gss. congruence.
eexact EX. reflexivity. traceEq.
Qed.
(** ** Semantic preservation for the translation of expressions *)
Section CORRECTNESS_EXPR.
Variable sp: val.
Variable e: env.
Variable m: mem.
(** The proof of semantic preservation for the translation of expressions
is a simulation argument based on diagrams of the following form:
<<
I /\ P
e, le, m, a ------------- State cs code sp ns rs m
|| |
|| |*
|| |
\/ v
e, le, m', v ------------ State cs code sp nd rs' m'
I /\ Q
>>
where [tr_expr code map pr a ns nd rd] is assumed to hold.
The left vertical arrow represents an evaluation of the expression [a].
The right vertical arrow represents the execution of zero, one or
several instructions in the generated RTL flow graph [code].
The invariant [I] is the agreement between Cminor environments and
RTL register environment, as captured by [match_envs].
The precondition [P] includes the well-formedness of the compilation
environment [mut].
The postconditions [Q] state that in the final register environment
[rs'], register [rd] contains value [v], and the registers in
the set of preserved registers [pr] are unchanged, as are the registers
in the codomain of [map].
We formalize this simulation property by the following predicate
parameterized by the CminorSel evaluation (left arrow). *)
Definition transl_expr_prop
(le: letenv) (a: expr) (v: val) : Prop :=
forall cs f map pr ns nd rd rs dst
(MWF: map_wf map)
(TE: tr_expr f.(fn_code) map pr a ns nd rd dst)
(ME: match_env map e le rs),
exists rs',
star step tge (State cs f sp ns rs m) E0 (State cs f sp nd rs' m)
/\ match_env map (set_optvar dst v e) le rs'
/\ rs'#rd = v
/\ (forall r, In r pr -> rs'#r = rs#r).
(** The simulation properties for lists of expressions and for
conditional expressions are similar. *)
Definition transl_exprlist_prop
(le: letenv) (al: exprlist) (vl: list val) : Prop :=
forall cs f map pr ns nd rl rs
(MWF: map_wf map)
(TE: tr_exprlist f.(fn_code) map pr al ns nd rl)
(ME: match_env map e le rs),
exists rs',
star step tge (State cs f sp ns rs m) E0 (State cs f sp nd rs' m)
/\ match_env map e le rs'
/\ rs'##rl = vl
/\ (forall r, In r pr -> rs'#r = rs#r).
Definition transl_condition_prop
(le: letenv) (a: condexpr) (vb: bool) : Prop :=
forall cs f map pr ns ntrue nfalse rs
(MWF: map_wf map)
(TE: tr_condition f.(fn_code) map pr a ns ntrue nfalse)
(ME: match_env map e le rs),
exists rs',
star step tge (State cs f sp ns rs m) E0
(State cs f sp (if vb then ntrue else nfalse) rs' m)
/\ match_env map e le rs'
/\ (forall r, In r pr -> rs'#r = rs#r).
(** The correctness of the translation is a huge induction over
the Cminor evaluation derivation for the source program. To keep
the proof manageable, we put each case of the proof in a separate
lemma. There is one lemma for each Cminor evaluation rule.
It takes as hypotheses the premises of the Cminor evaluation rule,
plus the induction hypotheses, that is, the [transl_expr_prop], etc,
corresponding to the evaluations of sub-expressions or sub-statements. *)
Lemma transl_expr_Evar_correct:
forall (le : letenv) (id : positive) (v : val),
e ! id = Some v ->
transl_expr_prop le (Evar id) v.
Proof.
intros; red; intros. inv TE.
exploit match_env_find_var; eauto. intro EQ.
exploit tr_move_correct; eauto. intros [rs' [A [B C]]].
exists rs'; split. eauto.
destruct H2 as [[D E] | [D E]].
(* optimized case *)
subst r dst. simpl.
assert (forall r, rs'#r = rs#r).
intros. destruct (Reg.eq r rd). subst r. auto. auto.
split. eapply match_env_invariant; eauto.
split. congruence. auto.
(* general case *)
split.
apply match_env_invariant with (rs#rd <- v).
apply match_env_update_dest; auto.
intros. rewrite Regmap.gsspec. destruct (peq r0 rd). congruence. auto.
split. congruence.
intros. apply C. intuition congruence.
Qed.
Lemma transl_expr_Eop_correct:
forall (le : letenv) (op : operation) (args : exprlist)
(vargs : list val) (v : val),
eval_exprlist ge sp e m le args vargs ->
transl_exprlist_prop le args vargs ->
eval_operation ge sp op vargs m = Some v ->
transl_expr_prop le (Eop op args) v.
Proof.
intros; red; intros. inv TE.
(* normal case *)
exploit H0; eauto. intros [rs1 [EX1 [ME1 [RR1 RO1]]]].
exists (rs1#rd <- v).
(* Exec *)
split. eapply star_right. eexact EX1.
eapply exec_Iop; eauto.
subst vargs.
rewrite (@eval_operation_preserved CminorSel.fundef _ _ _ ge tge).
auto.
exact symbols_preserved. traceEq.
(* Match-env *)
split. eauto with rtlg.
(* Result reg *)
split. apply Regmap.gss.
(* Other regs *)
intros. rewrite Regmap.gso. auto. intuition congruence.
Qed.
Lemma transl_expr_Eload_correct:
forall (le : letenv) (chunk : memory_chunk) (addr : Op.addressing)
(args : exprlist) (vargs : list val) (vaddr v : val),
eval_exprlist ge sp e m le args vargs ->
transl_exprlist_prop le args vargs ->
Op.eval_addressing ge sp addr vargs = Some vaddr ->
Mem.loadv chunk m vaddr = Some v ->
transl_expr_prop le (Eload chunk addr args) v.
Proof.
intros; red; intros. inv TE.
exploit H0; eauto. intros [rs1 [EX1 [ME1 [RES1 OTHER1]]]].
exists (rs1#rd <- v).
(* Exec *)
split. eapply star_right. eexact EX1. eapply exec_Iload; eauto.
rewrite RES1. rewrite (@eval_addressing_preserved _ _ _ _ ge tge).
exact H1. exact symbols_preserved. traceEq.
(* Match-env *)
split. eauto with rtlg.
(* Result *)
split. apply Regmap.gss.
(* Other regs *)
intros. rewrite Regmap.gso. auto. intuition congruence.
Qed.
Lemma transl_expr_Econdition_correct:
forall (le : letenv) (cond : condexpr) (ifso ifnot : expr)
(vcond : bool) (v : val),
eval_condexpr ge sp e m le cond vcond ->
transl_condition_prop le cond vcond ->
eval_expr ge sp e m le (if vcond then ifso else ifnot) v ->
transl_expr_prop le (if vcond then ifso else ifnot) v ->
transl_expr_prop le (Econdition cond ifso ifnot) v.
Proof.
intros; red; intros; inv TE.
exploit H0; eauto. intros [rs1 [EX1 [ME1 OTHER1]]].
assert (tr_expr f.(fn_code) map pr (if vcond then ifso else ifnot) (if vcond then ntrue else nfalse) nd rd dst).
destruct vcond; auto.
exploit H2; eauto. intros [rs2 [EX2 [ME2 [RES2 OTHER2]]]].
exists rs2.
(* Exec *)
split. eapply star_trans. eexact EX1. eexact EX2. auto.
(* Match-env *)
split. assumption.
(* Result value *)
split. assumption.
(* Other regs *)
intros. transitivity (rs1#r); auto.
Qed.
Lemma transl_expr_Elet_correct:
forall (le : letenv) (a1 a2 : expr) (v1 v2 : val),
eval_expr ge sp e m le a1 v1 ->
transl_expr_prop le a1 v1 ->
eval_expr ge sp e m (v1 :: le) a2 v2 ->
transl_expr_prop (v1 :: le) a2 v2 ->
transl_expr_prop le (Elet a1 a2) v2.
Proof.
intros; red; intros; inv TE.
exploit H0; eauto. intros [rs1 [EX1 [ME1 [RES1 OTHER1]]]].
assert (map_wf (add_letvar map r)).
eapply add_letvar_wf; eauto.
exploit H2; eauto. eapply match_env_bind_letvar; eauto.
intros [rs2 [EX2 [ME3 [RES2 OTHER2]]]].
exists rs2.
(* Exec *)
split. eapply star_trans. eexact EX1. eexact EX2. auto.
(* Match-env *)
split. eapply match_env_unbind_letvar; eauto.
(* Result *)
split. assumption.
(* Other regs *)
intros. transitivity (rs1#r0); auto.
Qed.
Lemma transl_expr_Eletvar_correct:
forall (le : list val) (n : nat) (v : val),
nth_error le n = Some v ->
transl_expr_prop le (Eletvar n) v.
Proof.
intros; red; intros; inv TE.
exploit tr_move_correct; eauto. intros [rs1 [EX1 [RES1 OTHER1]]].
exists rs1.
(* Exec *)
split. eexact EX1.
(* Match-env *)
split.
destruct H2 as [[A B] | [A B]].
subst r dst; simpl.
apply match_env_invariant with rs. auto.
intros. destruct (Reg.eq r rd). subst r. auto. auto.
apply match_env_invariant with (rs#rd <- v).
apply match_env_update_dest; auto.
intros. rewrite Regmap.gsspec. destruct (peq r0 rd); auto.
subst. rewrite RES1. eapply match_env_find_letvar; eauto.
(* Result *)
split. rewrite RES1. eapply match_env_find_letvar; eauto.
(* Other regs *)
intros.
destruct H2 as [[A B] | [A B]].
destruct (Reg.eq r0 rd); subst; auto.
apply OTHER1. intuition congruence.
Qed.
Lemma transl_condition_CEtrue_correct:
forall (le : letenv),
transl_condition_prop le CEtrue true.
Proof.
intros; red; intros; inv TE.
exists rs. split. apply star_refl. split. auto. auto.
Qed.
Lemma transl_condition_CEfalse_correct:
forall (le : letenv),
transl_condition_prop le CEfalse false.
Proof.
intros; red; intros; inv TE.
exists rs. split. apply star_refl. split. auto. auto.
Qed.
Lemma transl_condition_CEcond_correct:
forall (le : letenv) (cond : condition) (args : exprlist)
(vargs : list val) (b : bool),
eval_exprlist ge sp e m le args vargs ->
transl_exprlist_prop le args vargs ->
eval_condition cond vargs m = Some b ->
transl_condition_prop le (CEcond cond args) b.
Proof.
intros; red; intros; inv TE.
exploit H0; eauto. intros [rs1 [EX1 [ME1 [RES1 OTHER1]]]].
exists rs1.
(* Exec *)
split. eapply star_right. eexact EX1.
destruct b.
eapply exec_Icond_true; eauto.
rewrite RES1. assumption.
eapply exec_Icond_false; eauto.
rewrite RES1. assumption.
traceEq.
(* Match-env *)
split. assumption.
(* Regs *)
auto.
Qed.
Lemma transl_condition_CEcondition_correct:
forall (le : letenv) (cond ifso ifnot : condexpr) (vcond v : bool),
eval_condexpr ge sp e m le cond vcond ->
transl_condition_prop le cond vcond ->
eval_condexpr ge sp e m le (if vcond then ifso else ifnot) v ->
transl_condition_prop le (if vcond then ifso else ifnot) v ->
transl_condition_prop le (CEcondition cond ifso ifnot) v.
Proof.
intros; red; intros; inv TE.
exploit H0; eauto. intros [rs1 [EX1 [ME1 OTHER1]]].
assert (tr_condition f.(fn_code) map pr (if vcond then ifso else ifnot)
(if vcond then ntrue' else nfalse') ntrue nfalse).
destruct vcond; auto.
exploit H2; eauto. intros [rs2 [EX2 [ME2 OTHER2]]].
exists rs2.
(* Execution *)
split. eapply star_trans. eexact EX1. eexact EX2. auto.
(* Match-env *)
split. auto.
(* Regs *)
intros. transitivity (rs1#r); auto.
Qed.
Lemma transl_exprlist_Enil_correct:
forall (le : letenv),
transl_exprlist_prop le Enil nil.
Proof.
intros; red; intros; inv TE.
exists rs.
split. apply star_refl.
split. assumption.
split. reflexivity.
auto.
Qed.
Lemma transl_exprlist_Econs_correct:
forall (le : letenv) (a1 : expr) (al : exprlist) (v1 : val)
(vl : list val),
eval_expr ge sp e m le a1 v1 ->
transl_expr_prop le a1 v1 ->
eval_exprlist ge sp e m le al vl ->
transl_exprlist_prop le al vl ->
transl_exprlist_prop le (Econs a1 al) (v1 :: vl).
Proof.
intros; red; intros; inv TE.
exploit H0; eauto. intros [rs1 [EX1 [ME1 [RES1 OTHER1]]]].
exploit H2; eauto. intros [rs2 [EX2 [ME2 [RES2 OTHER2]]]].
exists rs2.
(* Exec *)
split. eapply star_trans. eexact EX1. eexact EX2. auto.
(* Match-env *)
split. assumption.
(* Results *)
split. simpl. rewrite RES2. rewrite OTHER2. rewrite RES1. auto.
simpl; tauto.
(* Other regs *)
intros. transitivity (rs1#r).
apply OTHER2; auto. simpl; tauto.
apply OTHER1; auto.
Qed.
Theorem transl_expr_correct:
forall le a v,
eval_expr ge sp e m le a v ->
transl_expr_prop le a v.
Proof
(eval_expr_ind3 ge sp e m
transl_expr_prop
transl_condition_prop
transl_exprlist_prop
transl_expr_Evar_correct
transl_expr_Eop_correct
transl_expr_Eload_correct
transl_expr_Econdition_correct
transl_expr_Elet_correct
transl_expr_Eletvar_correct
transl_condition_CEtrue_correct
transl_condition_CEfalse_correct
transl_condition_CEcond_correct
transl_condition_CEcondition_correct
transl_exprlist_Enil_correct
transl_exprlist_Econs_correct).
Theorem transl_condexpr_correct:
forall le a v,
eval_condexpr ge sp e m le a v ->
transl_condition_prop le a v.
Proof
(eval_condexpr_ind3 ge sp e m
transl_expr_prop
transl_condition_prop
transl_exprlist_prop
transl_expr_Evar_correct
transl_expr_Eop_correct
transl_expr_Eload_correct
transl_expr_Econdition_correct
transl_expr_Elet_correct
transl_expr_Eletvar_correct
transl_condition_CEtrue_correct
transl_condition_CEfalse_correct
transl_condition_CEcond_correct
transl_condition_CEcondition_correct
transl_exprlist_Enil_correct
transl_exprlist_Econs_correct).
Theorem transl_exprlist_correct:
forall le a v,
eval_exprlist ge sp e m le a v ->
transl_exprlist_prop le a v.
Proof
(eval_exprlist_ind3 ge sp e m
transl_expr_prop
transl_condition_prop
transl_exprlist_prop
transl_expr_Evar_correct
transl_expr_Eop_correct
transl_expr_Eload_correct
transl_expr_Econdition_correct
transl_expr_Elet_correct
transl_expr_Eletvar_correct
transl_condition_CEtrue_correct
transl_condition_CEfalse_correct
transl_condition_CEcond_correct
transl_condition_CEcondition_correct
transl_exprlist_Enil_correct
transl_exprlist_Econs_correct).
End CORRECTNESS_EXPR.
(** ** Measure over CminorSel states *)
Open Local Scope nat_scope.
Fixpoint size_stmt (s: stmt) : nat :=
match s with
| Sskip => 0
| Sseq s1 s2 => (size_stmt s1 + size_stmt s2 + 1)
| Sifthenelse e s1 s2 => (size_stmt s1 + size_stmt s2 + 1)
| Sloop s1 => (size_stmt s1 + 1)
| Sblock s1 => (size_stmt s1 + 1)
| Sexit n => 0
| Slabel lbl s1 => (size_stmt s1 + 1)
| _ => 1
end.
Fixpoint size_cont (k: cont) : nat :=
match k with
| Kseq s k1 => (size_stmt s + size_cont k1 + 1)
| Kblock k1 => (size_cont k1 + 1)
| _ => 0%nat
end.
Definition measure_state (S: CminorSel.state) :=
match S with
| CminorSel.State _ s k _ _ _ => (size_stmt s + size_cont k, size_stmt s)
| _ => (0, 0)
end.
Definition lt_state (S1 S2: CminorSel.state) :=
lex_ord lt lt (measure_state S1) (measure_state S2).
Lemma lt_state_intro:
forall f1 s1 k1 sp1 e1 m1 f2 s2 k2 sp2 e2 m2,
size_stmt s1 + size_cont k1 < size_stmt s2 + size_cont k2
\/ (size_stmt s1 + size_cont k1 = size_stmt s2 + size_cont k2
/\ size_stmt s1 < size_stmt s2) ->
lt_state (CminorSel.State f1 s1 k1 sp1 e1 m1)
(CminorSel.State f2 s2 k2 sp2 e2 m2).
Proof.
intros. unfold lt_state. simpl. destruct H as [A | [A B]].
left. auto.
rewrite A. right. auto.
Qed.
Ltac Lt_state :=
apply lt_state_intro; simpl; try omega.
Require Import Wellfounded.
Lemma lt_state_wf:
well_founded lt_state.
Proof.
unfold lt_state. apply wf_inverse_image with (f := measure_state).
apply wf_lex_ord. apply lt_wf. apply lt_wf.
Qed.
(** ** Semantic preservation for the translation of statements *)
(** The simulation diagram for the translation of statements
and functions is a "star" diagram of the form:
<<
I I
S1 ------- R1 S1 ------- R1
| | | |
t | + | t or t | * | t and |S2| < |S1|
v v v |
S2 ------- R2 S2 ------- R2
I I
>>
where [I] is the [match_states] predicate defined below. It includes:
- Agreement between the Cminor statement under consideration and
the current program point in the RTL control-flow graph,
as captured by the [tr_stmt] predicate.
- Agreement between the Cminor continuation and the RTL control-flow
graph and call stack, as captured by the [tr_cont] predicate below.
- Agreement between Cminor environments and RTL register environments,
as captured by [match_envs].
*)
Inductive tr_fun (tf: function) (map: mapping) (f: CminorSel.function)
(ngoto: labelmap) (nret: node) (rret: option reg) : Prop :=
| tr_fun_intro: forall nentry r,
rret = ret_reg f.(CminorSel.fn_sig) r ->
tr_stmt tf.(fn_code) map f.(fn_body) nentry nret nil ngoto nret rret ->
tf.(fn_stacksize) = f.(fn_stackspace) ->
tr_fun tf map f ngoto nret rret.
Inductive tr_cont: RTL.code -> mapping ->
CminorSel.cont -> node -> list node -> labelmap -> node -> option reg ->
list RTL.stackframe -> Prop :=
| tr_Kseq: forall c map s k nd nexits ngoto nret rret cs n,
tr_stmt c map s nd n nexits ngoto nret rret ->
tr_cont c map k n nexits ngoto nret rret cs ->
tr_cont c map (Kseq s k) nd nexits ngoto nret rret cs
| tr_Kblock: forall c map k nd nexits ngoto nret rret cs,
tr_cont c map k nd nexits ngoto nret rret cs ->
tr_cont c map (Kblock k) nd (nd :: nexits) ngoto nret rret cs
| tr_Kstop: forall c map ngoto nret rret cs,
c!nret = Some(Ireturn rret) ->
match_stacks Kstop cs ->
tr_cont c map Kstop nret nil ngoto nret rret cs
| tr_Kcall: forall c map optid f sp e k ngoto nret rret cs,
c!nret = Some(Ireturn rret) ->
match_stacks (Kcall optid f sp e k) cs ->
tr_cont c map (Kcall optid f sp e k) nret nil ngoto nret rret cs
with match_stacks: CminorSel.cont -> list RTL.stackframe -> Prop :=
| match_stacks_stop:
match_stacks Kstop nil
| match_stacks_call: forall optid f sp e k r tf n rs cs map nexits ngoto nret rret,
map_wf map ->
tr_fun tf map f ngoto nret rret ->
match_env map e nil rs ->
reg_map_ok map r optid ->
tr_cont tf.(fn_code) map k n nexits ngoto nret rret cs ->
match_stacks (Kcall optid f sp e k) (Stackframe r tf sp n rs :: cs).
Inductive match_states: CminorSel.state -> RTL.state -> Prop :=
| match_state:
forall f s k sp e m cs tf ns rs map ncont nexits ngoto nret rret
(MWF: map_wf map)
(TS: tr_stmt tf.(fn_code) map s ns ncont nexits ngoto nret rret)
(TF: tr_fun tf map f ngoto nret rret)
(TK: tr_cont tf.(fn_code) map k ncont nexits ngoto nret rret cs)
(ME: match_env map e nil rs),
match_states (CminorSel.State f s k sp e m)
(RTL.State cs tf sp ns rs m)
| match_callstate:
forall f args k m cs tf
(TF: transl_fundef f = OK tf)
(MS: match_stacks k cs),
match_states (CminorSel.Callstate f args k m)
(RTL.Callstate cs tf args m)
| match_returnstate:
forall v k m cs
(MS: match_stacks k cs),
match_states (CminorSel.Returnstate v k m)
(RTL.Returnstate cs v m).
Lemma match_stacks_call_cont:
forall c map k ncont nexits ngoto nret rret cs,
tr_cont c map k ncont nexits ngoto nret rret cs ->
match_stacks (call_cont k) cs /\ c!nret = Some(Ireturn rret).
Proof.
induction 1; simpl; auto.
Qed.
Lemma tr_cont_call_cont:
forall c map k ncont nexits ngoto nret rret cs,
tr_cont c map k ncont nexits ngoto nret rret cs ->
tr_cont c map (call_cont k) nret nil ngoto nret rret cs.
Proof.
induction 1; simpl; auto; econstructor; eauto.
Qed.
Lemma tr_find_label:
forall c map lbl n (ngoto: labelmap) nret rret s' k' cs,
ngoto!lbl = Some n ->
forall s k ns1 nd1 nexits1,
find_label lbl s k = Some (s', k') ->
tr_stmt c map s ns1 nd1 nexits1 ngoto nret rret ->
tr_cont c map k nd1 nexits1 ngoto nret rret cs ->
exists ns2, exists nd2, exists nexits2,
c!n = Some(Inop ns2)
/\ tr_stmt c map s' ns2 nd2 nexits2 ngoto nret rret
/\ tr_cont c map k' nd2 nexits2 ngoto nret rret cs.
Proof.
induction s; intros until nexits1; simpl; try congruence.
(* seq *)
caseEq (find_label lbl s1 (Kseq s2 k)); intros.
inv H1. inv H2. eapply IHs1; eauto. econstructor; eauto.
inv H2. eapply IHs2; eauto.
(* ifthenelse *)
caseEq (find_label lbl s1 k); intros.
inv H1. inv H2. eapply IHs1; eauto.
inv H2. eapply IHs2; eauto.
(* loop *)
intros. inversion H1; subst.
eapply IHs; eauto. econstructor; eauto. econstructor; eauto.
(* block *)
intros. inv H1.
eapply IHs; eauto. econstructor; eauto.
(* label *)
destruct (ident_eq lbl l); intros.
inv H0. inv H1.
assert (n0 = n). change positive with node in H4. congruence. subst n0.
exists ns1; exists nd1; exists nexits1; auto.
inv H1. eapply IHs; eauto.
Qed.
Theorem transl_step_correct:
forall S1 t S2, CminorSel.step ge S1 t S2 ->
forall R1, match_states S1 R1 ->
exists R2,
(plus RTL.step tge R1 t R2 \/ (star RTL.step tge R1 t R2 /\ lt_state S2 S1))
/\ match_states S2 R2.
Proof.
induction 1; intros R1 MSTATE; inv MSTATE.
(* skip seq *)
inv TS. inv TK. econstructor; split.
right; split. apply star_refl. Lt_state.
econstructor; eauto.
(* skip block *)
inv TS. inv TK. econstructor; split.
right; split. apply star_refl. Lt_state.
econstructor; eauto. constructor.
(* skip return *)
inv TS.
assert ((fn_code tf)!ncont = Some(Ireturn rret)
/\ match_stacks k cs).
inv TK; simpl in H; try contradiction; auto.
destruct H2.
assert (rret = None).
inv TF. unfold ret_reg. rewrite H0. auto.
assert (fn_stacksize tf = fn_stackspace f).
inv TF. auto.
subst rret.
econstructor; split.
left; apply plus_one. eapply exec_Ireturn. eauto.
rewrite H5. eauto.
constructor; auto.
(* assign *)
inv TS.
(* optimized translation (not 2 addr) *)
exploit transl_expr_correct; eauto.
intros [rs' [A [B [C D]]]].
econstructor; split.
right; split. eauto. Lt_state.
econstructor; eauto. constructor.
(* alternate translation (2 addr) *)
exploit transl_expr_correct; eauto.
intros [rs' [A [B [C D]]]].
exploit tr_move_correct; eauto.
intros [rs'' [P [Q R]]].
econstructor; split.
right; split. eapply star_trans. eexact A. eexact P. traceEq. Lt_state.
econstructor; eauto. constructor.
simpl in B. apply match_env_invariant with (rs'#r <- v).
apply match_env_update_var; auto.
intros. rewrite Regmap.gsspec. destruct (peq r0 r). congruence. auto.
(* store *)
inv TS.
exploit transl_exprlist_correct; eauto.
intros [rs' [A [B [C D]]]].
exploit transl_expr_correct; eauto.
intros [rs'' [E [F [G J]]]].
assert (rs''##rl = vl).
rewrite <- C. apply list_map_exten. intros. symmetry. apply J. auto.
econstructor; split.
left; eapply plus_right. eapply star_trans. eexact A. eexact E. reflexivity.
eapply exec_Istore with (a := vaddr); eauto.
rewrite H3. rewrite <- H1. apply eval_addressing_preserved. exact symbols_preserved.
rewrite G. eauto.
traceEq.
econstructor; eauto. constructor.
(* call *)
inv TS.
exploit transl_expr_correct; eauto.
intros [rs' [A [B [C D]]]].
exploit transl_exprlist_correct; eauto.
intros [rs'' [E [F [G J]]]].
exploit functions_translated; eauto. intros [tf' [P Q]].
econstructor; split.
left; eapply plus_right. eapply star_trans. eexact A. eexact E. reflexivity.
eapply exec_Icall; eauto. simpl. rewrite J. rewrite C. eauto. simpl; auto.
apply sig_transl_function; auto.
traceEq.
rewrite G. constructor. auto. econstructor; eauto.
(* tailcall *)
inv TS.
exploit transl_expr_correct; eauto.
intros [rs' [A [B [C D]]]].
exploit transl_exprlist_correct; eauto.
intros [rs'' [E [F [G J]]]].
exploit functions_translated; eauto. intros [tf' [P Q]].
exploit match_stacks_call_cont; eauto. intros [U V].
assert (fn_stacksize tf = fn_stackspace f). inv TF; auto.
econstructor; split.
left; eapply plus_right. eapply star_trans. eexact A. eexact E. reflexivity.
eapply exec_Itailcall; eauto. simpl. rewrite J. rewrite C. eauto. simpl; auto.
apply sig_transl_function; auto.
rewrite H2; eauto.
traceEq.
rewrite G. constructor; auto.
(* builtin *)
inv TS.
exploit transl_exprlist_correct; eauto.
intros [rs' [E [F [G J]]]].
econstructor; split.
left. eapply plus_right. eexact E.
eapply exec_Ibuiltin. eauto. rewrite G.
eapply external_call_symbols_preserved; eauto.
exact symbols_preserved. exact varinfo_preserved.
traceEq.
econstructor; eauto. constructor.
eapply match_env_update_dest; eauto.
(* seq *)
inv TS.
econstructor; split.
right; split. apply star_refl. Lt_state.
econstructor; eauto. econstructor; eauto.
(* ifthenelse *)
inv TS.
exploit transl_condexpr_correct; eauto.
intros [rs' [A [B C]]].
econstructor; split.
right; split. eexact A. destruct b; Lt_state.
destruct b; econstructor; eauto.
(* loop *)
inversion TS; subst.
econstructor; split.
left. apply plus_one. eapply exec_Inop; eauto.
econstructor; eauto.
econstructor; eauto.
econstructor; eauto.
(* block *)
inv TS.
econstructor; split.
right; split. apply star_refl. Lt_state.
econstructor; eauto. econstructor; eauto.
(* exit seq *)
inv TS. inv TK.
econstructor; split.
right; split. apply star_refl. Lt_state.
econstructor; eauto. econstructor; eauto.
(* exit block 0 *)
inv TS. inv TK. simpl in H0. inv H0.
econstructor; split.
right; split. apply star_refl. Lt_state.
econstructor; eauto. econstructor; eauto.
(* exit block n+1 *)
inv TS. inv TK. simpl in H0.
econstructor; split.
right; split. apply star_refl. Lt_state.
econstructor; eauto. econstructor; eauto.
(* switch *)
inv TS.
exploit validate_switch_correct; eauto. intro CTM.
exploit transl_expr_correct; eauto.
intros [rs' [A [B [C D]]]].
exploit transl_switch_correct; eauto.
intros [nd [rs'' [E [F G]]]].
econstructor; split.
right; split. eapply star_trans. eexact A. eexact E. traceEq. Lt_state.
econstructor; eauto.
constructor. auto.
(* return none *)
inv TS.
exploit match_stacks_call_cont; eauto. intros [U V].
inversion TF.
econstructor; split.
left; apply plus_one. eapply exec_Ireturn; eauto.
rewrite H2; eauto.
constructor; auto.
(* return some *)
inv TS.
exploit transl_expr_correct; eauto.
intros [rs' [A [B [C D]]]].
exploit match_stacks_call_cont; eauto. intros [U V].
inversion TF.
econstructor; split.
left; eapply plus_right. eexact A. eapply exec_Ireturn; eauto.
rewrite H4; eauto. traceEq.
simpl. rewrite C. constructor; auto.
(* label *)
inv TS.
econstructor; split.
right; split. apply star_refl. Lt_state.
econstructor; eauto.
(* goto *)
inv TS. inversion TF; subst.
exploit tr_find_label; eauto. eapply tr_cont_call_cont; eauto.
intros [ns2 [nd2 [nexits2 [A [B C]]]]].
econstructor; split.
left; apply plus_one. eapply exec_Inop; eauto.
econstructor; eauto.
(* internal call *)
monadInv TF. exploit transl_function_charact; eauto. intro TRF.
inversion TRF. subst f0.
pose (e := set_locals (fn_vars f) (set_params vargs (CminorSel.fn_params f))).
pose (rs := init_regs vargs rparams).
assert (ME: match_env map2 e nil rs).
unfold rs, e. eapply match_init_env_init_reg; eauto.
assert (MWF: map_wf map2).
assert (map_valid init_mapping s0) by apply init_mapping_valid.
exploit (add_vars_valid (CminorSel.fn_params f)); eauto. intros [A B].
eapply add_vars_wf; eauto. eapply add_vars_wf; eauto. apply init_mapping_wf.
econstructor; split.
left; apply plus_one. eapply exec_function_internal; simpl; eauto.
simpl. econstructor; eauto.
econstructor; eauto.
inversion MS; subst; econstructor; eauto.
(* external call *)
monadInv TF.
econstructor; split.
left; apply plus_one. eapply exec_function_external; eauto.
eapply external_call_symbols_preserved; eauto.
exact symbols_preserved. exact varinfo_preserved.
constructor; auto.
(* return *)
inv MS.
econstructor; split.
left; apply plus_one; constructor.
econstructor; eauto. constructor.
eapply match_env_update_dest; eauto.
Qed.
Lemma transl_initial_states:
forall S, CminorSel.initial_state prog S ->
exists R, RTL.initial_state tprog R /\ match_states S R.
Proof.
induction 1.
exploit function_ptr_translated; eauto. intros [tf [A B]].
econstructor; split.
econstructor. apply (Genv.init_mem_transf_partial _ _ TRANSL); eauto.
rewrite (transform_partial_program_main _ _ TRANSL). fold tge.
rewrite symbols_preserved. eauto.
eexact A.
rewrite <- H2. apply sig_transl_function; auto.
constructor. auto. constructor.
Qed.
Lemma transl_final_states:
forall S R r,
match_states S R -> CminorSel.final_state S r -> RTL.final_state R r.
Proof.
intros. inv H0. inv H. inv MS. constructor.
Qed.
Theorem transf_program_correct:
forward_simulation (CminorSel.semantics prog) (RTL.semantics tprog).
Proof.
eapply forward_simulation_star_wf with (order := lt_state).
eexact symbols_preserved.
eexact transl_initial_states.
eexact transl_final_states.
apply lt_state_wf.
exact transl_step_correct.
Qed.
End CORRECTNESS.
|