summaryrefslogtreecommitdiff
path: root/backend/Cminor.v
blob: 6d288a9ec1373bef5c2b777fc45c0a843404c9fe (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
(* *********************************************************************)
(*                                                                     *)
(*              The Compcert verified compiler                         *)
(*                                                                     *)
(*          Xavier Leroy, INRIA Paris-Rocquencourt                     *)
(*                                                                     *)
(*  Copyright Institut National de Recherche en Informatique et en     *)
(*  Automatique.  All rights reserved.  This file is distributed       *)
(*  under the terms of the GNU General Public License as published by  *)
(*  the Free Software Foundation, either version 2 of the License, or  *)
(*  (at your option) any later version.  This file is also distributed *)
(*  under the terms of the INRIA Non-Commercial License Agreement.     *)
(*                                                                     *)
(* *********************************************************************)

(** Abstract syntax and semantics for the Cminor language. *)

Require Import Coqlib.
Require Import Maps.
Require Import AST.
Require Import Integers.
Require Import Floats.
Require Import Events.
Require Import Values.
Require Import Memory.
Require Import Globalenvs.
Require Import Smallstep.
Require Import Switch.

(** * Abstract syntax *)

(** Cminor is a low-level imperative language structured in expressions,
  statements, functions and programs.  We first define the constants
  and operators that occur within expressions. *)

Inductive constant : Type :=
  | Ointconst: int -> constant     (**r integer constant *)
  | Ofloatconst: float -> constant (**r floating-point constant *)
  | Oaddrsymbol: ident -> int -> constant (**r address of the symbol plus the offset *)
  | Oaddrstack: int -> constant.   (**r stack pointer plus the given offset *)

Inductive unary_operation : Type :=
  | Ocast8unsigned: unary_operation        (**r 8-bit zero extension  *)
  | Ocast8signed: unary_operation          (**r 8-bit sign extension  *)
  | Ocast16unsigned: unary_operation       (**r 16-bit zero extension  *)
  | Ocast16signed: unary_operation         (**r 16-bit sign extension *)
  | Oboolval: unary_operation              (**r 0 if null, 1 if non-null *)
  | Onegint: unary_operation               (**r integer opposite *)
  | Onotbool: unary_operation              (**r boolean negation  *)
  | Onotint: unary_operation               (**r bitwise complement  *)
  | Onegf: unary_operation                 (**r float opposite *)
  | Oabsf: unary_operation                 (**r float absolute value *)
  | Osingleoffloat: unary_operation        (**r float truncation *)
  | Ointoffloat: unary_operation           (**r signed integer to float *)
  | Ointuoffloat: unary_operation          (**r unsigned integer to float *)
  | Ofloatofint: unary_operation           (**r float to signed integer *)
  | Ofloatofintu: unary_operation.         (**r float to unsigned integer *)

Inductive binary_operation : Type :=
  | Oadd: binary_operation                 (**r integer addition *)
  | Osub: binary_operation                 (**r integer subtraction *)
  | Omul: binary_operation                 (**r integer multiplication *)
  | Odiv: binary_operation                 (**r integer signed division *)
  | Odivu: binary_operation                (**r integer unsigned division *)
  | Omod: binary_operation                 (**r integer signed modulus *)
  | Omodu: binary_operation                (**r integer unsigned modulus *)
  | Oand: binary_operation                 (**r bitwise ``and'' *)
  | Oor: binary_operation                  (**r bitwise ``or'' *)
  | Oxor: binary_operation                 (**r bitwise ``xor'' *)
  | Oshl: binary_operation                 (**r left shift *)
  | Oshr: binary_operation                 (**r right signed shift *)
  | Oshru: binary_operation                (**r right unsigned shift *)
  | Oaddf: binary_operation                (**r float addition *)
  | Osubf: binary_operation                (**r float subtraction *)
  | Omulf: binary_operation                (**r float multiplication *)
  | Odivf: binary_operation                (**r float division *)
  | Ocmp: comparison -> binary_operation   (**r integer signed comparison *)
  | Ocmpu: comparison -> binary_operation  (**r integer unsigned comparison *)
  | Ocmpf: comparison -> binary_operation. (**r float comparison *)

(** Expressions include reading local variables, constants and
  arithmetic operations, reading store locations, and conditional
  expressions (similar to [e1 ? e2 : e3] in C). *)

Inductive expr : Type :=
  | Evar : ident -> expr
  | Econst : constant -> expr
  | Eunop : unary_operation -> expr -> expr
  | Ebinop : binary_operation -> expr -> expr -> expr
  | Eload : memory_chunk -> expr -> expr
  | Econdition : expr -> expr -> expr -> expr.

(** Statements include expression evaluation, assignment to local variables,
  memory stores, function calls, an if/then/else conditional, infinite
  loops, blocks and early block exits, and early function returns.
  [Sexit n] terminates prematurely the execution of the [n+1]
  enclosing [Sblock] statements. *)

Definition label := ident.

Inductive stmt : Type :=
  | Sskip: stmt
  | Sassign : ident -> expr -> stmt
  | Sstore : memory_chunk -> expr -> expr -> stmt
  | Scall : option ident -> signature -> expr -> list expr -> stmt
  | Stailcall: signature -> expr -> list expr -> stmt
  | Sbuiltin : option ident -> external_function -> list expr -> stmt
  | Sseq: stmt -> stmt -> stmt
  | Sifthenelse: expr -> stmt -> stmt -> stmt
  | Sloop: stmt -> stmt
  | Sblock: stmt -> stmt
  | Sexit: nat -> stmt
  | Sswitch: expr -> list (int * nat) -> nat -> stmt
  | Sreturn: option expr -> stmt
  | Slabel: label -> stmt -> stmt
  | Sgoto: label -> stmt.

(** Functions are composed of a signature, a list of parameter names,
  a list of local variables, and a  statement representing
  the function body.  Each function can allocate a memory block of
  size [fn_stackspace] on entrance.  This block will be deallocated
  automatically before the function returns.  Pointers into this block
  can be taken with the [Oaddrstack] operator. *)

Record function : Type := mkfunction {
  fn_sig: signature;
  fn_params: list ident;
  fn_vars: list ident;
  fn_stackspace: Z;
  fn_body: stmt
}.

Definition fundef := AST.fundef function.
Definition program := AST.program fundef unit.

Definition funsig (fd: fundef) :=
  match fd with
  | Internal f => fn_sig f
  | External ef => ef_sig ef
  end.

(** * Operational semantics (small-step) *)

(** Two kinds of evaluation environments are involved:
- [genv]: global environments, define symbols and functions;
- [env]: local environments, map local variables to values.
*)

Definition genv := Genv.t fundef unit.
Definition env := PTree.t val.

(** The following functions build the initial local environment at
  function entry, binding parameters to the provided arguments and
  initializing local variables to [Vundef]. *)

Fixpoint set_params (vl: list val) (il: list ident) {struct il} : env :=
  match il, vl with
  | i1 :: is, v1 :: vs => PTree.set i1 v1 (set_params vs is)
  | i1 :: is, nil => PTree.set i1 Vundef (set_params nil is)
  | _, _ => PTree.empty val
  end.

Fixpoint set_locals (il: list ident) (e: env) {struct il} : env :=
  match il with
  | nil => e
  | i1 :: is => PTree.set i1 Vundef (set_locals is e)
  end.

Definition set_optvar (optid: option ident) (v: val) (e: env) : env :=
  match optid with
  | None => e
  | Some id => PTree.set id v e
  end.

(** Continuations *)

Inductive cont: Type :=
  | Kstop: cont                         (**r stop program execution *)
  | Kseq: stmt -> cont -> cont          (**r execute stmt, then cont *)
  | Kblock: cont -> cont                (**r exit a block, then do cont *)
  | Kcall: option ident -> function -> val -> env -> cont -> cont.
                                        (**r return to caller *)

(** States *)

Inductive state: Type :=
  | State:                      (**r Execution within a function *)
      forall (f: function)              (**r currently executing function  *)
             (s: stmt)                  (**r statement under consideration *)
             (k: cont)                  (**r its continuation -- what to do next *)
             (sp: val)                  (**r current stack pointer *)
             (e: env)                   (**r current local environment *)
             (m: mem),                  (**r current memory state *)
      state
  | Callstate:                  (**r Invocation of a function *)
      forall (f: fundef)                (**r function to invoke *)
             (args: list val)           (**r arguments provided by caller *)
             (k: cont)                  (**r what to do next  *)
             (m: mem),                  (**r memory state *)
      state
  | Returnstate:                (**r Return from a function *)
      forall (v: val)                   (**r Return value *)
             (k: cont)                  (**r what to do next *)
             (m: mem),                  (**r memory state *)
      state.
             
Section RELSEM.

Variable ge: genv.

(** Evaluation of constants and operator applications.
    [None] is returned when the computation is undefined, e.g.
    if arguments are of the wrong types, or in case of an integer division
    by zero. *)

Definition eval_constant (sp: val) (cst: constant) : option val :=
  match cst with
  | Ointconst n => Some (Vint n)
  | Ofloatconst n => Some (Vfloat n)
  | Oaddrsymbol s ofs =>
      Some(match Genv.find_symbol ge s with
           | None => Vundef
           | Some b => Vptr b ofs end)
  | Oaddrstack ofs => Some (Val.add sp (Vint ofs))
  end.

Definition eval_unop (op: unary_operation) (arg: val) : option val :=
  match op with
  | Ocast8unsigned => Some (Val.zero_ext 8 arg)
  | Ocast8signed => Some (Val.sign_ext 8 arg)
  | Ocast16unsigned => Some (Val.zero_ext 16 arg)
  | Ocast16signed => Some (Val.sign_ext 16 arg)
  | Oboolval => Some(Val.boolval arg)
  | Onegint => Some (Val.negint arg)
  | Onotbool => Some (Val.notbool arg)
  | Onotint => Some (Val.notint arg)
  | Onegf => Some (Val.negf arg)
  | Oabsf => Some (Val.absf arg)
  | Osingleoffloat => Some (Val.singleoffloat arg)
  | Ointoffloat => Val.intoffloat arg
  | Ointuoffloat => Val.intuoffloat arg
  | Ofloatofint => Val.floatofint arg
  | Ofloatofintu => Val.floatofintu arg
  end.

Definition eval_binop
            (op: binary_operation) (arg1 arg2: val) (m: mem): option val :=
  match op with
  | Oadd => Some (Val.add arg1 arg2)
  | Osub => Some (Val.sub arg1 arg2)
  | Omul => Some (Val.mul arg1 arg2)
  | Odiv => Val.divs arg1 arg2
  | Odivu => Val.divu arg1 arg2
  | Omod => Val.mods arg1 arg2
  | Omodu => Val.modu arg1 arg2
  | Oand => Some (Val.and arg1 arg2)
  | Oor => Some (Val.or arg1 arg2)
  | Oxor => Some (Val.xor arg1 arg2)
  | Oshl => Some (Val.shl arg1 arg2)
  | Oshr => Some (Val.shr arg1 arg2)
  | Oshru => Some (Val.shru arg1 arg2)
  | Oaddf => Some (Val.addf arg1 arg2)
  | Osubf => Some (Val.subf arg1 arg2)
  | Omulf => Some (Val.mulf arg1 arg2)
  | Odivf => Some (Val.divf arg1 arg2)
  | Ocmp c => Some (Val.cmp c arg1 arg2)
  | Ocmpu c => Some (Val.cmpu (Mem.valid_pointer m) c arg1 arg2)
  | Ocmpf c => Some (Val.cmpf c arg1 arg2)
  end.

(** Evaluation of an expression: [eval_expr ge sp e m a v]
  states that expression [a] evaluates to value [v].
  [ge] is the global environment, [e] the local environment,
  and [m] the current memory state.  They are unchanged during evaluation.
  [sp] is the pointer to the memory block allocated for this function
  (stack frame).
*)

Section EVAL_EXPR.

Variable sp: val.
Variable e: env.
Variable m: mem.

Inductive eval_expr: expr -> val -> Prop :=
  | eval_Evar: forall id v,
      PTree.get id e = Some v ->
      eval_expr (Evar id) v
  | eval_Econst: forall cst v,
      eval_constant sp cst = Some v ->
      eval_expr (Econst cst) v
  | eval_Eunop: forall op a1 v1 v,
      eval_expr a1 v1 ->
      eval_unop op v1 = Some v ->
      eval_expr (Eunop op a1) v
  | eval_Ebinop: forall op a1 a2 v1 v2 v,
      eval_expr a1 v1 ->
      eval_expr a2 v2 ->
      eval_binop op v1 v2 m = Some v ->
      eval_expr (Ebinop op a1 a2) v
  | eval_Eload: forall chunk addr vaddr v,
      eval_expr addr vaddr ->
      Mem.loadv chunk m vaddr = Some v ->     
      eval_expr (Eload chunk addr) v
  | eval_Econdition: forall a1 a2 a3 v1 b1 v2,
      eval_expr a1 v1 ->
      Val.bool_of_val v1 b1 ->
      eval_expr (if b1 then a2 else a3) v2 ->
      eval_expr (Econdition a1 a2 a3) v2.

Inductive eval_exprlist: list expr -> list val -> Prop :=
  | eval_Enil:
      eval_exprlist nil nil
  | eval_Econs: forall a1 al v1 vl,
      eval_expr a1 v1 -> eval_exprlist al vl ->
      eval_exprlist (a1 :: al) (v1 :: vl).

End EVAL_EXPR.

(** Pop continuation until a call or stop *)

Fixpoint call_cont (k: cont) : cont :=
  match k with
  | Kseq s k => call_cont k
  | Kblock k => call_cont k
  | _ => k
  end.

Definition is_call_cont (k: cont) : Prop :=
  match k with
  | Kstop => True
  | Kcall _ _ _ _ _ => True
  | _ => False
  end.

(** Find the statement and manufacture the continuation 
  corresponding to a label *)

Fixpoint find_label (lbl: label) (s: stmt) (k: cont) 
                    {struct s}: option (stmt * cont) :=
  match s with
  | Sseq s1 s2 =>
      match find_label lbl s1 (Kseq s2 k) with
      | Some sk => Some sk
      | None => find_label lbl s2 k
      end
  | Sifthenelse a s1 s2 =>
      match find_label lbl s1 k with
      | Some sk => Some sk
      | None => find_label lbl s2 k
      end
  | Sloop s1 =>
      find_label lbl s1 (Kseq (Sloop s1) k)
  | Sblock s1 =>
      find_label lbl s1 (Kblock k)
  | Slabel lbl' s' =>
      if ident_eq lbl lbl' then Some(s', k) else find_label lbl s' k
  | _ => None
  end.

(** One step of execution *)

Inductive step: state -> trace -> state -> Prop :=

  | step_skip_seq: forall f s k sp e m,
      step (State f Sskip (Kseq s k) sp e m)
        E0 (State f s k sp e m)
  | step_skip_block: forall f k sp e m,
      step (State f Sskip (Kblock k) sp e m)
        E0 (State f Sskip k sp e m)
  | step_skip_call: forall f k sp e m m',
      is_call_cont k ->
      f.(fn_sig).(sig_res) = None ->
      Mem.free m sp 0 f.(fn_stackspace) = Some m' ->
      step (State f Sskip k (Vptr sp Int.zero) e m)
        E0 (Returnstate Vundef k m')

  | step_assign: forall f id a k sp e m v,
      eval_expr sp e m a v ->
      step (State f (Sassign id a) k sp e m)
        E0 (State f Sskip k sp (PTree.set id v e) m)

  | step_store: forall f chunk addr a k sp e m vaddr v m',
      eval_expr sp e m addr vaddr ->
      eval_expr sp e m a v ->
      Mem.storev chunk m vaddr v = Some m' ->
      step (State f (Sstore chunk addr a) k sp e m)
        E0 (State f Sskip k sp e m')

  | step_call: forall f optid sig a bl k sp e m vf vargs fd,
      eval_expr sp e m a vf ->
      eval_exprlist sp e m bl vargs ->
      Genv.find_funct ge vf = Some fd ->
      funsig fd = sig ->
      step (State f (Scall optid sig a bl) k sp e m)
        E0 (Callstate fd vargs (Kcall optid f sp e k) m)

  | step_tailcall: forall f sig a bl k sp e m vf vargs fd m',
      eval_expr (Vptr sp Int.zero) e m a vf ->
      eval_exprlist (Vptr sp Int.zero) e m bl vargs ->
      Genv.find_funct ge vf = Some fd ->
      funsig fd = sig ->
      Mem.free m sp 0 f.(fn_stackspace) = Some m' ->
      step (State f (Stailcall sig a bl) k (Vptr sp Int.zero) e m)
        E0 (Callstate fd vargs (call_cont k) m')

  | step_builtin: forall f optid ef bl k sp e m vargs t vres m',
      eval_exprlist sp e m bl vargs ->
      external_call ef ge vargs m t vres m' ->
      step (State f (Sbuiltin optid ef bl) k sp e m)
         t (State f Sskip k sp (set_optvar optid vres e) m')

  | step_seq: forall f s1 s2 k sp e m,
      step (State f (Sseq s1 s2) k sp e m)
        E0 (State f s1 (Kseq s2 k) sp e m)

  | step_ifthenelse: forall f a s1 s2 k sp e m v b,
      eval_expr sp e m a v ->
      Val.bool_of_val v b ->
      step (State f (Sifthenelse a s1 s2) k sp e m)
        E0 (State f (if b then s1 else s2) k sp e m)

  | step_loop: forall f s k sp e m,
      step (State f (Sloop s) k sp e m)
        E0 (State f s (Kseq (Sloop s) k) sp e m)

  | step_block: forall f s k sp e m,
      step (State f (Sblock s) k sp e m)
        E0 (State f s (Kblock k) sp e m)

  | step_exit_seq: forall f n s k sp e m,
      step (State f (Sexit n) (Kseq s k) sp e m)
        E0 (State f (Sexit n) k sp e m)
  | step_exit_block_0: forall f k sp e m,
      step (State f (Sexit O) (Kblock k) sp e m)
        E0 (State f Sskip k sp e m)
  | step_exit_block_S: forall f n k sp e m,
      step (State f (Sexit (S n)) (Kblock k) sp e m)
        E0 (State f (Sexit n) k sp e m)

  | step_switch: forall f a cases default k sp e m n,
      eval_expr sp e m a (Vint n) ->
      step (State f (Sswitch a cases default) k sp e m)
        E0 (State f (Sexit (switch_target n default cases)) k sp e m)

  | step_return_0: forall f k sp e m m',
      Mem.free m sp 0 f.(fn_stackspace) = Some m' ->
      step (State f (Sreturn None) k (Vptr sp Int.zero) e m)
        E0 (Returnstate Vundef (call_cont k) m')
  | step_return_1: forall f a k sp e m v m',
      eval_expr (Vptr sp Int.zero) e m a v ->
      Mem.free m sp 0 f.(fn_stackspace) = Some m' ->
      step (State f (Sreturn (Some a)) k (Vptr sp Int.zero) e m)
        E0 (Returnstate v (call_cont k) m')

  | step_label: forall f lbl s k sp e m,
      step (State f (Slabel lbl s) k sp e m)
        E0 (State f s k sp e m)

  | step_goto: forall f lbl k sp e m s' k',
      find_label lbl f.(fn_body) (call_cont k) = Some(s', k') ->
      step (State f (Sgoto lbl) k sp e m)
        E0 (State f s' k' sp e m)

  | step_internal_function: forall f vargs k m m' sp e,
      Mem.alloc m 0 f.(fn_stackspace) = (m', sp) ->
      set_locals f.(fn_vars) (set_params vargs f.(fn_params)) = e ->
      step (Callstate (Internal f) vargs k m)
        E0 (State f f.(fn_body) k (Vptr sp Int.zero) e m')
  | step_external_function: forall ef vargs k m t vres m',
      external_call ef ge vargs m t vres m' ->
      step (Callstate (External ef) vargs k m)
         t (Returnstate vres k m')        

  | step_return: forall v optid f sp e k m,
      step (Returnstate v (Kcall optid f sp e k) m)
        E0 (State f Sskip k sp (set_optvar optid v e) m).

End RELSEM.

(** Execution of whole programs are described as sequences of transitions
  from an initial state to a final state.  An initial state is a [Callstate]
  corresponding to the invocation of the ``main'' function of the program
  without arguments and with an empty continuation. *)

Inductive initial_state (p: program): state -> Prop :=
  | initial_state_intro: forall b f m0,
      let ge := Genv.globalenv p in
      Genv.init_mem p = Some m0 ->
      Genv.find_symbol ge p.(prog_main) = Some b ->
      Genv.find_funct_ptr ge b = Some f ->
      funsig f = mksignature nil (Some Tint) ->
      initial_state p (Callstate f nil Kstop m0).

(** A final state is a [Returnstate] with an empty continuation. *)

Inductive final_state: state -> int -> Prop :=
  | final_state_intro: forall r m,
      final_state (Returnstate (Vint r) Kstop m) r.

(** The corresponding small-step semantics. *)

Definition semantics (p: program) :=
  Semantics step (initial_state p) final_state (Genv.globalenv p).

(** This semantics is receptive to changes in events. *)

Lemma semantics_receptive:
  forall (p: program), receptive (semantics p).
Proof.
  intros. constructor; simpl; intros.
(* receptiveness *)
  assert (t1 = E0 -> exists s2, step (Genv.globalenv p) s t2 s2).
    intros. subst. inv H0. exists s1; auto.
  inversion H; subst; auto.
  exploit external_call_receptive; eauto. intros [vres2 [m2 EC2]]. 
  exists (State f Sskip k sp (set_optvar optid vres2 e) m2). econstructor; eauto. 
  exploit external_call_receptive; eauto. intros [vres2 [m2 EC2]]. 
  exists (Returnstate vres2 k m2). econstructor; eauto.
(* trace length *)
  red; intros; inv H; simpl; try omega; eapply external_call_trace_length; eauto.
Qed.

(** * Alternate operational semantics (big-step) *)

(** We now define another semantics for Cminor without [goto] that follows
  the ``big-step'' style of semantics, also known as natural semantics.
  In this style, just like expressions evaluate to values, 
  statements evaluate to``outcomes'' indicating how execution should
  proceed afterwards. *)

Inductive outcome: Type :=
  | Out_normal: outcome                (**r continue in sequence *)
  | Out_exit: nat -> outcome           (**r terminate [n+1] enclosing blocks *)
  | Out_return: option val -> outcome  (**r return immediately to caller *)
  | Out_tailcall_return: val -> outcome. (**r already returned to caller via a tailcall *)

Definition outcome_block (out: outcome) : outcome :=
  match out with
  | Out_exit O => Out_normal
  | Out_exit (S n) => Out_exit n
  | out => out
  end.

Definition outcome_result_value
    (out: outcome) (retsig: option typ) (vres: val) : Prop :=
  match out, retsig with
  | Out_normal, None => vres = Vundef
  | Out_return None, None => vres = Vundef
  | Out_return (Some v), Some ty => vres = v
  | Out_tailcall_return v, _ => vres = v
  | _, _ => False
  end.

Definition outcome_free_mem
    (out: outcome) (m: mem) (sp: block) (sz: Z) (m': mem) :=
  match out with
  | Out_tailcall_return _ => m' = m
  | _ => Mem.free m sp 0 sz = Some m'
  end.

Section NATURALSEM.

Variable ge: genv.

(** Evaluation of a function invocation: [eval_funcall ge m f args t m' res]
  means that the function [f], applied to the arguments [args] in
  memory state [m], returns the value [res] in modified memory state [m'].
  [t] is the trace of observable events generated during the invocation.
*)

Inductive eval_funcall:
        mem -> fundef -> list val -> trace ->
        mem -> val -> Prop :=
  | eval_funcall_internal:
      forall m f vargs m1 sp e t e2 m2 out vres m3,
      Mem.alloc m 0 f.(fn_stackspace) = (m1, sp) ->
      set_locals f.(fn_vars) (set_params vargs f.(fn_params)) = e ->
      exec_stmt f (Vptr sp Int.zero) e m1 f.(fn_body) t e2 m2 out ->
      outcome_result_value out f.(fn_sig).(sig_res) vres ->
      outcome_free_mem out m2 sp f.(fn_stackspace) m3 ->
      eval_funcall m (Internal f) vargs t m3 vres
  | eval_funcall_external:
      forall ef m args t res m',
      external_call ef ge args m t res m' ->
      eval_funcall m (External ef) args t m' res

(** Execution of a statement: [exec_stmt ge f sp e m s t e' m' out]
  means that statement [s] executes with outcome [out].
  [e] is the initial environment and [m] is the initial memory state.
  [e'] is the final environment, reflecting variable assignments performed
  by [s].  [m'] is the final memory state, reflecting memory stores
  performed by [s].  [t] is the trace of I/O events performed during
  the execution.  The other parameters are as in [eval_expr]. *)

with exec_stmt:
         function -> val ->
         env -> mem -> stmt -> trace ->
         env -> mem -> outcome -> Prop :=
  | exec_Sskip:
      forall f sp e m,
      exec_stmt f sp e m Sskip E0 e m Out_normal
  | exec_Sassign:
      forall f sp e m id a v,
      eval_expr ge sp e m a v ->
      exec_stmt f sp e m (Sassign id a) E0 (PTree.set id v e) m Out_normal
  | exec_Sstore:
      forall f sp e m chunk addr a vaddr v m',
      eval_expr ge sp e m addr vaddr ->
      eval_expr ge sp e m a v ->
      Mem.storev chunk m vaddr v = Some m' ->
      exec_stmt f sp e m (Sstore chunk addr a) E0 e m' Out_normal
  | exec_Scall:
      forall f sp e m optid sig a bl vf vargs fd t m' vres e',
      eval_expr ge sp e m a vf ->
      eval_exprlist ge sp e m bl vargs ->
      Genv.find_funct ge vf = Some fd ->
      funsig fd = sig ->
      eval_funcall m fd vargs t m' vres ->
      e' = set_optvar optid vres e ->
      exec_stmt f sp e m (Scall optid sig a bl) t e' m' Out_normal
  | exec_Sbuiltin:
      forall f sp e m optid ef bl t m' vargs vres e',
      eval_exprlist ge sp e m bl vargs ->
      external_call ef ge vargs m t vres m' ->
      e' = set_optvar optid vres e ->
      exec_stmt f sp e m (Sbuiltin optid ef bl) t e' m' Out_normal
  | exec_Sifthenelse:
      forall f sp e m a s1 s2 v b t e' m' out,
      eval_expr ge sp e m a v ->
      Val.bool_of_val v b ->
      exec_stmt f sp e m (if b then s1 else s2) t e' m' out ->
      exec_stmt f sp e m (Sifthenelse a s1 s2) t e' m' out
  | exec_Sseq_continue:
      forall f sp e m t s1 t1 e1 m1 s2 t2 e2 m2 out,
      exec_stmt f sp e m s1 t1 e1 m1 Out_normal ->
      exec_stmt f sp e1 m1 s2 t2 e2 m2 out ->
      t = t1 ** t2 ->
      exec_stmt f sp e m (Sseq s1 s2) t e2 m2 out
  | exec_Sseq_stop:
      forall f sp e m t s1 s2 e1 m1 out,
      exec_stmt f sp e m s1 t e1 m1 out ->
      out <> Out_normal ->
      exec_stmt f sp e m (Sseq s1 s2) t e1 m1 out
  | exec_Sloop_loop:
      forall f sp e m s t t1 e1 m1 t2 e2 m2 out,
      exec_stmt f sp e m s t1 e1 m1 Out_normal ->
      exec_stmt f sp e1 m1 (Sloop s) t2 e2 m2 out ->
      t = t1 ** t2 ->
      exec_stmt f sp e m (Sloop s) t e2 m2 out
  | exec_Sloop_stop:
      forall f sp e m t s e1 m1 out,
      exec_stmt f sp e m s t e1 m1 out ->
      out <> Out_normal ->
      exec_stmt f sp e m (Sloop s) t e1 m1 out
  | exec_Sblock:
      forall f sp e m s t e1 m1 out,
      exec_stmt f sp e m s t e1 m1 out ->
      exec_stmt f sp e m (Sblock s) t e1 m1 (outcome_block out)
  | exec_Sexit:
      forall f sp e m n,
      exec_stmt f sp e m (Sexit n) E0 e m (Out_exit n)
  | exec_Sswitch:
      forall f sp e m a cases default n,
      eval_expr ge sp e m a (Vint n) ->
      exec_stmt f sp e m (Sswitch a cases default)
                E0 e m (Out_exit (switch_target n default cases))
  | exec_Sreturn_none:
      forall f sp e m,
      exec_stmt f sp e m (Sreturn None) E0 e m (Out_return None)
  | exec_Sreturn_some:
      forall f sp e m a v,
      eval_expr ge sp e m a v ->
      exec_stmt f sp e m (Sreturn (Some a)) E0 e m (Out_return (Some v))
  | exec_Stailcall:
      forall f sp e m sig a bl vf vargs fd t m' m'' vres,
      eval_expr ge (Vptr sp Int.zero) e m a vf ->
      eval_exprlist ge (Vptr sp Int.zero) e m bl vargs ->
      Genv.find_funct ge vf = Some fd ->
      funsig fd = sig ->
      Mem.free m sp 0 f.(fn_stackspace) = Some m' ->
      eval_funcall m' fd vargs t m'' vres ->
      exec_stmt f (Vptr sp Int.zero) e m (Stailcall sig a bl) t e m'' (Out_tailcall_return vres).

Scheme eval_funcall_ind2 := Minimality for eval_funcall Sort Prop
  with exec_stmt_ind2 := Minimality for exec_stmt Sort Prop.
Combined Scheme eval_funcall_exec_stmt_ind2 
  from eval_funcall_ind2, exec_stmt_ind2.

(** Coinductive semantics for divergence.
  [evalinf_funcall ge m f args t]
  means that the function [f] diverges when applied to the arguments [args] in
  memory state [m].  The infinite trace [t] is the trace of
  observable events generated during the invocation.
*)

CoInductive evalinf_funcall:
        mem -> fundef -> list val -> traceinf -> Prop :=
  | evalinf_funcall_internal:
      forall m f vargs m1 sp e t,
      Mem.alloc m 0 f.(fn_stackspace) = (m1, sp) ->
      set_locals f.(fn_vars) (set_params vargs f.(fn_params)) = e ->
      execinf_stmt f (Vptr sp Int.zero) e m1 f.(fn_body) t ->
      evalinf_funcall m (Internal f) vargs t

(** [execinf_stmt ge sp e m s t] means that statement [s] diverges.
  [e] is the initial environment, [m] is the initial memory state,
  and [t] the trace of observable events performed during the execution. *)

with execinf_stmt:
         function -> val -> env -> mem -> stmt -> traceinf -> Prop :=
  | execinf_Scall:
      forall f sp e m optid sig a bl vf vargs fd t,
      eval_expr ge sp e m a vf ->
      eval_exprlist ge sp e m bl vargs ->
      Genv.find_funct ge vf = Some fd ->
      funsig fd = sig ->
      evalinf_funcall m fd vargs t ->
      execinf_stmt f sp e m (Scall optid sig a bl) t
  | execinf_Sifthenelse:
      forall f sp e m a s1 s2 v b t,
      eval_expr ge sp e m a v ->
      Val.bool_of_val v b ->
      execinf_stmt f sp e m (if b then s1 else s2) t ->
      execinf_stmt f sp e m (Sifthenelse a s1 s2) t
  | execinf_Sseq_1:
      forall f sp e m t s1 s2,
      execinf_stmt f sp e m s1 t ->
      execinf_stmt f sp e m (Sseq s1 s2) t
  | execinf_Sseq_2:
      forall f sp e m t s1 t1 e1 m1 s2 t2,
      exec_stmt f sp e m s1 t1 e1 m1 Out_normal ->
      execinf_stmt f sp e1 m1 s2 t2 ->
      t = t1 *** t2 ->
      execinf_stmt f sp e m (Sseq s1 s2) t
  | execinf_Sloop_body:
      forall f sp e m s t,
      execinf_stmt f sp e m s t ->
      execinf_stmt f sp e m (Sloop s) t
  | execinf_Sloop_loop:
      forall f sp e m s t t1 e1 m1 t2,
      exec_stmt f sp e m s t1 e1 m1 Out_normal ->
      execinf_stmt f sp e1 m1 (Sloop s) t2 ->
      t = t1 *** t2 ->
      execinf_stmt f sp e m (Sloop s) t
  | execinf_Sblock:
      forall f sp e m s t,
      execinf_stmt f sp e m s t ->
      execinf_stmt f sp e m (Sblock s) t
  | execinf_Stailcall:
      forall f sp e m sig a bl vf vargs fd m' t,
      eval_expr ge (Vptr sp Int.zero) e m a vf ->
      eval_exprlist ge (Vptr sp Int.zero) e m bl vargs ->
      Genv.find_funct ge vf = Some fd ->
      funsig fd = sig ->
      Mem.free m sp 0 f.(fn_stackspace) = Some m' ->
      evalinf_funcall m' fd vargs t ->
      execinf_stmt f (Vptr sp Int.zero) e m (Stailcall sig a bl) t.

End NATURALSEM.

(** Big-step execution of a whole program *)

Inductive bigstep_program_terminates (p: program): trace -> int -> Prop :=
  | bigstep_program_terminates_intro:
      forall b f m0 t m r,
      let ge := Genv.globalenv p in
      Genv.init_mem p = Some m0 ->
      Genv.find_symbol ge p.(prog_main) = Some b ->
      Genv.find_funct_ptr ge b = Some f ->
      funsig f = mksignature nil (Some Tint) ->
      eval_funcall ge m0 f nil t m (Vint r) ->
      bigstep_program_terminates p t r.

Inductive bigstep_program_diverges (p: program): traceinf -> Prop :=
  | bigstep_program_diverges_intro:
      forall b f m0 t,
      let ge := Genv.globalenv p in
      Genv.init_mem p = Some m0 ->
      Genv.find_symbol ge p.(prog_main) = Some b ->
      Genv.find_funct_ptr ge b = Some f ->
      funsig f = mksignature nil (Some Tint) ->
      evalinf_funcall ge m0 f nil t ->
      bigstep_program_diverges p t.

Definition bigstep_semantics (p: program) :=
  Bigstep_semantics (bigstep_program_terminates p) (bigstep_program_diverges p).

(** ** Correctness of the big-step semantics with respect to the transition semantics *)

Section BIGSTEP_TO_TRANSITION.

Variable prog: program.
Let ge := Genv.globalenv prog.

Inductive outcome_state_match
        (sp: val) (e: env) (m: mem) (f: function) (k: cont):
        outcome -> state -> Prop :=
  | osm_normal:
      outcome_state_match sp e m f k 
                          Out_normal
                          (State f Sskip k sp e m)
  | osm_exit: forall n,
      outcome_state_match sp e m f k 
                          (Out_exit n)
                          (State f (Sexit n) k sp e m)
  | osm_return_none: forall k',
      call_cont k' = call_cont k ->
      outcome_state_match sp e m f k 
                          (Out_return None)
                          (State f (Sreturn None) k' sp e m)
  | osm_return_some: forall k' a v,
      call_cont k' = call_cont k ->
      eval_expr ge sp e m a v ->
      outcome_state_match sp e m f k 
                          (Out_return (Some v))
                          (State f (Sreturn (Some a)) k' sp e m)
  | osm_tail: forall v,
      outcome_state_match sp e m f k
                          (Out_tailcall_return v)
                          (Returnstate v (call_cont k) m).

Remark is_call_cont_call_cont:
  forall k, is_call_cont (call_cont k).
Proof.
  induction k; simpl; auto.
Qed.

Remark call_cont_is_call_cont:
  forall k, is_call_cont k -> call_cont k = k.
Proof.
  destruct k; simpl; intros; auto || contradiction.
Qed.

Lemma eval_funcall_exec_stmt_steps:
  (forall m fd args t m' res,
   eval_funcall ge m fd args t m' res ->
   forall k,
   is_call_cont k ->
   star step ge (Callstate fd args k m)
              t (Returnstate res k m'))
/\(forall f sp e m s t e' m' out,
   exec_stmt ge f sp e m s t e' m' out ->
   forall k,
   exists S,
   star step ge (State f s k sp e m) t S
   /\ outcome_state_match sp e' m' f k out S).
Proof.
  apply eval_funcall_exec_stmt_ind2; intros.

(* funcall internal *)
  destruct (H2 k) as [S [A B]].
  assert (call_cont k = k) by (apply call_cont_is_call_cont; auto).
  eapply star_left. econstructor; eauto. 
  eapply star_trans. eexact A.
  inversion B; clear B; subst out; simpl in H3; simpl; try contradiction.
  (* Out normal *)
  assert (f.(fn_sig).(sig_res) = None /\ vres = Vundef).
    destruct f.(fn_sig).(sig_res). contradiction. auto.
  destruct H7. subst vres.
  apply star_one. apply step_skip_call; auto. 
  (* Out_return None *)
  assert (f.(fn_sig).(sig_res) = None /\ vres = Vundef).
    destruct f.(fn_sig).(sig_res). contradiction. auto.
  destruct H8. subst vres.
  replace k with (call_cont k') by congruence.
  apply star_one. apply step_return_0; auto.
  (* Out_return Some *)
  assert (f.(fn_sig).(sig_res) <> None /\ vres = v).
    destruct f.(fn_sig).(sig_res). split; congruence. contradiction.
  destruct H9. subst vres.
  replace k with (call_cont k') by congruence.
  apply star_one. eapply step_return_1; eauto.
  (* Out_tailcall_return *)
  subst vres. red in H4. subst m3. rewrite H6. apply star_refl.

  reflexivity. traceEq.

(* funcall external *)
  apply star_one. constructor; auto. 

(* skip *)
  econstructor; split.
  apply star_refl. 
  constructor.

(* assign *)
  exists (State f Sskip k sp (PTree.set id v e) m); split.
  apply star_one. constructor. auto.
  constructor.

(* store *)
  econstructor; split.
  apply star_one. econstructor; eauto.
  constructor.

(* call *)
  econstructor; split.
  eapply star_left. econstructor; eauto. 
  eapply star_right. apply H4. red; auto. 
  constructor. reflexivity. traceEq.
  subst e'. constructor.

(* builtin *)
  econstructor; split.
  apply star_one. econstructor; eauto. 
  subst e'. constructor.

(* ifthenelse *)
  destruct (H2 k) as [S [A B]].
  exists S; split.
  apply star_left with E0 (State f (if b then s1 else s2) k sp e m) t.
  econstructor; eauto. exact A.
  traceEq.
  auto.

(* seq continue *)
  destruct (H0 (Kseq s2 k)) as [S1 [A1 B1]].
  destruct (H2 k) as [S2 [A2 B2]].
  inv B1.
  exists S2; split.
  eapply star_left. constructor. 
  eapply star_trans. eexact A1. 
  eapply star_left. constructor. eexact A2.
  reflexivity. reflexivity. traceEq.
  auto.

(* seq stop *)
  destruct (H0 (Kseq s2 k)) as [S1 [A1 B1]].
  set (S2 :=
    match out with
    | Out_exit n => State f (Sexit n) k sp e1 m1
    | _ => S1
    end).
  exists S2; split.
  eapply star_left. constructor. eapply star_trans. eexact A1.
  unfold S2; destruct out; try (apply star_refl).
  inv B1. apply star_one. constructor.
  reflexivity. traceEq.
  unfold S2; inv B1; congruence || simpl; constructor; auto.

(* loop loop *)
  destruct (H0 (Kseq (Sloop s) k)) as [S1 [A1 B1]].
  destruct (H2 k) as [S2 [A2 B2]].
  inv B1.
  exists S2; split.
  eapply star_left. constructor. 
  eapply star_trans. eexact A1. 
  eapply star_left. constructor. eexact A2.
  reflexivity. reflexivity. traceEq.
  auto.

(* loop stop *)
  destruct (H0 (Kseq (Sloop s) k)) as [S1 [A1 B1]].
  set (S2 :=
    match out with
    | Out_exit n => State f (Sexit n) k sp e1 m1
    | _ => S1
    end).
  exists S2; split.
  eapply star_left. constructor. eapply star_trans. eexact A1.
  unfold S2; destruct out; try (apply star_refl).
  inv B1. apply star_one. constructor.
  reflexivity. traceEq.
  unfold S2; inv B1; congruence || simpl; constructor; auto.

(* block *)
  destruct (H0 (Kblock k)) as [S1 [A1 B1]].
  set (S2 :=
    match out with
    | Out_normal => State f Sskip k sp e1 m1
    | Out_exit O => State f Sskip k sp e1 m1
    | Out_exit (S m) => State f (Sexit m) k sp e1 m1
    | _ => S1
    end).
  exists S2; split.
  eapply star_left. constructor. eapply star_trans. eexact A1.
  unfold S2; destruct out; try (apply star_refl).
  inv B1. apply star_one. constructor.
  inv B1. apply star_one. destruct n; constructor.
  reflexivity. traceEq.
  unfold S2; inv B1; simpl; try constructor; auto.
  destruct n; constructor.

(* exit *)
  econstructor; split. apply star_refl. constructor.

(* switch *)
  econstructor; split.
  apply star_one. econstructor; eauto. 
  constructor.

(* return none *)
  econstructor; split. apply star_refl. constructor; auto.

(* return some *)
  econstructor; split. apply star_refl. constructor; auto.

(* tailcall *)
  econstructor; split.
  eapply star_left. econstructor; eauto.  
  apply H5. apply is_call_cont_call_cont. traceEq.
  econstructor. 
Qed.

Lemma eval_funcall_steps:
   forall m fd args t m' res,
   eval_funcall ge m fd args t m' res ->
   forall k,
   is_call_cont k ->
   star step ge (Callstate fd args k m)
              t (Returnstate res k m').
Proof (proj1 eval_funcall_exec_stmt_steps).

Lemma exec_stmt_steps:
   forall f sp e m s t e' m' out,
   exec_stmt ge f sp e m s t e' m' out ->
   forall k,
   exists S,
   star step ge (State f s k sp e m) t S
   /\ outcome_state_match sp e' m' f k out S.
Proof (proj2 eval_funcall_exec_stmt_steps).

Lemma evalinf_funcall_forever:
  forall m fd args T k,
  evalinf_funcall ge m fd args T ->
  forever_plus step ge (Callstate fd args k m) T.
Proof.
  cofix CIH_FUN.
  assert (forall sp e m s T f k,
          execinf_stmt ge f sp e m s T ->
          forever_plus step ge (State f s k sp e m) T).
  cofix CIH_STMT.
  intros. inv H.

(* call *)
  eapply forever_plus_intro.
  apply plus_one. econstructor; eauto. 
  apply CIH_FUN. eauto. traceEq.

(* ifthenelse *)
  eapply forever_plus_intro with (s2 := State f (if b then s1 else s2) k sp e m).
  apply plus_one. econstructor; eauto. 
  apply CIH_STMT. eauto. traceEq.

(* seq 1 *)
  eapply forever_plus_intro.
  apply plus_one. constructor.
  apply CIH_STMT. eauto. traceEq.

(* seq 2 *)
  destruct (exec_stmt_steps _ _ _ _ _ _ _ _ _ H0 (Kseq s2 k))
  as [S [A B]]. inv B.
  eapply forever_plus_intro.
  eapply plus_left. constructor.
  eapply star_right. eexact A. constructor. 
  reflexivity. reflexivity.
  apply CIH_STMT. eauto. traceEq. 

(* loop body *)
  eapply forever_plus_intro.
  apply plus_one. econstructor; eauto.
  apply CIH_STMT. eauto. traceEq.

(* loop loop *)
  destruct (exec_stmt_steps _ _ _ _ _ _ _ _ _ H0 (Kseq (Sloop s0) k))
  as [S [A B]]. inv B.
  eapply forever_plus_intro.
  eapply plus_left. constructor.
  eapply star_right. eexact A. constructor. 
  reflexivity. reflexivity.
  apply CIH_STMT. eauto. traceEq.

(* block *)
  eapply forever_plus_intro.
  apply plus_one. econstructor; eauto.
  apply CIH_STMT. eauto. traceEq.

(* tailcall *)
  eapply forever_plus_intro.
  apply plus_one. econstructor; eauto. 
  apply CIH_FUN. eauto. traceEq.

(* function call *)
  intros. inv H0.
  eapply forever_plus_intro.
  apply plus_one. econstructor; eauto.
  apply H. eauto. 
  traceEq.
Qed.

Theorem bigstep_semantics_sound:
  bigstep_sound (bigstep_semantics prog) (semantics prog).
Proof.
  constructor; intros.
(* termination *)
  inv H. econstructor; econstructor.
  split. econstructor; eauto. 
  split. apply eval_funcall_steps. eauto. red; auto. 
  econstructor.
(* divergence *)
  inv H. econstructor.
  split. econstructor; eauto. 
  eapply forever_plus_forever.
  eapply evalinf_funcall_forever; eauto.
Qed.

End BIGSTEP_TO_TRANSITION.