1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
|
(* *********************************************************************)
(* *)
(* The Compcert verified compiler *)
(* *)
(* Xavier Leroy, INRIA Paris-Rocquencourt *)
(* *)
(* Copyright Institut National de Recherche en Informatique et en *)
(* Automatique. All rights reserved. This file is distributed *)
(* under the terms of the INRIA Non-Commercial License Agreement. *)
(* *)
(* *********************************************************************)
(** Correctness of graph coloring. *)
Require Import SetoidList.
Require Import Coqlib.
Require Import Maps.
Require Import AST.
Require Import Op.
Require Import Registers.
Require Import RTL.
Require Import RTLtyping.
Require Import Locations.
Require Import Conventions.
Require Import InterfGraph.
Require Import Coloring.
(** * Correctness of the interference graph *)
(** We show that the interference graph built by [interf_graph]
is correct in the sense that it contains all conflict edges
that we need.
Many boring lemmas on the auxiliary functions used to construct
the interference graph follow. The lemmas are of two kinds:
the ``increasing'' lemmas show that the auxiliary functions only add
edges to the interference graph, but do not remove existing edges;
and the ``correct'' lemmas show that the auxiliary functions
correctly add the edges that we'd like them to add. *)
Lemma graph_incl_refl:
forall g, graph_incl g g.
Proof.
intros; split; auto.
Qed.
Lemma add_interf_live_incl_aux:
forall (filter: reg -> bool) res live g,
graph_incl g
(List.fold_left
(fun g r => if filter r then add_interf r res g else g)
live g).
Proof.
induction live; simpl; intros.
apply graph_incl_refl.
apply graph_incl_trans with (if filter a then add_interf a res g else g).
case (filter a).
apply add_interf_incl.
apply graph_incl_refl.
apply IHlive.
Qed.
Lemma add_interf_live_incl:
forall (filter: reg -> bool) res live g,
graph_incl g (add_interf_live filter res live g).
Proof.
intros. unfold add_interf_live. rewrite Regset.fold_1.
apply add_interf_live_incl_aux.
Qed.
Lemma add_interf_live_correct_aux:
forall filter res r live,
InA Regset.E.eq r live -> filter r = true ->
forall g,
interfere r res
(List.fold_left
(fun g r => if filter r then add_interf r res g else g)
live g).
Proof.
induction 1; simpl; intros.
hnf in H. subst y. rewrite H0.
generalize (add_interf_live_incl_aux filter res l (add_interf r res g)).
intros [A B].
apply A. apply add_interf_correct.
apply IHInA; auto.
Qed.
Lemma add_interf_live_correct:
forall filter res live g r,
Regset.In r live ->
filter r = true ->
interfere r res (add_interf_live filter res live g).
Proof.
intros. unfold add_interf_live. rewrite Regset.fold_1.
apply add_interf_live_correct_aux; auto.
apply Regset.elements_1. auto.
Qed.
Lemma add_interf_op_incl:
forall res live g,
graph_incl g (add_interf_op res live g).
Proof.
intros; unfold add_interf_op. apply add_interf_live_incl.
Qed.
Lemma add_interf_op_correct:
forall res live g r,
Regset.In r live ->
r <> res ->
interfere r res (add_interf_op res live g).
Proof.
intros. unfold add_interf_op.
apply add_interf_live_correct.
auto. destruct (Reg.eq r res); congruence.
Qed.
Lemma add_interf_move_incl:
forall arg res live g,
graph_incl g (add_interf_move arg res live g).
Proof.
intros; unfold add_interf_move. apply add_interf_live_incl.
Qed.
Lemma add_interf_move_correct:
forall arg res live g r,
Regset.In r live ->
r <> arg -> r <> res ->
interfere r res (add_interf_move arg res live g).
Proof.
intros. unfold add_interf_move.
apply add_interf_live_correct.
auto.
rewrite dec_eq_false; auto. rewrite dec_eq_false; auto.
Qed.
Lemma add_interf_destroyed_incl_aux_1:
forall mr live g,
graph_incl g
(List.fold_left (fun g r => add_interf_mreg r mr g) live g).
Proof.
induction live; simpl; intros.
apply graph_incl_refl.
apply graph_incl_trans with (add_interf_mreg a mr g).
apply add_interf_mreg_incl.
auto.
Qed.
Lemma add_interf_destroyed_incl_aux_2:
forall mr live g,
graph_incl g
(Regset.fold (fun r g => add_interf_mreg r mr g) live g).
Proof.
intros. rewrite Regset.fold_1. apply add_interf_destroyed_incl_aux_1.
Qed.
Lemma add_interf_destroyed_incl:
forall live destroyed g,
graph_incl g (add_interf_destroyed live destroyed g).
Proof.
induction destroyed; simpl; intros.
apply graph_incl_refl.
eapply graph_incl_trans; [idtac|apply IHdestroyed].
apply add_interf_destroyed_incl_aux_2.
Qed.
Lemma add_interfs_indirect_call_incl:
forall rfun locs g,
graph_incl g (add_interfs_indirect_call rfun locs g).
Proof.
unfold add_interfs_indirect_call. induction locs; simpl; intros.
apply graph_incl_refl.
destruct a. eapply graph_incl_trans; [idtac|eauto].
apply add_interf_mreg_incl.
auto.
Qed.
Lemma add_interfs_call_incl:
forall ros locs g,
graph_incl g (add_interf_call ros locs g).
Proof.
intros. unfold add_interf_call. destruct ros.
apply add_interfs_indirect_call_incl.
apply graph_incl_refl.
Qed.
Lemma interfere_incl:
forall r1 r2 g1 g2,
graph_incl g1 g2 ->
interfere r1 r2 g1 ->
interfere r1 r2 g2.
Proof.
unfold graph_incl; intros. elim H; auto.
Qed.
Lemma interfere_mreg_incl:
forall r1 r2 g1 g2,
graph_incl g1 g2 ->
interfere_mreg r1 r2 g1 ->
interfere_mreg r1 r2 g2.
Proof.
unfold graph_incl; intros. elim H; auto.
Qed.
Lemma add_interf_destroyed_correct_aux_1:
forall mr r live,
InA Regset.E.eq r live ->
forall g,
interfere_mreg r mr
(List.fold_left (fun g r => add_interf_mreg r mr g) live g).
Proof.
induction 1; simpl; intros.
hnf in H; subst y. eapply interfere_mreg_incl.
apply add_interf_destroyed_incl_aux_1.
apply add_interf_mreg_correct.
auto.
Qed.
Lemma add_interf_destroyed_correct_aux_2:
forall mr live g r,
Regset.In r live ->
interfere_mreg r mr
(Regset.fold (fun r g => add_interf_mreg r mr g) live g).
Proof.
intros. rewrite Regset.fold_1. apply add_interf_destroyed_correct_aux_1.
apply Regset.elements_1. auto.
Qed.
Lemma add_interf_destroyed_correct:
forall live destroyed g r mr,
Regset.In r live ->
In mr destroyed ->
interfere_mreg r mr (add_interf_destroyed live destroyed g).
Proof.
induction destroyed; simpl; intros.
elim H0.
elim H0; intros.
subst a. eapply interfere_mreg_incl.
apply add_interf_destroyed_incl.
apply add_interf_destroyed_correct_aux_2; auto.
apply IHdestroyed; auto.
Qed.
Lemma add_interfs_indirect_call_correct:
forall rfun mr locs g,
In (R mr) locs ->
interfere_mreg rfun mr (add_interfs_indirect_call rfun locs g).
Proof.
unfold add_interfs_indirect_call. induction locs; simpl; intros.
elim H.
destruct H. subst a.
eapply interfere_mreg_incl.
apply (add_interfs_indirect_call_incl rfun locs (add_interf_mreg rfun mr g)).
apply add_interf_mreg_correct.
auto.
Qed.
Lemma add_interfs_call_correct:
forall rfun locs g mr,
In (R mr) locs ->
interfere_mreg rfun mr (add_interf_call (inl _ rfun) locs g).
Proof.
intros. unfold add_interf_call.
apply add_interfs_indirect_call_correct. auto.
Qed.
Lemma add_prefs_call_incl:
forall args locs g,
graph_incl g (add_prefs_call args locs g).
Proof.
induction args; destruct locs; simpl; intros;
try apply graph_incl_refl.
destruct l.
eapply graph_incl_trans; [idtac|eauto].
apply add_pref_mreg_incl.
auto.
Qed.
Lemma add_prefs_builtin_incl:
forall ef args res g,
graph_incl g (add_prefs_builtin ef args res g).
Proof.
intros. unfold add_prefs_builtin.
destruct ef; try apply graph_incl_refl.
destruct args; try apply graph_incl_refl.
apply add_pref_incl.
Qed.
Lemma add_interf_entry_incl:
forall params live g,
graph_incl g (add_interf_entry params live g).
Proof.
unfold add_interf_entry; induction params; simpl; intros.
apply graph_incl_refl.
eapply graph_incl_trans; [idtac|eauto].
apply add_interf_op_incl.
Qed.
Lemma add_interf_entry_correct:
forall params live g r1 r2,
In r1 params ->
Regset.In r2 live ->
r1 <> r2 ->
interfere r1 r2 (add_interf_entry params live g).
Proof.
unfold add_interf_entry; induction params; simpl; intros.
elim H.
elim H; intro.
subst a. apply interfere_incl with (add_interf_op r1 live g).
exact (add_interf_entry_incl _ _ _).
apply interfere_sym. apply add_interf_op_correct; auto.
auto.
Qed.
Lemma add_interf_params_incl_aux:
forall p1 pl g,
graph_incl g
(List.fold_left
(fun g r => if Reg.eq r p1 then g else add_interf r p1 g)
pl g).
Proof.
induction pl; simpl; intros.
apply graph_incl_refl.
eapply graph_incl_trans; [idtac|eauto].
case (Reg.eq a p1); intro.
apply graph_incl_refl. apply add_interf_incl.
Qed.
Lemma add_interf_params_incl:
forall pl g,
graph_incl g (add_interf_params pl g).
Proof.
induction pl; simpl; intros.
apply graph_incl_refl.
eapply graph_incl_trans; [idtac|eauto].
apply add_interf_params_incl_aux.
Qed.
Lemma add_interf_params_correct_aux:
forall p1 pl g p2,
In p2 pl ->
p1 <> p2 ->
interfere p1 p2
(List.fold_left
(fun g r => if Reg.eq r p1 then g else add_interf r p1 g)
pl g).
Proof.
induction pl; simpl; intros.
elim H.
elim H; intro; clear H.
subst a. apply interfere_sym. eapply interfere_incl.
apply add_interf_params_incl_aux.
case (Reg.eq p2 p1); intro.
congruence. apply add_interf_correct.
auto.
Qed.
Lemma add_interf_params_correct:
forall pl g r1 r2,
In r1 pl -> In r2 pl -> r1 <> r2 ->
interfere r1 r2 (add_interf_params pl g).
Proof.
induction pl; simpl; intros.
elim H.
elim H; intro; clear H; elim H0; intro; clear H0.
congruence.
subst a. eapply interfere_incl. apply add_interf_params_incl.
apply add_interf_params_correct_aux; auto.
subst a. apply interfere_sym.
eapply interfere_incl. apply add_interf_params_incl.
apply add_interf_params_correct_aux; auto.
auto.
Qed.
Lemma add_edges_instr_incl:
forall sig instr live g,
graph_incl g (add_edges_instr sig instr live g).
Proof.
intros. destruct instr; unfold add_edges_instr;
try apply graph_incl_refl.
case (Regset.mem r live).
destruct (is_move_operation o l).
eapply graph_incl_trans; [idtac|apply add_pref_incl].
apply add_interf_move_incl.
apply add_interf_op_incl.
apply graph_incl_refl.
case (Regset.mem r live).
apply add_interf_op_incl.
apply graph_incl_refl.
eapply graph_incl_trans; [idtac|apply add_prefs_call_incl].
eapply graph_incl_trans; [idtac|apply add_pref_mreg_incl].
eapply graph_incl_trans; [idtac|apply add_interf_op_incl].
eapply graph_incl_trans; [idtac|apply add_interfs_call_incl].
apply add_interf_destroyed_incl.
eapply graph_incl_trans; [idtac|apply add_prefs_call_incl].
apply add_interfs_call_incl.
eapply graph_incl_trans. apply add_interf_op_incl. apply add_prefs_builtin_incl.
destruct o.
apply add_pref_mreg_incl.
apply graph_incl_refl.
Qed.
(** The proposition below states that graph [g] contains
all the conflict edges expected for instruction [instr]. *)
Definition correct_interf_instr
(live: Regset.t) (instr: instruction) (g: graph) : Prop :=
match instr with
| Iop op args res s =>
match is_move_operation op args with
| Some arg =>
forall r,
Regset.In res live ->
Regset.In r live ->
r <> res -> r <> arg -> interfere r res g
| None =>
forall r,
Regset.In res live ->
Regset.In r live ->
r <> res -> interfere r res g
end
| Iload chunk addr args res s =>
forall r,
Regset.In res live ->
Regset.In r live ->
r <> res -> interfere r res g
| Icall sig ros args res s =>
(forall r mr,
Regset.In r live ->
In mr destroyed_at_call_regs ->
r <> res ->
interfere_mreg r mr g)
/\ (forall r,
Regset.In r live ->
r <> res -> interfere r res g)
/\ (match ros with
| inl rfun => forall mr, In (R mr) (loc_arguments sig) ->
interfere_mreg rfun mr g
| inr idfun => True
end)
| Itailcall sig ros args =>
match ros with
| inl rfun => forall mr, In (R mr) (loc_arguments sig) ->
interfere_mreg rfun mr g
| inr idfun => True
end
| Ibuiltin ef args res s =>
forall r,
Regset.In r live ->
r <> res -> interfere r res g
| _ =>
True
end.
Lemma correct_interf_instr_incl:
forall live instr g1 g2,
graph_incl g1 g2 ->
correct_interf_instr live instr g1 ->
correct_interf_instr live instr g2.
Proof.
intros until g2. intro.
unfold correct_interf_instr; destruct instr; auto.
destruct (is_move_operation o l).
intros. eapply interfere_incl; eauto.
intros. eapply interfere_incl; eauto.
intros. eapply interfere_incl; eauto.
intros [A [B C]].
split. intros. eapply interfere_mreg_incl; eauto.
split. intros. eapply interfere_incl; eauto.
destruct s0; auto. intros. eapply interfere_mreg_incl; eauto.
destruct s0; auto. intros. eapply interfere_mreg_incl; eauto.
intros. eapply interfere_incl; eauto.
Qed.
Lemma add_edges_instr_correct:
forall sig instr live g,
correct_interf_instr live instr (add_edges_instr sig instr live g).
Proof.
intros.
destruct instr; unfold add_edges_instr; unfold correct_interf_instr; auto.
destruct (is_move_operation o l); intros.
rewrite Regset.mem_1; auto. eapply interfere_incl.
apply add_pref_incl. apply add_interf_move_correct; auto.
rewrite Regset.mem_1; auto. apply add_interf_op_correct; auto.
intros. rewrite Regset.mem_1; auto. apply add_interf_op_correct; auto.
(* Icall *)
set (largs := loc_arguments s).
set (lres := loc_result s).
split. intros.
apply interfere_mreg_incl with
(add_interf_destroyed (Regset.remove r live) destroyed_at_call_regs g).
eapply graph_incl_trans; [idtac|apply add_prefs_call_incl].
eapply graph_incl_trans; [idtac|apply add_pref_mreg_incl].
eapply graph_incl_trans; [idtac|apply add_interf_op_incl].
apply add_interfs_call_incl.
apply add_interf_destroyed_correct; auto.
apply Regset.remove_2; auto.
split. intros.
eapply interfere_incl.
eapply graph_incl_trans; [idtac|apply add_prefs_call_incl].
apply add_pref_mreg_incl.
apply add_interf_op_correct; auto.
destruct s0; auto; intros.
eapply interfere_mreg_incl.
eapply graph_incl_trans; [idtac|apply add_prefs_call_incl].
eapply graph_incl_trans; [idtac|apply add_pref_mreg_incl].
apply add_interf_op_incl.
apply add_interfs_call_correct. auto.
(* Itailcall *)
destruct s0; auto; intros.
eapply interfere_mreg_incl.
apply add_prefs_call_incl.
apply add_interfs_call_correct. auto.
(* Ibuiltin *)
intros. eapply interfere_incl. apply add_prefs_builtin_incl.
apply add_interf_op_correct; auto.
Qed.
Lemma add_edges_instrs_correct:
forall f live pc i,
f.(fn_code)!pc = Some i ->
correct_interf_instr live!!pc i (add_edges_instrs f live).
Proof.
intros f live.
set (P := fun (c: code) g =>
forall pc i, c!pc = Some i -> correct_interf_instr live#pc i g).
set (F := (fun (g : graph) (pc0 : positive) (i0 : instruction) =>
add_edges_instr (fn_sig f) i0 live # pc0 g)).
change (P f.(fn_code) (PTree.fold F f.(fn_code) empty_graph)).
apply PTree_Properties.fold_rec; unfold P; intros.
apply H0. rewrite H. auto.
rewrite PTree.gempty in H. congruence.
rewrite PTree.gsspec in H2. destruct (peq pc k).
inv H2. unfold F. apply add_edges_instr_correct.
apply correct_interf_instr_incl with a.
unfold F; apply add_edges_instr_incl.
apply H1; auto.
Qed.
(** Here are the three correctness properties of the generated
inference graph. First, it contains the conflict edges
needed by every instruction of the function. *)
Lemma interf_graph_correct_1:
forall f live live0 pc i,
f.(fn_code)!pc = Some i ->
correct_interf_instr live!!pc i (interf_graph f live live0).
Proof.
intros. unfold interf_graph.
apply correct_interf_instr_incl with (add_edges_instrs f live).
eapply graph_incl_trans; [idtac|apply add_prefs_call_incl].
eapply graph_incl_trans; [idtac|apply add_interf_params_incl].
apply add_interf_entry_incl.
apply add_edges_instrs_correct; auto.
Qed.
(** Second, function parameters conflict pairwise. *)
Lemma interf_graph_correct_2:
forall f live live0 r1 r2,
In r1 f.(fn_params) ->
In r2 f.(fn_params) ->
r1 <> r2 ->
interfere r1 r2 (interf_graph f live live0).
Proof.
intros. unfold interf_graph.
eapply interfere_incl.
apply add_prefs_call_incl.
apply add_interf_params_correct; auto.
Qed.
(** Third, function parameters conflict pairwise with pseudo-registers
live at function entry. If the function never uses a pseudo-register
before it is defined, pseudo-registers live at function entry
are a subset of the function parameters and therefore this condition
is implied by [interf_graph_correct_3]. However, we prefer not
to make this assumption. *)
Lemma interf_graph_correct_3:
forall f live live0 r1 r2,
In r1 f.(fn_params) ->
Regset.In r2 live0 ->
r1 <> r2 ->
interfere r1 r2 (interf_graph f live live0).
Proof.
intros. unfold interf_graph.
eapply interfere_incl.
eapply graph_incl_trans; [idtac|apply add_prefs_call_incl].
apply add_interf_params_incl.
apply add_interf_entry_correct; auto.
Qed.
(** * Correctness of the a priori checks over the result of graph coloring *)
(** We now show that the checks performed over the candidate coloring
returned by [graph_coloring] are correct: candidate colorings that
pass these checks are indeed correct colorings. *)
Section CORRECT_COLORING.
Variable g: graph.
Variable env: regenv.
Variable allregs: Regset.t.
Variable coloring: reg -> loc.
Lemma check_coloring_1_correct:
forall r1 r2,
check_coloring_1 g coloring = true ->
SetRegReg.In (r1, r2) g.(interf_reg_reg) ->
coloring r1 <> coloring r2.
Proof.
unfold check_coloring_1. intros.
assert (compat_bool OrderedRegReg.eq
(fun r1r2 => if Loc.eq (coloring (fst r1r2)) (coloring (snd r1r2))
then false else true)).
red. unfold OrderedRegReg.eq. unfold OrderedReg.eq.
intros x y [EQ1 EQ2]. rewrite EQ1; rewrite EQ2; auto.
generalize (SetRegReg.for_all_2 H1 H H0).
simpl. case (Loc.eq (coloring r1) (coloring r2)); intro.
intro; discriminate. auto.
Qed.
Lemma check_coloring_2_correct:
forall r1 mr2,
check_coloring_2 g coloring = true ->
SetRegMreg.In (r1, mr2) g.(interf_reg_mreg) ->
coloring r1 <> R mr2.
Proof.
unfold check_coloring_2. intros.
assert (compat_bool OrderedRegMreg.eq
(fun r1r2 => if Loc.eq (coloring (fst r1r2)) (R (snd r1r2))
then false else true)).
red. unfold OrderedRegMreg.eq. unfold OrderedReg.eq.
intros x y [EQ1 EQ2]. rewrite EQ1; rewrite EQ2; auto.
generalize (SetRegMreg.for_all_2 H1 H H0).
simpl. case (Loc.eq (coloring r1) (R mr2)); intro.
intro; discriminate. auto.
Qed.
Lemma same_typ_correct:
forall t1 t2, same_typ t1 t2 = true -> t1 = t2.
Proof.
destruct t1; destruct t2; simpl; congruence.
Qed.
Lemma loc_is_acceptable_correct:
forall l, loc_is_acceptable l = true -> loc_acceptable l.
Proof.
destruct l; unfold loc_is_acceptable, loc_acceptable.
case (In_dec Loc.eq (R m) temporaries); intro.
intro; discriminate. auto.
destruct s.
case (zlt z 0); intro. intro; discriminate. auto.
intro; discriminate.
intro; discriminate.
Qed.
Lemma check_coloring_3_correct:
forall r,
check_coloring_3 allregs env coloring = true ->
Regset.mem r allregs = true ->
loc_acceptable (coloring r) /\ env r = Loc.type (coloring r).
Proof.
unfold check_coloring_3; intros.
exploit Regset.for_all_2; eauto.
red; intros. congruence.
apply Regset.mem_2. eauto.
simpl. intro. elim (andb_prop _ _ H1); intros.
split. apply loc_is_acceptable_correct; auto.
apply same_typ_correct; auto.
Qed.
End CORRECT_COLORING.
(** * Correctness of clipping *)
(** We then show the correctness of the ``clipped'' coloring
returned by [alloc_of_coloring] applied to a candidate coloring
that passes the a posteriori checks. *)
Section ALLOC_OF_COLORING.
Variable g: graph.
Variable env: regenv.
Let allregs := all_interf_regs g.
Variable coloring: reg -> loc.
Let alloc := alloc_of_coloring coloring env allregs.
Lemma alloc_of_coloring_correct_1:
forall r1 r2,
check_coloring g env allregs coloring = true ->
SetRegReg.In (r1, r2) g.(interf_reg_reg) ->
alloc r1 <> alloc r2.
Proof.
unfold check_coloring, alloc, alloc_of_coloring; intros.
elim (andb_prop _ _ H); intros.
generalize (all_interf_regs_correct_1 _ _ _ H0).
intros [A B].
unfold allregs. rewrite Regset.mem_1; auto. rewrite Regset.mem_1; auto.
eapply check_coloring_1_correct; eauto.
Qed.
Lemma alloc_of_coloring_correct_2:
forall r1 mr2,
check_coloring g env allregs coloring = true ->
SetRegMreg.In (r1, mr2) g.(interf_reg_mreg) ->
alloc r1 <> R mr2.
Proof.
unfold check_coloring, alloc, alloc_of_coloring; intros.
elim (andb_prop _ _ H); intros.
elim (andb_prop _ _ H2); intros.
generalize (all_interf_regs_correct_2 _ _ _ H0). intros.
unfold allregs. rewrite Regset.mem_1; auto.
eapply check_coloring_2_correct; eauto.
Qed.
Lemma alloc_of_coloring_correct_3:
forall r,
check_coloring g env allregs coloring = true ->
loc_acceptable (alloc r).
Proof.
unfold check_coloring, alloc, alloc_of_coloring; intros.
elim (andb_prop _ _ H); intros.
elim (andb_prop _ _ H1); intros.
caseEq (Regset.mem r allregs); intro.
generalize (check_coloring_3_correct _ _ _ r H3 H4). tauto.
case (env r); simpl.
unfold dummy_int_reg. intuition congruence.
unfold dummy_float_reg. intuition congruence.
Qed.
Lemma alloc_of_coloring_correct_4:
forall r,
check_coloring g env allregs coloring = true ->
env r = Loc.type (alloc r).
Proof.
unfold check_coloring, alloc, alloc_of_coloring; intros.
elim (andb_prop _ _ H); intros.
elim (andb_prop _ _ H1); intros.
caseEq (Regset.mem r allregs); intro.
generalize (check_coloring_3_correct _ _ _ r H3 H4). tauto.
case (env r); reflexivity.
Qed.
End ALLOC_OF_COLORING.
(** * Correctness of the whole graph coloring algorithm *)
(** Combining results from the previous sections, we now summarize
the correctness properties of the assignment (of locations to
registers) returned by [regalloc]. *)
Definition correct_alloc_instr
(live: PMap.t Regset.t) (alloc: reg -> loc)
(pc: node) (instr: instruction) : Prop :=
match instr with
| Iop op args res s =>
match is_move_operation op args with
| Some arg =>
forall r,
Regset.In res live!!pc ->
Regset.In r live!!pc ->
r <> res -> r <> arg -> alloc r <> alloc res
| None =>
forall r,
Regset.In res live!!pc ->
Regset.In r live!!pc ->
r <> res -> alloc r <> alloc res
end
| Iload chunk addr args res s =>
forall r,
Regset.In res live!!pc ->
Regset.In r live!!pc ->
r <> res -> alloc r <> alloc res
| Icall sig ros args res s =>
(forall r,
Regset.In r live!!pc ->
r <> res ->
~(In (alloc r) destroyed_at_call))
/\ (forall r,
Regset.In r live!!pc ->
r <> res -> alloc r <> alloc res)
/\ (match ros with
| inl rfun => ~(In (alloc rfun) (loc_arguments sig))
| inr idfun => True
end)
| Itailcall sig ros args =>
(match ros with
| inl rfun => ~(In (alloc rfun) (loc_arguments sig))
| inr idfun => True
end)
| Ibuiltin ef args res s =>
forall r,
Regset.In r live!!pc ->
r <> res -> alloc r <> alloc res
| _ =>
True
end.
Section REGALLOC_PROPERTIES.
Variable f: function.
Variable env: regenv.
Variable live: PMap.t Regset.t.
Variable live0: Regset.t.
Variable alloc: reg -> loc.
Let g := interf_graph f live live0.
Let allregs := all_interf_regs g.
Let coloring := graph_coloring f g env allregs.
Lemma regalloc_ok:
regalloc f live live0 env = Some alloc ->
check_coloring g env allregs coloring = true /\
alloc = alloc_of_coloring coloring env allregs.
Proof.
unfold regalloc, coloring, allregs, g.
case (check_coloring (interf_graph f live live0) env).
intro EQ; injection EQ; intro; clear EQ.
split. auto. auto.
intro; discriminate.
Qed.
Lemma regalloc_acceptable:
forall r,
regalloc f live live0 env = Some alloc ->
loc_acceptable (alloc r).
Proof.
intros. elim (regalloc_ok H); intros.
rewrite H1. unfold allregs. apply alloc_of_coloring_correct_3.
exact H0.
Qed.
Lemma regsalloc_acceptable:
forall rl,
regalloc f live live0 env = Some alloc ->
locs_acceptable (List.map alloc rl).
Proof.
intros; red; intros.
elim (list_in_map_inv _ _ _ H0). intros r [EQ IN].
subst l. apply regalloc_acceptable. auto.
Qed.
Lemma regalloc_preserves_types:
forall r,
regalloc f live live0 env = Some alloc ->
Loc.type (alloc r) = env r.
Proof.
intros. elim (regalloc_ok H); intros.
rewrite H1. unfold allregs. symmetry.
apply alloc_of_coloring_correct_4.
exact H0.
Qed.
Lemma correct_interf_alloc_instr:
forall pc instr,
(forall r1 r2, interfere r1 r2 g -> alloc r1 <> alloc r2) ->
(forall r1 mr2, interfere_mreg r1 mr2 g -> alloc r1 <> R mr2) ->
(forall r, loc_acceptable (alloc r)) ->
correct_interf_instr live!!pc instr g ->
correct_alloc_instr live alloc pc instr.
Proof.
intros pc instr ALL1 ALL2 ALL3.
unfold correct_interf_instr, correct_alloc_instr;
destruct instr; auto.
destruct (is_move_operation o l); auto.
(* Icall *)
intros [A [B C]].
split. intros; red; intros.
unfold destroyed_at_call in H1.
generalize (list_in_map_inv R _ _ H1).
intros [mr [EQ IN]].
generalize (A r0 mr H IN H0). intro.
generalize (ALL2 _ _ H2). contradiction.
split. auto.
destruct s0; auto. red; intros.
generalize (ALL3 r0). generalize (loc_arguments_acceptable _ _ H).
unfold loc_argument_acceptable, loc_acceptable.
caseEq (alloc r0). intros.
elim (ALL2 r0 m). apply C; auto. congruence. auto.
destruct s0; auto.
(* Itailcall *)
destruct s0; auto. red; intros.
generalize (ALL3 r). generalize (loc_arguments_acceptable _ _ H0).
unfold loc_argument_acceptable, loc_acceptable.
caseEq (alloc r). intros.
elim (ALL2 r m). apply H; auto. congruence. auto.
destruct s0; auto.
Qed.
Lemma regalloc_correct_1:
forall pc instr,
regalloc f live live0 env = Some alloc ->
f.(fn_code)!pc = Some instr ->
correct_alloc_instr live alloc pc instr.
Proof.
intros. elim (regalloc_ok H); intros.
apply correct_interf_alloc_instr.
intros. rewrite H2. unfold allregs. red in H3.
elim (ordered_pair_charact r1 r2); intro.
apply alloc_of_coloring_correct_1. auto. rewrite H4 in H3; auto.
apply sym_not_equal.
apply alloc_of_coloring_correct_1. auto. rewrite H4 in H3; auto.
intros. rewrite H2. unfold allregs.
apply alloc_of_coloring_correct_2. auto. exact H3.
intros. eapply regalloc_acceptable; eauto.
unfold g. apply interf_graph_correct_1. auto.
Qed.
Lemma regalloc_correct_2:
regalloc f live live0 env = Some alloc ->
list_norepet f.(fn_params) ->
list_norepet (List.map alloc f.(fn_params)).
Proof.
intros. elim (regalloc_ok H); intros.
apply list_map_norepet; auto.
intros. rewrite H2. unfold allregs.
elim (ordered_pair_charact x y); intro.
apply alloc_of_coloring_correct_1. auto.
change positive with reg. rewrite <- H6.
change (interfere x y g). unfold g.
apply interf_graph_correct_2; auto.
apply sym_not_equal.
apply alloc_of_coloring_correct_1. auto.
change positive with reg. rewrite <- H6.
change (interfere x y g). unfold g.
apply interf_graph_correct_2; auto.
Qed.
Lemma regalloc_correct_3:
forall r1 r2,
regalloc f live live0 env = Some alloc ->
In r1 f.(fn_params) ->
Regset.In r2 live0 ->
r1 <> r2 ->
alloc r1 <> alloc r2.
Proof.
intros. elim (regalloc_ok H); intros.
rewrite H4; unfold allregs.
elim (ordered_pair_charact r1 r2); intro.
apply alloc_of_coloring_correct_1. auto.
change positive with reg. rewrite <- H5.
change (interfere r1 r2 g). unfold g.
apply interf_graph_correct_3; auto.
apply sym_not_equal.
apply alloc_of_coloring_correct_1. auto.
change positive with reg. rewrite <- H5.
change (interfere r1 r2 g). unfold g.
apply interf_graph_correct_3; auto.
Qed.
End REGALLOC_PROPERTIES.
|