1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
|
(* *********************************************************************)
(* *)
(* The Compcert verified compiler *)
(* *)
(* Xavier Leroy, INRIA Paris-Rocquencourt *)
(* *)
(* Copyright Institut National de Recherche en Informatique et en *)
(* Automatique. All rights reserved. This file is distributed *)
(* under the terms of the INRIA Non-Commercial License Agreement. *)
(* *)
(* *********************************************************************)
open Camlcoq
open Datatypes
open BinPos
open BinInt
open AST
open Maps
open Registers
open Machregs
open Locations
open RTL
open RTLtyping
open InterfGraph
open Conventions1
open Conventions
(* George-Appel graph coloring *)
(* \subsection{Internal representation of the interference graph} *)
(* To implement George-Appel coloring, we first transform the representation
of the interference graph, switching to the following
imperative representation that is well suited to the coloring algorithm. *)
(* Each node of the graph (i.e. each pseudo-register) is represented as
follows. *)
type node =
{ ident: int; (*r unique identifier *)
typ: typ; (*r its type *)
regname: reg option; (*r the RTL register it comes from *)
regclass: int; (*r identifier of register class *)
mutable accesses: int; (*r number of defs and uses *)
mutable spillcost: float; (*r estimated cost of spilling *)
mutable adjlist: node list; (*r all nodes it interferes with *)
mutable degree: int; (*r number of adjacent nodes *)
mutable movelist: move list; (*r list of moves it is involved in *)
mutable alias: node option; (*r [Some n] if coalesced with [n] *)
mutable color: loc option; (*r chosen color *)
mutable nstate: nodestate; (*r in which set of nodes it is *)
mutable nprev: node; (*r for double linking *)
mutable nnext: node (*r for double linking *)
}
(* These are the possible states for nodes. *)
and nodestate =
| Colored
| Initial
| SimplifyWorklist
| FreezeWorklist
| SpillWorklist
| CoalescedNodes
| SelectStack
(* Each move (i.e. wish to be put in the same location) is represented
as follows. *)
and move =
{ src: node; (*r source of the move *)
dst: node; (*r destination of the move *)
mutable mstate: movestate; (*r in which set of moves it is *)
mutable mprev: move; (*r for double linking *)
mutable mnext: move (*r for double linking *)
}
(* These are the possible states for moves *)
and movestate =
| CoalescedMoves
| ConstrainedMoves
| FrozenMoves
| WorklistMoves
| ActiveMoves
(*i
let name_of_node n =
match n.color, n.regname with
| Some(R r), _ ->
begin match Machregsaux.name_of_register r with
| None -> "fixed-reg"
| Some s -> s
end
| Some(S _), _ -> "fixed-slot"
| None, Some r -> Printf.sprintf "x%ld" (camlint_of_positive r)
| None, None -> "unknown-reg"
*)
(* The algorithm manipulates partitions of the nodes and of the moves
according to their states, frequently moving a node or a move from
a state to another, and frequently enumerating all nodes or all moves
of a given state. To support these operations efficiently,
nodes or moves having the same state are put into imperative doubly-linked
lists, allowing for constant-time insertion and removal, and linear-time
scanning. We now define the operations over these doubly-linked lists. *)
module DLinkNode = struct
type t = node
let make state =
let rec empty =
{ ident = 0; typ = Tint; regname = None; regclass = 0;
adjlist = []; degree = 0; accesses = 0; spillcost = 0.0;
movelist = []; alias = None; color = None;
nstate = state; nprev = empty; nnext = empty }
in empty
let dummy = make Colored
let clear dl = dl.nnext <- dl; dl.nprev <- dl
let notempty dl = dl.nnext != dl
let insert n dl =
n.nstate <- dl.nstate;
n.nnext <- dl.nnext; n.nprev <- dl;
dl.nnext.nprev <- n; dl.nnext <- n
let remove n dl =
assert (n.nstate = dl.nstate);
n.nnext.nprev <- n.nprev; n.nprev.nnext <- n.nnext
let move n dl1 dl2 =
remove n dl1; insert n dl2
let pick dl =
let n = dl.nnext in remove n dl; n
let iter f dl =
let rec iter n = if n != dl then (f n; iter n.nnext)
in iter dl.nnext
let fold f dl accu =
let rec fold n accu = if n == dl then accu else fold n.nnext (f n accu)
in fold dl.nnext accu
end
module DLinkMove = struct
type t = move
let make state =
let rec empty =
{ src = DLinkNode.dummy; dst = DLinkNode.dummy;
mstate = state; mprev = empty; mnext = empty }
in empty
let dummy = make CoalescedMoves
let clear dl = dl.mnext <- dl; dl.mprev <- dl
let notempty dl = dl.mnext != dl
let insert m dl =
m.mstate <- dl.mstate;
m.mnext <- dl.mnext; m.mprev <- dl;
dl.mnext.mprev <- m; dl.mnext <- m
let remove m dl =
assert (m.mstate = dl.mstate);
m.mnext.mprev <- m.mprev; m.mprev.mnext <- m.mnext
let move m dl1 dl2 =
remove m dl1; insert m dl2
let pick dl =
let m = dl.mnext in remove m dl; m
let iter f dl =
let rec iter m = if m != dl then (f m; iter m.mnext)
in iter dl.mnext
let fold f dl accu =
let rec fold m accu = if m == dl then accu else fold m.mnext (f m accu)
in fold dl.mnext accu
end
(* Auxiliary data structures *)
module IntSet = Set.Make(struct
type t = int
let compare (x:int) (y:int) = compare x y
end)
module IntPairSet = Set.Make(struct
type t = int * int
let compare ((x1, y1): (int * int)) (x2, y2) =
if x1 < x2 then -1 else
if x1 > x2 then 1 else
if y1 < y2 then -1 else
if y1 > y2 then 1 else
0
end)
(* Register classes *)
let class_of_type = function Tint -> 0 | Tfloat -> 1
let num_register_classes = 2
let caller_save_registers = Array.make num_register_classes [||]
let callee_save_registers = Array.make num_register_classes [||]
let num_available_registers = Array.make num_register_classes 0
let reserved_registers = ref ([]: mreg list)
let allocatable_registers = ref ([]: mreg list)
let rec remove_reserved = function
| [] -> []
| hd :: tl ->
if List.mem hd !reserved_registers
then remove_reserved tl
else hd :: remove_reserved tl
let init_regs() =
let int_caller_save = remove_reserved int_caller_save_regs
and float_caller_save = remove_reserved float_caller_save_regs
and int_callee_save = remove_reserved int_callee_save_regs
and float_callee_save = remove_reserved float_callee_save_regs in
allocatable_registers :=
List.flatten [int_caller_save; float_caller_save;
int_callee_save; float_callee_save];
caller_save_registers.(0) <- Array.of_list int_caller_save;
caller_save_registers.(1) <- Array.of_list float_caller_save;
callee_save_registers.(0) <- Array.of_list int_callee_save;
callee_save_registers.(1) <- Array.of_list float_callee_save;
for i = 0 to num_register_classes - 1 do
num_available_registers.(i) <-
Array.length caller_save_registers.(i)
+ Array.length callee_save_registers.(i)
done
(* \subsection{The George-Appel algorithm} *)
(* Below is a straigthforward translation of the pseudo-code at the end
of the TOPLAS article by George and Appel. Two bugs were fixed
and are marked as such. Please refer to the article for explanations. *)
(* The adjacency set *)
let adjSet = ref IntPairSet.empty
(* Low-degree, non-move-related nodes *)
let simplifyWorklist = DLinkNode.make SimplifyWorklist
(* Low-degree, move-related nodes *)
let freezeWorklist = DLinkNode.make FreezeWorklist
(* High-degree nodes *)
let spillWorklist = DLinkNode.make SpillWorklist
(* Nodes that have been coalesced *)
let coalescedNodes = DLinkNode.make CoalescedNodes
(* Moves that have been coalesced *)
let coalescedMoves = DLinkMove.make CoalescedMoves
(* Moves whose source and destination interfere *)
let constrainedMoves = DLinkMove.make ConstrainedMoves
(* Moves that will no longer be considered for coalescing *)
let frozenMoves = DLinkMove.make FrozenMoves
(* Moves enabled for possible coalescing *)
let worklistMoves = DLinkMove.make WorklistMoves
(* Moves not yet ready for coalescing *)
let activeMoves = DLinkMove.make ActiveMoves
(* To generate node identifiers *)
let nextRegIdent = ref 0
(* Initialization of all global data structures *)
let init_graph() =
adjSet := IntPairSet.empty;
nextRegIdent := 0;
DLinkNode.clear simplifyWorklist;
DLinkNode.clear freezeWorklist;
DLinkNode.clear spillWorklist;
DLinkNode.clear coalescedNodes;
DLinkMove.clear coalescedMoves;
DLinkMove.clear frozenMoves;
DLinkMove.clear worklistMoves;
DLinkMove.clear activeMoves
(* Determine if two nodes interfere *)
let interfere n1 n2 =
let i1 = n1.ident and i2 = n2.ident in
let p = if i1 < i2 then (i1, i2) else (i2, i1) in
IntPairSet.mem p !adjSet
(* Add an edge to the graph. Assume edge is not in graph already *)
let addEdge n1 n2 =
(*i Printf.printf " %s -- %s;\n" (name_of_node n1) (name_of_node n2); *)
assert (n1 != n2 && not (interfere n1 n2));
let i1 = n1.ident and i2 = n2.ident in
let p = if i1 < i2 then (i1, i2) else (i2, i1) in
adjSet := IntPairSet.add p !adjSet;
if n1.nstate <> Colored then begin
n1.adjlist <- n2 :: n1.adjlist;
n1.degree <- 1 + n1.degree
end;
if n2.nstate <> Colored then begin
n2.adjlist <- n1 :: n2.adjlist;
n2.degree <- 1 + n2.degree
end
(* Apply the given function to the relevant adjacent nodes of a node *)
let iterAdjacent f n =
List.iter
(fun n ->
match n.nstate with
| SelectStack | CoalescedNodes -> ()
| _ -> f n)
n.adjlist
(* Determine the moves affecting a node *)
let moveIsActiveOrWorklist m =
match m.mstate with
| ActiveMoves | WorklistMoves -> true
| _ -> false
let nodeMoves n =
List.filter moveIsActiveOrWorklist n.movelist
(* Determine whether a node is involved in a move *)
let moveRelated n =
List.exists moveIsActiveOrWorklist n.movelist
(*i
(* Check invariants *)
let name_of_node n = string_of_int n.ident
let degreeInvariant n =
let c = ref 0 in
iterAdjacent (fun n -> incr c) n;
if !c <> n.degree then
failwith("degree invariant violated by " ^ name_of_node n)
let simplifyWorklistInvariant n =
if n.degree < num_available_registers.(n.regclass)
&& not (moveRelated n)
then ()
else failwith("simplify worklist invariant violated by " ^ name_of_node n)
let freezeWorklistInvariant n =
if n.degree < num_available_registers.(n.regclass)
&& moveRelated n
then ()
else failwith("freeze worklist invariant violated by " ^ name_of_node n)
let spillWorklistInvariant n =
if n.degree >= num_available_registers.(n.regclass)
then ()
else failwith("spill worklist invariant violated by " ^ name_of_node n)
let checkInvariants () =
DLinkNode.iter
(fun n -> degreeInvariant n; simplifyWorklistInvariant n)
simplifyWorklist;
DLinkNode.iter
(fun n -> degreeInvariant n; freezeWorklistInvariant n)
freezeWorklist;
DLinkNode.iter
(fun n -> degreeInvariant n; spillWorklistInvariant n)
spillWorklist
*)
(* Build the internal representation of the graph *)
let nodeOfReg r typenv spillcosts =
let ty = typenv r in
incr nextRegIdent;
let (acc, cost) = spillcosts r in
{ ident = !nextRegIdent; typ = ty;
regname = Some r; regclass = class_of_type ty;
accesses = acc; spillcost = float cost;
adjlist = []; degree = 0; movelist = []; alias = None;
color = None;
nstate = Initial;
nprev = DLinkNode.dummy; nnext = DLinkNode.dummy }
let nodeOfMreg mr =
let ty = mreg_type mr in
incr nextRegIdent;
{ ident = !nextRegIdent; typ = ty;
regname = None; regclass = class_of_type ty;
accesses = 0; spillcost = 0.0;
adjlist = []; degree = 0; movelist = []; alias = None;
color = Some (R mr);
nstate = Colored;
nprev = DLinkNode.dummy; nnext = DLinkNode.dummy }
let build g typenv spillcosts =
(* Associate an internal node to each pseudo-register and each location *)
let reg_mapping = Hashtbl.create 27
and mreg_mapping = Hashtbl.create 27 in
let find_reg_node r =
try
Hashtbl.find reg_mapping r
with Not_found ->
let n = nodeOfReg r typenv spillcosts in
Hashtbl.add reg_mapping r n;
n
and find_mreg_node mr =
try
Hashtbl.find mreg_mapping mr
with Not_found ->
let n = nodeOfMreg mr in
Hashtbl.add mreg_mapping mr n;
n in
(* Fill the adjacency set and the adjacency lists; compute the degrees. *)
SetRegReg.fold
(fun (r1, r2) () ->
addEdge (find_reg_node r1) (find_reg_node r2))
g.interf_reg_reg ();
SetRegMreg.fold
(fun (r1, mr2) () ->
addEdge (find_reg_node r1) (find_mreg_node mr2))
g.interf_reg_mreg ();
(* Process the moves and insert them in worklistMoves *)
let add_move n1 n2 =
(*i Printf.printf " %s -- %s [color=\"red\"];\n" (name_of_node n1) (name_of_node n2); *)
let m =
{ src = n1; dst = n2; mstate = WorklistMoves;
mnext = DLinkMove.dummy; mprev = DLinkMove.dummy } in
n1.movelist <- m :: n1.movelist;
n2.movelist <- m :: n2.movelist;
DLinkMove.insert m worklistMoves in
SetRegReg.fold
(fun (r1, r2) () ->
add_move (find_reg_node r1) (find_reg_node r2))
g.pref_reg_reg ();
SetRegMreg.fold
(fun (r1, mr2) () ->
let r1' = find_reg_node r1 in
if List.mem mr2 !allocatable_registers then
add_move r1' (find_mreg_node mr2))
g.pref_reg_mreg ();
(* Initial partition of nodes into spill / freeze / simplify *)
Hashtbl.iter
(fun r n ->
assert (n.nstate = Initial);
let k = num_available_registers.(n.regclass) in
if n.degree >= k then
DLinkNode.insert n spillWorklist
else if moveRelated n then
DLinkNode.insert n freezeWorklist
else
DLinkNode.insert n simplifyWorklist)
reg_mapping;
(* Return mapping from pseudo-registers to nodes *)
reg_mapping
(* Enable moves that have become low-degree related *)
let enableMoves n =
List.iter
(fun m ->
if m.mstate = ActiveMoves
then DLinkMove.move m activeMoves worklistMoves)
(nodeMoves n)
(* Simulate the removal of a node from the graph *)
let decrementDegree n =
let k = num_available_registers.(n.regclass) in
let d = n.degree in
n.degree <- d - 1;
if d = k then begin
enableMoves n;
iterAdjacent enableMoves n;
(* if n.nstate <> Colored then begin *)
if moveRelated n
then DLinkNode.move n spillWorklist freezeWorklist
else DLinkNode.move n spillWorklist simplifyWorklist
(* end *)
end
(* Simulate the effect of combining nodes [n1] and [n3] on [n2],
where [n2] is a node adjacent to [n3]. *)
let combineEdge n1 n2 =
assert (n1 != n2);
if interfere n1 n2 then begin
(* The two edges n2--n3 and n2--n1 become one, so degree of n2 decreases *)
decrementDegree n2
end else begin
(* Add new edge *)
let i1 = n1.ident and i2 = n2.ident in
let p = if i1 < i2 then (i1, i2) else (i2, i1) in
adjSet := IntPairSet.add p !adjSet;
if n1.nstate <> Colored then begin
n1.adjlist <- n2 :: n1.adjlist;
n1.degree <- 1 + n1.degree
end;
if n2.nstate <> Colored then begin
n2.adjlist <- n1 :: n2.adjlist;
(* n2's degree stays the same because the old edge n2--n3 disappears
and becomes the new edge n2--n1 *)
end
end
(* Simplification of a low-degree node *)
let simplify () =
let n = DLinkNode.pick simplifyWorklist in
(*i Printf.printf "Simplifying %s\n" (name_of_node n); i*)
n.nstate <- SelectStack;
iterAdjacent decrementDegree n;
n
(* Briggs's conservative coalescing criterion. In the terminology of
Hailperin, "Comparing Conservative Coalescing Criteria",
TOPLAS 27(3) 2005, this is the full Briggs criterion, slightly
more powerful than the one in George and Appel's paper. *)
let canCoalesceBriggs u v =
let seen = ref IntSet.empty in
let k = num_available_registers.(u.regclass) in
let c = ref 0 in
let consider other n =
if not (IntSet.mem n.ident !seen) then begin
seen := IntSet.add n.ident !seen;
(* if n interferes with both u and v, its degree will decrease by one
after coalescing *)
let degree_after_coalescing =
if interfere n other then n.degree - 1 else n.degree in
if degree_after_coalescing >= k then begin
incr c;
if !c >= k then raise Exit
end
end in
try
iterAdjacent (consider v) u;
iterAdjacent (consider u) v;
(*i Printf.printf " Briggs: OK\n"; *)
true
with Exit ->
(*i Printf.printf " Briggs: no\n"; *)
false
(* George's conservative coalescing criterion: all high-degree neighbors
of [v] are neighbors of [u]. *)
let canCoalesceGeorge u v =
let k = num_available_registers.(u.regclass) in
let isOK t =
if t.nstate = Colored then
if u.nstate = Colored || interfere t u then () else raise Exit
else
if t.degree < k || interfere t u then () else raise Exit
in
try
iterAdjacent isOK v;
(*i Printf.printf " George: OK\n"; *)
true
with Exit ->
(*i Printf.printf " George: no\n"; *)
false
(* The combined coalescing criterion. [u] can be precolored, but
[v] is not. According to George and Appel's paper:
- If [u] is precolored, use George's criterion.
- If [u] is not precolored, use Briggs's criterion.
As noted by Hailperin, for non-precolored nodes, George's criterion
is incomparable with Briggs's: there are cases where G says yes
and B says no. Typically, [u] is a long-lived variable with many
interferences, and [v] is a short-lived temporary copy of [u]
that has no more interferences than [u]. Coalescing [u] and [v]
is "weakly safe" in Hailperin's terminology: [u] is no harder to color,
[u]'s neighbors are no harder to color either, but if we end up
spilling [u], we'll spill [v] as well. However, if [v] has at most
one def and one use, CompCert generates equivalent code if
both [u] and [v] are spilled and if [u] is spilled but not [v],
so George's criterion is safe in this case.
*)
let thresholdGeorge = 2 (* = 1 def + 1 use *)
let canCoalesce u v =
if u.nstate = Colored
then canCoalesceGeorge u v
else canCoalesceBriggs u v
|| (v.accesses <= thresholdGeorge && canCoalesceGeorge u v)
|| (u.accesses <= thresholdGeorge && canCoalesceGeorge v u)
(* Update worklists after a move was processed *)
let addWorkList u =
if (not (u.nstate = Colored))
&& u.degree < num_available_registers.(u.regclass)
&& (not (moveRelated u))
then DLinkNode.move u freezeWorklist simplifyWorklist
(* Return the canonical representative of a possibly coalesced node *)
let rec getAlias n =
match n.alias with None -> n | Some n' -> getAlias n'
(* Combine two nodes *)
let combine u v =
(*i Printf.printf "Combining %s and %s\n" (name_of_node u) (name_of_node v);*)
if v.nstate = FreezeWorklist
then DLinkNode.move v freezeWorklist coalescedNodes
else DLinkNode.move v spillWorklist coalescedNodes;
v.alias <- Some u;
u.movelist <- u.movelist @ v.movelist;
u.spillcost <- u.spillcost +. v.spillcost;
iterAdjacent (combineEdge u) v; (*r original code using [decrementDegree] is buggy *)
enableMoves v; (*r added as per Appel's book erratum *)
if u.degree >= num_available_registers.(u.regclass)
&& u.nstate = FreezeWorklist
then DLinkNode.move u freezeWorklist spillWorklist
(* Attempt coalescing *)
let coalesce () =
let m = DLinkMove.pick worklistMoves in
let x = getAlias m.src and y = getAlias m.dst in
let (u, v) = if y.nstate = Colored then (y, x) else (x, y) in
(*i Printf.printf "Attempt coalescing %s and %s\n" (name_of_node u) (name_of_node v); *)
if u == v then begin
DLinkMove.insert m coalescedMoves;
addWorkList u
end else if v.nstate = Colored || interfere u v then begin
DLinkMove.insert m constrainedMoves;
addWorkList u;
addWorkList v
end else if canCoalesce u v then begin
DLinkMove.insert m coalescedMoves;
combine u v;
addWorkList u
end else begin
DLinkMove.insert m activeMoves
end
(* Freeze moves associated with node [u] *)
let freezeMoves u =
let u' = getAlias u in
let freeze m =
let y = getAlias m.src in
let v = if y == u' then getAlias m.dst else y in
DLinkMove.move m activeMoves frozenMoves;
if not (moveRelated v)
&& v.degree < num_available_registers.(v.regclass)
&& v.nstate <> Colored
then DLinkNode.move v freezeWorklist simplifyWorklist in
List.iter freeze (nodeMoves u)
(* Pick a move and freeze it *)
let freeze () =
let u = DLinkNode.pick freezeWorklist in
(*i Printf.printf "Freezing %s\n" (name_of_node u);*)
DLinkNode.insert u simplifyWorklist;
freezeMoves u
(* Chaitin's cost measure *)
let spillCost n =
(*i
Printf.printf "spillCost %s: uses = %.0f degree = %d cost = %f\n"
(name_of_node n) n.spillcost n.degree (n.spillcost /. float n.degree);
*)
n.spillcost /. float n.degree
(* Spill a node *)
let selectSpill () =
(* Find a spillable node of minimal cost *)
let (n, cost) =
DLinkNode.fold
(fun n (best_node, best_cost as best) ->
let cost = spillCost n in
if cost < best_cost then (n, cost) else best)
spillWorklist (DLinkNode.dummy, infinity) in
assert (n != DLinkNode.dummy);
DLinkNode.remove n spillWorklist;
(*i Printf.printf "Spilling %s\n" (name_of_node n);*)
freezeMoves n;
n.nstate <- SelectStack;
iterAdjacent decrementDegree n;
n
(* Produce the order of nodes that we'll use for coloring *)
let rec nodeOrder stack =
(*i checkInvariants(); *)
if DLinkNode.notempty simplifyWorklist then
(let n = simplify() in nodeOrder (n :: stack))
else if DLinkMove.notempty worklistMoves then
(coalesce(); nodeOrder stack)
else if DLinkNode.notempty freezeWorklist then
(freeze(); nodeOrder stack)
else if DLinkNode.notempty spillWorklist then
(let n = selectSpill() in nodeOrder (n :: stack))
else
stack
(* Assign a color (i.e. a hardware register or a stack location)
to a node. The color is chosen among the colors that are not
assigned to nodes with which this node interferes. The choice
is guided by the following heuristics: consider first caller-save
hardware register of the correct type; second, callee-save registers;
third, a stack location. Callee-save registers and stack locations
are ``expensive'' resources, so we try to minimize their number
by picking the smallest available callee-save register or stack location.
In contrast, caller-save registers are ``free'', so we pick an
available one pseudo-randomly. *)
module Locset =
Set.Make(struct type t = loc let compare = compare end)
let start_points = Array.make num_register_classes 0
let find_reg conflicts regclass =
let rec find avail curr last =
if curr >= last then None else begin
let l = R avail.(curr) in
if Locset.mem l conflicts
then find avail (curr + 1) last
else Some l
end in
let caller_save = caller_save_registers.(regclass)
and callee_save = callee_save_registers.(regclass)
and start = start_points.(regclass) in
match find caller_save start (Array.length caller_save) with
| Some _ as res ->
start_points.(regclass) <-
(if start + 1 < Array.length caller_save then start + 1 else 0);
res
| None ->
match find caller_save 0 start with
| Some _ as res ->
start_points.(regclass) <-
(if start + 1 < Array.length caller_save then start + 1 else 0);
res
| None ->
find callee_save 0 (Array.length callee_save)
(* Aggressive coalescing of stack slots. When assigning a slot,
try first the slots assigned to the temporaries for which we
have a preference, provided no conflict occurs. *)
let rec reuse_slot conflicts n mvlist =
match mvlist with
| [] -> None
| mv :: rem ->
let attempt_reuse n' =
match n'.color with
| Some(S _ as l) when not (Locset.mem l conflicts) -> Some l
| _ -> reuse_slot conflicts n rem in
let src = getAlias mv.src and dst = getAlias mv.dst in
if n == src then attempt_reuse dst
else if n == dst then attempt_reuse src
else reuse_slot conflicts n rem (* should not happen? *)
(* If no reuse possible, assign lowest nonconflicting stack slot. *)
let find_slot conflicts typ =
let rec find curr =
let l = S(Local(curr, typ)) in
if Locset.mem l conflicts then find (coq_Zsucc curr) else l
in find Z0
let assign_color n =
let conflicts = ref Locset.empty in
List.iter
(fun n' ->
match (getAlias n').color with
| None -> ()
| Some l -> conflicts := Locset.add l !conflicts)
n.adjlist;
match find_reg !conflicts n.regclass with
| Some loc ->
n.color <- Some loc
| None ->
match reuse_slot !conflicts n n.movelist with
| Some loc ->
n.color <- Some loc
| None ->
n.color <- Some (find_slot !conflicts n.typ)
(* Extract the location of a node *)
let location_of_node n =
match n.color with
| None -> assert false
| Some loc -> loc
(* Estimate spilling costs and counts the number of defs and uses.
Currently, we charge 10 for each access and 1 for each move.
To do: take loops into account. *)
let spill_costs f =
let costs = ref (PMap.init (0,0)) in
let cost r =
PMap.get r !costs in
let charge amount r =
let (n, c) = cost r in
costs := PMap.set r (n + 1, c + amount) !costs in
let charge_list amount rl =
List.iter (charge amount) rl in
let charge_ros amount ros =
match ros with Coq_inl r -> charge amount r | Coq_inr _ -> () in
let process_instr () pc i =
match i with
| Inop _ -> ()
| Iop(Op.Omove, arg::nil, res, _) ->
charge 1 arg; charge 1 res
| Iop(op, args, res, _) ->
charge_list 10 args; charge 10 res
| Iload(chunk, addr, args, dst, _) ->
charge_list 10 args; charge 10 dst
| Istore(chunk, addr, args, src, _) ->
charge_list 10 args; charge 10 src
| Icall(sg, ros, args, res, _) ->
charge_ros 10 ros; charge_list 1 args; charge 1 res
| Itailcall(sg, ros, args) ->
charge_ros 10 ros; charge_list 1 args
| Ibuiltin(EF_annot _, args, res, _) ->
(* arguments are not actually used, so charge 0 for them;
result is not used but should not be spilled, so charge a lot *)
charge 1_000_000 res
| Ibuiltin(EF_annot_val _, args, res, _) ->
(* like a move *)
charge_list 1 args; charge 1 res
| Ibuiltin((EF_vstore _|EF_vstore_global _|EF_memcpy _), args, res, _) ->
(* result is not used but should not be spilled, so charge a lot *)
charge_list 10 args; charge 1_000_000 res
| Ibuiltin(ef, args, res, _) ->
charge_list 10 args; charge 10 res
| Icond(cond, args, _, _) ->
charge_list 10 args
| Ijumptable(arg, _) ->
charge 10 arg
| Ireturn(Some r) ->
charge 1 r
| Ireturn None ->
() in
charge_list 1 f.fn_params;
PTree.fold process_instr f.fn_code ();
(* Result is cost function reg -> (num accesses, integer cost *)
cost
(* This is the entry point for graph coloring. *)
let graph_coloring (f: coq_function) (g: graph) (env: regenv) (regs: Regset.t)
: (reg -> loc) =
init_regs();
init_graph();
Array.fill start_points 0 num_register_classes 0;
(*i Printf.printf "graph G {\n"; *)
let mapping = build g env (spill_costs f) in
(*i Printf.printf "}\n"; *)
List.iter assign_color (nodeOrder []);
init_graph(); (* free data structures *)
fun r ->
try location_of_node (getAlias (Hashtbl.find mapping r))
with Not_found -> R IT1 (* any location *)
|