1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
|
(* *********************************************************************)
(* *)
(* The Compcert verified compiler *)
(* *)
(* Xavier Leroy, INRIA Paris-Rocquencourt *)
(* *)
(* Copyright Institut National de Recherche en Informatique et en *)
(* Automatique. All rights reserved. This file is distributed *)
(* under the terms of the INRIA Non-Commercial License Agreement. *)
(* *)
(* *********************************************************************)
(** Correctness proof for the [Allocation] pass (translation from
RTL to LTL). *)
Require Import FSets.
Require Import SetoidList.
Require Import Coqlib.
Require Import Errors.
Require Import Maps.
Require Import AST.
Require Import Integers.
Require Import Values.
Require Import Mem.
Require Import Events.
Require Import Smallstep.
Require Import Globalenvs.
Require Import Op.
Require Import Registers.
Require Import RTL.
Require Import RTLtyping.
Require Import Locations.
Require Import Conventions.
Require Import Coloring.
Require Import Coloringproof.
Require Import Allocation.
(** * Properties of allocated locations *)
(** We list here various properties of the locations [alloc r],
where [r] is an RTL pseudo-register and [alloc] is the register
assignment returned by [regalloc]. *)
Section REGALLOC_PROPERTIES.
Variable f: function.
Variable env: regenv.
Variable live: PMap.t Regset.t.
Variable alloc: reg -> loc.
Hypothesis ALLOC: regalloc f live (live0 f live) env = Some alloc.
Lemma regalloc_noteq_diff:
forall r1 l2,
alloc r1 <> l2 -> Loc.diff (alloc r1) l2.
Proof.
intros. apply loc_acceptable_noteq_diff.
eapply regalloc_acceptable; eauto.
auto.
Qed.
Lemma regalloc_notin_notin:
forall r ll,
~(In (alloc r) ll) -> Loc.notin (alloc r) ll.
Proof.
intros. apply loc_acceptable_notin_notin.
eapply regalloc_acceptable; eauto. auto.
Qed.
Lemma regalloc_notin_notin_2:
forall l rl,
~(In l (map alloc rl)) -> Loc.notin l (map alloc rl).
Proof.
induction rl; simpl; intros. auto.
split. apply Loc.diff_sym. apply regalloc_noteq_diff. tauto.
apply IHrl. tauto.
Qed.
Lemma regalloc_norepet_norepet:
forall rl,
list_norepet (List.map alloc rl) ->
Loc.norepet (List.map alloc rl).
Proof.
induction rl; simpl; intros.
apply Loc.norepet_nil.
inversion H.
apply Loc.norepet_cons.
eapply regalloc_notin_notin; eauto.
auto.
Qed.
Lemma regalloc_not_temporary:
forall (r: reg),
Loc.notin (alloc r) temporaries.
Proof.
intros. apply temporaries_not_acceptable.
eapply regalloc_acceptable; eauto.
Qed.
Lemma regalloc_disj_temporaries:
forall (rl: list reg),
Loc.disjoint (List.map alloc rl) temporaries.
Proof.
intros.
apply Loc.notin_disjoint. intros.
generalize (list_in_map_inv _ _ _ H). intros [r [EQ IN]].
subst x. apply regalloc_not_temporary; auto.
Qed.
End REGALLOC_PROPERTIES.
(** * Semantic agreement between RTL registers and LTL locations *)
Require Import LTL.
Module RegsetP := Properties(Regset).
Section AGREE.
Variable f: RTL.function.
Variable env: regenv.
Variable flive: PMap.t Regset.t.
Variable assign: reg -> loc.
Hypothesis REGALLOC: regalloc f flive (live0 f flive) env = Some assign.
(** Remember the core of the code transformation performed in module
[Allocation]: every reference to register [r] is replaced by
a reference to location [assign r]. We will shortly prove
the semantic equivalence between the original code and the transformed code.
The key tool to do this is the following relation between
a register set [rs] in the original RTL program and a location set
[ls] in the transformed LTL program. The two sets agree if
they assign identical values to matching registers and locations,
that is, the value of register [r] in [rs] is the same as
the value of location [assign r] in [ls]. However, this equality
needs to hold only for live registers [r]. If [r] is dead at
the current point, its value is never used later, hence the value
of [assign r] can be arbitrary. *)
Definition agree (live: Regset.t) (rs: regset) (ls: locset) : Prop :=
forall (r: reg), Regset.In r live -> rs#r = ls (assign r).
(** What follows is a long list of lemmas expressing properties
of the [agree_live_regs] predicate that are useful for the
semantic equivalence proof. First: two register sets that agree
on a given set of live registers also agree on a subset of
those live registers. *)
Lemma agree_increasing:
forall live1 live2 rs ls,
RegsetLat.ge live1 live2 -> agree live1 rs ls ->
agree live2 rs ls.
Proof.
unfold agree; intros.
apply H0. apply H. auto.
Qed.
Lemma agree_succ:
forall n s rs ls live,
analyze f = Some live ->
In s (RTL.successors f n) ->
agree live!!n rs ls ->
agree (transfer f s live!!s) rs ls.
Proof.
intros.
elim (RTL.fn_code_wf f n); intro.
elim (RTL.fn_code_wf f s); intro.
apply agree_increasing with (live!!n).
eapply DS.fixpoint_solution. unfold analyze in H; eauto.
auto. auto. auto. auto.
unfold transfer. rewrite H3.
red; intros. elim (Regset.empty_1 _ H4).
unfold RTL.successors in H0; rewrite H2 in H0; elim H0.
Qed.
(** Some useful special cases of [agree_increasing]. *)
Lemma agree_reg_live:
forall r live rs ls,
agree (reg_live r live) rs ls -> agree live rs ls.
Proof.
intros. apply agree_increasing with (reg_live r live); auto.
red. apply RegsetP.subset_add_2. apply RegsetP.subset_refl.
Qed.
Lemma agree_reg_list_live:
forall rl live rs ls,
agree (reg_list_live rl live) rs ls -> agree live rs ls.
Proof.
induction rl; simpl; intros.
assumption.
apply agree_reg_live with a. apply IHrl. assumption.
Qed.
Lemma agree_reg_sum_live:
forall ros live rs ls,
agree (reg_sum_live ros live) rs ls -> agree live rs ls.
Proof.
intros. destruct ros; simpl in H.
apply agree_reg_live with r; auto.
auto.
Qed.
(** Agreement over a set of live registers just extended with [r]
implies equality of the values of [r] and [assign r]. *)
Lemma agree_eval_reg:
forall r live rs ls,
agree (reg_live r live) rs ls -> rs#r = ls (assign r).
Proof.
intros. apply H. apply Regset.add_1. auto.
Qed.
(** Same, for a list of registers. *)
Lemma agree_eval_regs:
forall rl live rs ls,
agree (reg_list_live rl live) rs ls ->
rs##rl = List.map ls (List.map assign rl).
Proof.
induction rl; simpl; intros.
auto.
f_equal.
apply agree_eval_reg with live.
apply agree_reg_list_live with rl. auto.
eapply IHrl. eexact H.
Qed.
(** Agreement is insensitive to the current values of the temporary
machine registers. *)
Lemma agree_exten:
forall live rs ls ls',
agree live rs ls ->
(forall l, Loc.notin l temporaries -> ls' l = ls l) ->
agree live rs ls'.
Proof.
unfold agree; intros.
rewrite H0. apply H. auto. eapply regalloc_not_temporary; eauto.
Qed.
(** If a register is dead, assigning it an arbitrary value in [rs]
and leaving [ls] unchanged preserves agreement. (This corresponds
to an operation over a dead register in the original program
that is turned into a no-op in the transformed program.) *)
Lemma agree_assign_dead:
forall live r rs ls v,
~Regset.In r live ->
agree live rs ls ->
agree live (rs#r <- v) ls.
Proof.
unfold agree; intros.
case (Reg.eq r r0); intro.
subst r0. contradiction.
rewrite Regmap.gso; auto.
Qed.
(** Setting [r] to value [v] in [rs]
and simultaneously setting [assign r] to value [v] in [ls]
preserves agreement, provided that all live registers except [r]
are mapped to locations other than that of [r]. *)
Lemma agree_assign_live:
forall live r rs ls v,
(forall s,
Regset.In s live -> s <> r -> assign s <> assign r) ->
agree (reg_dead r live) rs ls ->
agree live (rs#r <- v) (Locmap.set (assign r) v ls).
Proof.
unfold agree; intros. rewrite Regmap.gsspec.
destruct (peq r0 r).
subst r0. rewrite Locmap.gss. auto.
rewrite Locmap.gso. apply H0. apply Regset.remove_2; auto.
eapply regalloc_noteq_diff. eauto. apply sym_not_equal. apply H. auto. auto.
Qed.
(** This is a special case of the previous lemma where the value [v]
being stored is not arbitrary, but is the value of
another register [arg]. (This corresponds to a register-register move
instruction.) In this case, the condition can be weakened:
it suffices that all live registers except [arg] and [res]
are mapped to locations other than that of [res]. *)
Lemma agree_move_live:
forall live arg res rs (ls: locset),
(forall r,
Regset.In r live -> r <> res -> r <> arg ->
assign r <> assign res) ->
agree (reg_live arg (reg_dead res live)) rs ls ->
agree live (rs#res <- (rs#arg)) (Locmap.set (assign res) (ls (assign arg)) ls).
Proof.
unfold agree; intros. rewrite Regmap.gsspec. destruct (peq r res).
subst r. rewrite Locmap.gss. apply H0.
apply Regset.add_1; auto.
destruct (Reg.eq r arg).
subst r.
replace (Locmap.set (assign res) (ls (assign arg)) ls (assign arg))
with (ls (assign arg)).
apply H0. apply Regset.add_1. auto.
symmetry. destruct (Loc.eq (assign arg) (assign res)).
rewrite <- e. apply Locmap.gss.
apply Locmap.gso. eapply regalloc_noteq_diff; eauto.
rewrite Locmap.gso. apply H0. apply Regset.add_2. apply Regset.remove_2. auto. auto.
eapply regalloc_noteq_diff; eauto. apply sym_not_equal. apply H; auto.
Qed.
(** Yet another special case corresponding to the case of
a redundant move. *)
Lemma agree_redundant_move_live:
forall live arg res rs (ls: locset),
(forall r,
Regset.In r live -> r <> res -> r <> arg ->
assign r <> assign res) ->
agree (reg_live arg (reg_dead res live)) rs ls ->
assign res = assign arg ->
agree live (rs#res <- (rs#arg)) ls.
Proof.
intros.
apply agree_exten with (Locmap.set (assign res) (ls (assign arg)) ls).
eapply agree_move_live; eauto.
intros. symmetry. rewrite H1. destruct (Loc.eq l (assign arg)).
subst l. apply Locmap.gss.
apply Locmap.gso. eapply regalloc_noteq_diff; eauto.
Qed.
(** This complicated lemma states agreement between the states after
a function call, provided that the states before the call agree
and that calling conventions are respected. *)
Lemma agree_postcall:
forall live args ros res rs v (ls: locset),
(forall r,
Regset.In r live -> r <> res ->
~(In (assign r) Conventions.destroyed_at_call)) ->
(forall r,
Regset.In r live -> r <> res -> assign r <> assign res) ->
agree (reg_list_live args (reg_sum_live ros (reg_dead res live))) rs ls ->
agree live (rs#res <- v) (Locmap.set (assign res) v (postcall_locs ls)).
Proof.
intros.
assert (agree (reg_dead res live) rs ls).
apply agree_reg_sum_live with ros.
apply agree_reg_list_live with args. assumption.
red; intros. rewrite Regmap.gsspec. destruct (peq r res).
subst r. rewrite Locmap.gss. auto.
rewrite Locmap.gso. transitivity (ls (assign r)).
apply H2. apply Regset.remove_2; auto.
unfold postcall_locs.
assert (~In (assign r) temporaries).
apply Loc.notin_not_in. eapply regalloc_not_temporary; eauto.
assert (~In (assign r) destroyed_at_call).
apply H. auto. auto.
caseEq (assign r); auto. intros m ASG. rewrite <- ASG.
destruct (In_dec Loc.eq (assign r) temporaries). contradiction.
destruct (In_dec Loc.eq (assign r) destroyed_at_call). contradiction.
auto.
eapply regalloc_noteq_diff; eauto. apply sym_not_eq. auto.
Qed.
(** Agreement between the initial register set at RTL function entry
and the location set at LTL function entry. *)
Lemma agree_init_regs:
forall live rl vl,
(forall r1 r2,
In r1 rl -> Regset.In r2 live -> r1 <> r2 ->
assign r1 <> assign r2) ->
agree live (RTL.init_regs vl rl)
(LTL.init_locs vl (List.map assign rl)).
Proof.
intro live.
assert (agree live (Regmap.init Vundef) (Locmap.init Vundef)).
red; intros. rewrite Regmap.gi. auto.
induction rl; simpl; intros.
auto.
destruct vl. auto.
assert (agree live (init_regs vl rl) (init_locs vl (map assign rl))).
apply IHrl. intros. apply H0. tauto. auto. auto.
red; intros. rewrite Regmap.gsspec. destruct (peq r a).
subst r. rewrite Locmap.gss. auto.
rewrite Locmap.gso. apply H1; auto.
eapply regalloc_noteq_diff; eauto.
Qed.
Lemma agree_parameters:
forall vl,
let params := f.(RTL.fn_params) in
agree (live0 f flive)
(RTL.init_regs vl params)
(LTL.init_locs vl (List.map assign params)).
Proof.
intros. apply agree_init_regs.
intros. eapply regalloc_correct_3; eauto.
Qed.
End AGREE.
(** * Preservation of semantics *)
(** We now show that the LTL code reflecting register allocation has
the same semantics as the original RTL code. We start with
standard properties of translated functions and
global environments in the original and translated code. *)
Section PRESERVATION.
Variable prog: RTL.program.
Variable tprog: LTL.program.
Hypothesis TRANSF: transf_program prog = OK tprog.
Let ge := Genv.globalenv prog.
Let tge := Genv.globalenv tprog.
Lemma symbols_preserved:
forall (s: ident), Genv.find_symbol tge s = Genv.find_symbol ge s.
Proof.
intro. unfold ge, tge.
apply Genv.find_symbol_transf_partial with transf_fundef.
exact TRANSF.
Qed.
Lemma functions_translated:
forall (v: val) (f: RTL.fundef),
Genv.find_funct ge v = Some f ->
exists tf,
Genv.find_funct tge v = Some tf /\ transf_fundef f = OK tf.
Proof (Genv.find_funct_transf_partial transf_fundef TRANSF).
Lemma function_ptr_translated:
forall (b: block) (f: RTL.fundef),
Genv.find_funct_ptr ge b = Some f ->
exists tf,
Genv.find_funct_ptr tge b = Some tf /\ transf_fundef f = OK tf.
Proof (Genv.find_funct_ptr_transf_partial transf_fundef TRANSF).
Lemma sig_function_translated:
forall f tf,
transf_fundef f = OK tf ->
LTL.funsig tf = RTL.funsig f.
Proof.
intros f tf. destruct f; simpl.
unfold transf_function.
destruct (type_function f).
destruct (analyze f).
destruct (regalloc f t).
intro. monadInv H. inv EQ. auto.
simpl; congruence. simpl; congruence. simpl; congruence.
intro EQ; inv EQ. auto.
Qed.
(** The proof of semantic preservation is a simulation argument
based on diagrams of the following form:
<<
st1 --------------- st2
| |
t| |t
| |
v v
st1'--------------- st2'
>>
Hypotheses: the left vertical arrow represents a transition in the
original RTL code. The top horizontal bar is the [match_states]
relation defined below. It implies agreement between
the RTL register map [rs] and the LTL location map [ls]
over the pseudo-registers live before the RTL instruction at [pc].
Conclusions: the right vertical arrow is an [exec_instrs] transition
in the LTL code generated by translation of the current function.
The bottom horizontal bar is the [match_states] relation.
*)
Inductive match_stackframes: list RTL.stackframe -> list LTL.stackframe -> Prop :=
| match_stackframes_nil:
match_stackframes nil nil
| match_stackframes_cons:
forall s ts res f sp pc rs ls env live assign,
match_stackframes s ts ->
wt_function f env ->
analyze f = Some live ->
regalloc f live (live0 f live) env = Some assign ->
(forall rv,
agree assign (transfer f pc live!!pc)
(rs#res <- rv)
(Locmap.set (assign res) rv ls)) ->
match_stackframes
(RTL.Stackframe res (RTL.fn_code f) sp pc rs :: s)
(LTL.Stackframe (assign res) (transf_fun f live assign) sp ls pc :: ts).
Inductive match_states: RTL.state -> LTL.state -> Prop :=
| match_states_intro:
forall s f sp pc rs m ts ls live assign env
(STACKS: match_stackframes s ts)
(WT: wt_function f env)
(ANL: analyze f = Some live)
(ASG: regalloc f live (live0 f live) env = Some assign)
(AG: agree assign (transfer f pc live!!pc) rs ls),
match_states (RTL.State s (RTL.fn_code f) sp pc rs m)
(LTL.State ts (transf_fun f live assign) sp pc ls m)
| match_states_call:
forall s f args m ts tf,
match_stackframes s ts ->
transf_fundef f = OK tf ->
match_states (RTL.Callstate s f args m)
(LTL.Callstate ts tf args m)
| match_states_return:
forall s v m ts,
match_stackframes s ts ->
match_states (RTL.Returnstate s v m)
(LTL.Returnstate ts v m).
(** The simulation proof is by case analysis over the RTL transition
taken in the source program. *)
Ltac CleanupHyps :=
match goal with
| H: (match_states _ _) |- _ =>
inv H; CleanupHyps
| H1: (PTree.get _ _ = Some _),
H2: (agree _ (transfer _ _ _) _ _) |- _ =>
unfold transfer in H2; rewrite H1 in H2; simpl in H2; CleanupHyps
| _ => idtac
end.
Ltac WellTypedHyp :=
match goal with
| H1: (PTree.get _ _ = Some _),
H2: (wt_function _ _) |- _ =>
let R := fresh "WTI" in (
generalize (wt_instrs _ _ H2 _ _ H1); intro R)
| _ => idtac
end.
Ltac TranslInstr :=
match goal with
| H: (PTree.get _ _ = Some _) |- _ =>
simpl; rewrite PTree.gmap; rewrite H; simpl; auto
end.
Ltac MatchStates :=
match goal with
| |- match_states (RTL.State _ _ _ _ _ _) (LTL.State _ _ _ _ _ _) =>
eapply match_states_intro; eauto; MatchStates
| H: (PTree.get ?pc _ = Some _) |- agree _ _ _ _ =>
eapply agree_succ with (n := pc); eauto; MatchStates
| H: (PTree.get _ _ = Some _) |- In _ (RTL.successors _ _) =>
unfold RTL.successors; rewrite H; auto with coqlib
| _ => idtac
end.
Lemma transl_find_function:
forall ros f args lv rs ls alloc,
RTL.find_function ge ros rs = Some f ->
agree alloc (reg_list_live args (reg_sum_live ros lv)) rs ls ->
exists tf,
LTL.find_function tge (sum_left_map alloc ros) ls = Some tf /\
transf_fundef f = OK tf.
Proof.
intros; destruct ros; simpl in *.
assert (rs#r = ls (alloc r)).
eapply agree_eval_reg. eapply agree_reg_list_live; eauto.
rewrite <- H1. apply functions_translated. auto.
rewrite symbols_preserved. destruct (Genv.find_symbol ge i).
apply function_ptr_translated. auto. discriminate.
Qed.
Theorem transl_step_correct:
forall s1 t s2, RTL.step ge s1 t s2 ->
forall s1', match_states s1 s1' ->
exists s2', LTL.step tge s1' t s2' /\ match_states s2 s2'.
Proof.
induction 1; intros; CleanupHyps; WellTypedHyp.
(* Inop *)
econstructor; split.
eapply exec_Lnop. TranslInstr. MatchStates.
(* Iop *)
generalize (PTree.gmap (transf_instr f live assign) pc (RTL.fn_code f)).
rewrite H. simpl.
caseEq (Regset.mem res live!!pc); intro LV;
rewrite LV in AG.
generalize (Regset.mem_2 _ _ LV). intro LV'.
generalize (regalloc_correct_1 f env live _ _ _ _ ASG H).
unfold correct_alloc_instr, is_redundant_move.
caseEq (is_move_operation op args).
(* Special case for moves *)
intros arg IMO CORR.
generalize (is_move_operation_correct _ _ IMO).
intros [EQ1 EQ2]. subst op; subst args.
injection H0; intro.
destruct (Loc.eq (assign arg) (assign res)); intro CODE.
(* sub-case: redundant move *)
econstructor; split. eapply exec_Lnop; eauto.
MatchStates.
rewrite <- H1. eapply agree_redundant_move_live; eauto.
(* sub-case: non-redundant move *)
econstructor; split. eapply exec_Lop; eauto. simpl. eauto.
MatchStates.
rewrite <- H1. eapply agree_move_live; eauto.
(* Not a move *)
intros INMO CORR CODE.
assert (eval_operation tge sp op (map ls (map assign args)) m = Some v).
replace (map ls (map assign args)) with (rs##args).
rewrite <- H0. apply eval_operation_preserved. exact symbols_preserved.
eapply agree_eval_regs; eauto.
econstructor; split. eapply exec_Lop; eauto. MatchStates.
apply agree_assign_live with f env live; auto.
eapply agree_reg_list_live; eauto.
(* Result is not live, instruction turned into a nop *)
intro CODE. econstructor; split. eapply exec_Lnop; eauto.
MatchStates. apply agree_assign_dead; auto.
red; intro. exploit Regset.mem_1; eauto. congruence.
(* Iload *)
caseEq (Regset.mem dst live!!pc); intro LV;
rewrite LV in AG.
(* dst is live *)
exploit Regset.mem_2; eauto. intro LV'.
assert (eval_addressing tge sp addr (map ls (map assign args)) = Some a).
replace (map ls (map assign args)) with (rs##args).
rewrite <- H0. apply eval_addressing_preserved. exact symbols_preserved.
eapply agree_eval_regs; eauto.
econstructor; split.
eapply exec_Lload; eauto. TranslInstr. rewrite LV; auto.
generalize (regalloc_correct_1 f env live _ _ _ _ ASG H).
unfold correct_alloc_instr. intro CORR.
MatchStates.
eapply agree_assign_live; eauto.
eapply agree_reg_list_live; eauto.
(* dst is dead *)
econstructor; split.
eapply exec_Lnop. TranslInstr. rewrite LV; auto.
MatchStates. apply agree_assign_dead; auto.
red; intro; exploit Regset.mem_1; eauto. congruence.
(* Istore *)
assert (eval_addressing tge sp addr (map ls (map assign args)) = Some a).
replace (map ls (map assign args)) with (rs##args).
rewrite <- H0. apply eval_addressing_preserved. exact symbols_preserved.
eapply agree_eval_regs; eauto.
assert (ESRC: rs#src = ls (assign src)).
eapply agree_eval_reg. eapply agree_reg_list_live. eauto.
econstructor; split.
eapply exec_Lstore; eauto. TranslInstr.
rewrite <- ESRC. eauto.
MatchStates. eapply agree_reg_live. eapply agree_reg_list_live. eauto.
(* Icall *)
exploit transl_find_function; eauto. intros [tf [TFIND TF]].
generalize (regalloc_correct_1 f0 env live _ _ _ _ ASG H).
unfold correct_alloc_instr. intros [CORR1 CORR2].
assert (rs##args = map ls (map assign args)).
eapply agree_eval_regs; eauto.
econstructor; split.
eapply exec_Lcall; eauto. TranslInstr.
rewrite (sig_function_translated _ _ TF). eauto.
rewrite H1.
econstructor; eauto.
econstructor; eauto.
intros. eapply agree_succ with (n := pc); eauto.
unfold RTL.successors; rewrite H; auto with coqlib.
eapply agree_postcall; eauto.
(* Itailcall *)
exploit transl_find_function; eauto. intros [tf [TFIND TF]].
assert (rs##args = map ls (map assign args)).
eapply agree_eval_regs; eauto.
econstructor; split.
eapply exec_Ltailcall; eauto. TranslInstr.
rewrite (sig_function_translated _ _ TF). eauto.
rewrite H1. econstructor; eauto.
(* Ialloc *)
assert (ls (assign arg) = Vint sz).
rewrite <- H0. symmetry. eapply agree_eval_reg; eauto.
econstructor; split.
eapply exec_Lalloc; eauto. TranslInstr.
generalize (regalloc_correct_1 f env live _ _ _ _ ASG H).
unfold correct_alloc_instr. intros [CORR1 CORR2].
MatchStates.
eapply agree_postcall with (args := arg :: nil) (ros := inr reg 1%positive); eauto.
(* Icond, true *)
assert (COND: eval_condition cond (map ls (map assign args)) m = Some true).
replace (map ls (map assign args)) with (rs##args). auto.
eapply agree_eval_regs; eauto.
econstructor; split.
eapply exec_Lcond_true; eauto. TranslInstr.
MatchStates. eapply agree_reg_list_live. eauto.
(* Icond, false *)
assert (COND: eval_condition cond (map ls (map assign args)) m = Some false).
replace (map ls (map assign args)) with (rs##args). auto.
eapply agree_eval_regs; eauto.
econstructor; split.
eapply exec_Lcond_false; eauto. TranslInstr.
MatchStates. eapply agree_reg_list_live. eauto.
(* Ireturn *)
econstructor; split.
eapply exec_Lreturn; eauto. TranslInstr; eauto.
replace (regmap_optget or Vundef rs)
with (locmap_optget (option_map assign or) Vundef ls).
econstructor; eauto.
inv WTI. destruct or; simpl in *.
symmetry; eapply agree_eval_reg; eauto.
auto.
(* internal function *)
generalize H7. simpl. unfold transf_function.
caseEq (type_function f); simpl; try congruence. intros env TYP.
assert (WTF: wt_function f env). apply type_function_correct; auto.
caseEq (analyze f); simpl; try congruence. intros live ANL.
caseEq (regalloc f live (live0 f live) env); simpl; try congruence.
intros alloc ALLOC EQ. inv EQ. simpl in *.
econstructor; split.
eapply exec_function_internal; simpl; eauto.
simpl. econstructor; eauto.
change (transfer f (RTL.fn_entrypoint f) live !! (RTL.fn_entrypoint f))
with (live0 f live).
eapply agree_parameters; eauto.
(* external function *)
injection H7; intro EQ; inv EQ.
econstructor; split.
eapply exec_function_external; eauto.
eapply match_states_return; eauto.
(* return *)
inv H4.
econstructor; split.
eapply exec_return; eauto.
econstructor; eauto.
Qed.
(** The semantic equivalence between the original and transformed programs
follows easily. *)
Lemma transf_initial_states:
forall st1, RTL.initial_state prog st1 ->
exists st2, LTL.initial_state tprog st2 /\ match_states st1 st2.
Proof.
intros. inversion H.
exploit function_ptr_translated; eauto. intros [tf [FIND TR]].
assert (MEM: (Genv.init_mem tprog) = (Genv.init_mem prog)).
exact (Genv.init_mem_transf_partial _ _ TRANSF).
exists (LTL.Callstate nil tf nil (Genv.init_mem tprog)); split.
econstructor; eauto.
rewrite symbols_preserved.
rewrite (transform_partial_program_main _ _ TRANSF). auto.
rewrite <- H2. apply sig_function_translated; auto.
rewrite MEM. constructor; auto. constructor.
Qed.
Lemma transf_final_states:
forall st1 st2 r,
match_states st1 st2 -> RTL.final_state st1 r -> LTL.final_state st2 r.
Proof.
intros. inv H0. inv H. inv H4. econstructor.
Qed.
Theorem transf_program_correct:
forall (beh: program_behavior),
RTL.exec_program prog beh -> LTL.exec_program tprog beh.
Proof.
unfold RTL.exec_program, LTL.exec_program; intros.
eapply simulation_step_preservation; eauto.
eexact transf_initial_states.
eexact transf_final_states.
exact transl_step_correct.
Qed.
End PRESERVATION.
|