1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
|
(* *********************************************************************)
(* *)
(* The Compcert verified compiler *)
(* *)
(* Xavier Leroy, INRIA Paris-Rocquencourt *)
(* *)
(* Copyright Institut National de Recherche en Informatique et en *)
(* Automatique. All rights reserved. This file is distributed *)
(* under the terms of the INRIA Non-Commercial License Agreement. *)
(* *)
(* *********************************************************************)
open BinPos
open Coqlib
open Datatypes
open LTL
open Lattice
open Maps
open Camlcoq
(* Trivial enumeration, in decreasing order of PC *)
(***
let enumerate_aux f reach =
positive_rec
Coq_nil
(fun pc nodes ->
if PMap.get pc reach
then Coq_cons (pc, nodes)
else nodes)
f.fn_nextpc
***)
(* More clever enumeration that flattens basic blocks *)
let rec int_of_pos = function
| Coq_xI p -> (int_of_pos p lsl 1) + 1
| Coq_xO p -> int_of_pos p lsl 1
| Coq_xH -> 1
let rec pos_of_int n =
if n = 0 then assert false else
if n = 1 then Coq_xH else
if n land 1 = 0
then Coq_xO (pos_of_int (n lsr 1))
else Coq_xI (pos_of_int (n lsr 1))
module IntSet = Set.Make(struct type t = int let compare = compare end)
(* Determine join points: reachable nodes that have > 1 predecessor *)
let join_points f =
let succs = LTL.successors f in
let reached = ref IntSet.empty in
let reached_twice = ref IntSet.empty in
let rec traverse pc =
let npc = int_of_pos pc in
if IntSet.mem npc !reached then begin
if not (IntSet.mem npc !reached_twice) then
reached_twice := IntSet.add npc !reached_twice
end else begin
reached := IntSet.add npc !reached;
List.iter traverse (Kildall.successors_list succs pc)
end
in traverse f.fn_entrypoint; !reached_twice
(* Cut into reachable basic blocks, annotated with the min value of the PC *)
let basic_blocks f joins =
let blocks = ref [] in
let visited = ref IntSet.empty in
(* start_block:
pc is the function entry point
or a join point
or the successor of a conditional test *)
let rec start_block pc =
let npc = int_of_pos pc in
if not (IntSet.mem npc !visited) then begin
visited := IntSet.add npc !visited;
in_block [] max_int pc
end
(* in_block: add pc to block and check successors *)
and in_block blk minpc pc =
let npc = int_of_pos pc in
let blk = pc :: blk in
let minpc = min npc minpc in
match PTree.get pc f.fn_code with
| None -> assert false
| Some i ->
match i with
| Lnop s -> next_in_block blk minpc s
| Lop (op, args, res, s) -> next_in_block blk minpc s
| Lload (chunk, addr, args, dst, s) -> next_in_block blk minpc s
| Lstore (chunk, addr, args, src, s) -> next_in_block blk minpc s
| Lcall (sig0, ros, args, res, s) -> next_in_block blk minpc s
| Ltailcall (sig0, ros, args) -> end_block blk minpc
| Lbuiltin (ef, args, res, s) -> next_in_block blk minpc s
| Lcond (cond, args, ifso, ifnot) ->
end_block blk minpc; start_block ifso; start_block ifnot
| Ljumptable(arg, tbl) ->
end_block blk minpc; List.iter start_block tbl
| Lreturn optarg -> end_block blk minpc
(* next_in_block: check if join point and either extend block
or start block *)
and next_in_block blk minpc pc =
let npc = int_of_pos pc in
if IntSet.mem npc joins
then (end_block blk minpc; start_block pc)
else in_block blk minpc pc
(* end_block: record block that we just discovered *)
and end_block blk minpc =
blocks := (minpc, List.rev blk) :: !blocks
in
start_block f.fn_entrypoint; !blocks
(* Flatten basic blocks in decreasing order of minpc *)
let flatten_blocks blks =
let cmp_minpc (mpc1, _) (mpc2, _) =
if mpc1 = mpc2 then 0 else if mpc1 > mpc2 then -1 else 1
in
List.flatten (List.map Pervasives.snd (List.sort cmp_minpc blks))
(* Build the enumeration *)
let enumerate_aux f reach =
flatten_blocks (basic_blocks f (join_points f))
|