1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
|
(* *********************************************************************)
(* *)
(* The Compcert verified compiler *)
(* *)
(* Xavier Leroy, INRIA Paris-Rocquencourt *)
(* *)
(* Copyright Institut National de Recherche en Informatique et en *)
(* Automatique. All rights reserved. This file is distributed *)
(* under the terms of the INRIA Non-Commercial License Agreement. *)
(* *)
(* *********************************************************************)
(** Operators and addressing modes. The abstract syntax and dynamic
semantics for the CminorSel, RTL, LTL and Mach languages depend on the
following types, defined in this library:
- [condition]: boolean conditions for conditional branches;
- [operation]: arithmetic and logical operations;
- [addressing]: addressing modes for load and store operations.
These types are processor-specific and correspond roughly to what the
processor can compute in one instruction. In other terms, these
types reflect the state of the program after instruction selection.
For a processor-independent set of operations, see the abstract
syntax and dynamic semantics of the Cminor language.
*)
Require Import Coqlib.
Require Import AST.
Require Import Integers.
Require Import Floats.
Require Import Values.
Require Import Mem.
Require Import Globalenvs.
Set Implicit Arguments.
Record shift_amount : Set :=
mk_shift_amount {
s_amount: int;
s_amount_ltu: Int.ltu s_amount (Int.repr 32) = true
}.
Inductive shift : Set :=
| Slsl: shift_amount -> shift
| Slsr: shift_amount -> shift
| Sasr: shift_amount -> shift
| Sror: shift_amount -> shift.
(** Conditions (boolean-valued operators). *)
Inductive condition : Set :=
| Ccomp: comparison -> condition (**r signed integer comparison *)
| Ccompu: comparison -> condition (**r unsigned integer comparison *)
| Ccompshift: comparison -> shift -> condition (**r signed integer comparison *)
| Ccompushift: comparison -> shift -> condition (**r unsigned integer comparison *)
| Ccompimm: comparison -> int -> condition (**r signed integer comparison with a constant *)
| Ccompuimm: comparison -> int -> condition (**r unsigned integer comparison with a constant *)
| Ccompf: comparison -> condition (**r floating-point comparison *)
| Cnotcompf: comparison -> condition. (**r negation of a floating-point comparison *)
(** Arithmetic and logical operations. In the descriptions, [rd] is the
result of the operation and [r1], [r2], etc, are the arguments. *)
Inductive operation : Set :=
| Omove: operation (**r [rd = r1] *)
| Ointconst: int -> operation (**r [rd] is set to the given integer constant *)
| Ofloatconst: float -> operation (**r [rd] is set to the given float constant *)
| Oaddrsymbol: ident -> int -> operation (**r [rd] is set to the the address of the symbol plus the offset *)
| Oaddrstack: int -> operation (**r [rd] is set to the stack pointer plus the given offset *)
(*c Integer arithmetic: *)
| Ocast8signed: operation (**r [rd] is 8-bit sign extension of [r1] *)
| Ocast8unsigned: operation (**r [rd] is 8-bit zero extension of [r1] *)
| Ocast16signed: operation (**r [rd] is 16-bit sign extension of [r1] *)
| Ocast16unsigned: operation (**r [rd] is 16-bit zero extension of [r1] *)
| Oadd: operation (**r [rd = r1 + r2] *)
| Oaddshift: shift -> operation (**r [rd = r1 + shifted r2] *)
| Oaddimm: int -> operation (**r [rd = r1 + n] *)
| Osub: operation (**r [rd = r1 - r2] *)
| Osubshift: shift -> operation (**r [rd = r1 - shifted r2] *)
| Orsubshift: shift -> operation (**r [rd = shifted r2 - r1] *)
| Orsubimm: int -> operation (**r [rd = r1 - n] *)
| Omul: operation (**r [rd = r1 * r2] *)
| Odiv: operation (**r [rd = r1 / r2] (signed) *)
| Odivu: operation (**r [rd = r1 / r2] (unsigned) *)
| Oand: operation (**r [rd = r1 & r2] *)
| Oandshift: shift -> operation (**r [rd = r1 & shifted r2] *)
| Oandimm: int -> operation (**r [rd = r1 & n] *)
| Oor: operation (**r [rd = r1 | r2] *)
| Oorshift: shift -> operation (**r [rd = r1 | shifted r2] *)
| Oorimm: int -> operation (**r [rd = r1 | n] *)
| Oxor: operation (**r [rd = r1 ^ r2] *)
| Oxorshift: shift -> operation (**r [rd = r1 ^ shifted r2] *)
| Oxorimm: int -> operation (**r [rd = r1 ^ n] *)
| Obic: operation (**r [rd = r1 & ~r2] *)
| Obicshift: shift -> operation (**r [rd = r1 & ~(shifted r2)] *)
| Onot: operation (**r [rd = ~r1] *)
| Onotshift: shift -> operation (**r [rd = ~(shifted r1)] *)
| Oshl: operation (**r [rd = r1 << r2] *)
| Oshr: operation (**r [rd = r1 >> r2] (signed) *)
| Oshru: operation (**r [rd = r1 >> r2] (unsigned) *)
| Oshift: shift -> operation (**r [rd = shifted r1] *)
| Oshrximm: int -> operation (**r [rd = r1 / 2^n] (signed) *)
(*c Floating-point arithmetic: *)
| Onegf: operation (**r [rd = - r1] *)
| Oabsf: operation (**r [rd = abs(r1)] *)
| Oaddf: operation (**r [rd = r1 + r2] *)
| Osubf: operation (**r [rd = r1 - r2] *)
| Omulf: operation (**r [rd = r1 * r2] *)
| Odivf: operation (**r [rd = r1 / r2] *)
| Osingleoffloat: operation (**r [rd] is [r1] truncated to single-precision float *)
(*c Conversions between int and float: *)
| Ointoffloat: operation (**r [rd = int_of_float(r1)] *)
| Ointuoffloat: operation (**r [rd = unsigned_int_of_float(r1)] *)
| Ofloatofint: operation (**r [rd = float_of_signed_int(r1)] *)
| Ofloatofintu: operation (**r [rd = float_of_unsigned_int(r1)] *)
(*c Boolean tests: *)
| Ocmp: condition -> operation. (**r [rd = 1] if condition holds, [rd = 0] otherwise. *)
(** Addressing modes. [r1], [r2], etc, are the arguments to the
addressing. *)
Inductive addressing: Set :=
| Aindexed: int -> addressing (**r Address is [r1 + offset] *)
| Aindexed2: addressing (**r Address is [r1 + r2] *)
| Aindexed2shift: shift -> addressing (**r Address is [r1 + shifted r2] *)
| Ainstack: int -> addressing. (**r Address is [stack_pointer + offset] *)
(** Comparison functions (used in module [CSE]). *)
Definition eq_shift (x y: shift): {x=y} + {x<>y}.
Proof.
generalize Int.eq_dec; intro.
assert (forall (x y: shift_amount), {x=y}+{x<>y}).
destruct x as [x Px]. destruct y as [y Py]. destruct (H x y).
subst x. rewrite (proof_irrelevance _ Px Py). left; auto.
right. red; intro. elim n. inversion H0. auto.
decide equality.
Qed.
Definition eq_operation (x y: operation): {x=y} + {x<>y}.
Proof.
generalize Int.eq_dec; intro.
generalize Float.eq_dec; intro.
assert (forall (x y: ident), {x=y}+{x<>y}). exact peq.
generalize eq_shift; intro.
assert (forall (x y: comparison), {x=y}+{x<>y}). decide equality.
assert (forall (x y: condition), {x=y}+{x<>y}). decide equality.
decide equality.
Qed.
Definition eq_addressing (x y: addressing) : {x=y} + {x<>y}.
Proof.
generalize Int.eq_dec; intro.
generalize eq_shift; intro.
decide equality.
Qed.
(** Evaluation of conditions, operators and addressing modes applied
to lists of values. Return [None] when the computation is undefined:
wrong number of arguments, arguments of the wrong types, undefined
operations such as division by zero. [eval_condition] returns a boolean,
[eval_operation] and [eval_addressing] return a value. *)
Definition eval_compare_mismatch (c: comparison) : option bool :=
match c with Ceq => Some false | Cne => Some true | _ => None end.
Definition eval_compare_null (c: comparison) (n: int) : option bool :=
if Int.eq n Int.zero then eval_compare_mismatch c else None.
Definition eval_shift (s: shift) (n: int) : int :=
match s with
| Slsl x => Int.shl n (s_amount x)
| Slsr x => Int.shru n (s_amount x)
| Sasr x => Int.shr n (s_amount x)
| Sror x => Int.ror n (s_amount x)
end.
Definition eval_condition (cond: condition) (vl: list val):
option bool :=
match cond, vl with
| Ccomp c, Vint n1 :: Vint n2 :: nil =>
Some (Int.cmp c n1 n2)
| Ccomp c, Vptr b1 n1 :: Vptr b2 n2 :: nil =>
if eq_block b1 b2
then Some (Int.cmp c n1 n2)
else eval_compare_mismatch c
| Ccomp c, Vptr b1 n1 :: Vint n2 :: nil =>
eval_compare_null c n2
| Ccomp c, Vint n1 :: Vptr b2 n2 :: nil =>
eval_compare_null c n1
| Ccompu c, Vint n1 :: Vint n2 :: nil =>
Some (Int.cmpu c n1 n2)
| Ccompshift c s, Vint n1 :: Vint n2 :: nil =>
Some (Int.cmp c n1 (eval_shift s n2))
| Ccompshift c s, Vptr b1 n1 :: Vint n2 :: nil =>
eval_compare_null c (eval_shift s n2)
| Ccompushift c s, Vint n1 :: Vint n2 :: nil =>
Some (Int.cmpu c n1 (eval_shift s n2))
| Ccompimm c n, Vint n1 :: nil =>
Some (Int.cmp c n1 n)
| Ccompimm c n, Vptr b1 n1 :: nil =>
eval_compare_null c n
| Ccompuimm c n, Vint n1 :: nil =>
Some (Int.cmpu c n1 n)
| Ccompf c, Vfloat f1 :: Vfloat f2 :: nil =>
Some (Float.cmp c f1 f2)
| Cnotcompf c, Vfloat f1 :: Vfloat f2 :: nil =>
Some (negb (Float.cmp c f1 f2))
| _, _ =>
None
end.
Definition offset_sp (sp: val) (delta: int) : option val :=
match sp with
| Vptr b n => Some (Vptr b (Int.add n delta))
| _ => None
end.
Definition eval_operation
(F: Set) (genv: Genv.t F) (sp: val)
(op: operation) (vl: list val): option val :=
match op, vl with
| Omove, v1::nil => Some v1
| Ointconst n, nil => Some (Vint n)
| Ofloatconst n, nil => Some (Vfloat n)
| Oaddrsymbol s ofs, nil =>
match Genv.find_symbol genv s with
| None => None
| Some b => Some (Vptr b ofs)
end
| Oaddrstack ofs, nil => offset_sp sp ofs
| Ocast8signed, v1 :: nil => Some (Val.sign_ext 8 v1)
| Ocast8unsigned, v1 :: nil => Some (Val.zero_ext 8 v1)
| Ocast16signed, v1 :: nil => Some (Val.sign_ext 16 v1)
| Ocast16unsigned, v1 :: nil => Some (Val.zero_ext 16 v1)
| Oadd, Vint n1 :: Vint n2 :: nil => Some (Vint (Int.add n1 n2))
| Oadd, Vint n1 :: Vptr b2 n2 :: nil => Some (Vptr b2 (Int.add n2 n1))
| Oadd, Vptr b1 n1 :: Vint n2 :: nil => Some (Vptr b1 (Int.add n1 n2))
| Oaddshift s, Vint n1 :: Vint n2 :: nil => Some (Vint (Int.add n1 (eval_shift s n2)))
| Oaddshift s, Vptr b1 n1 :: Vint n2 :: nil => Some (Vptr b1 (Int.add n1 (eval_shift s n2)))
| Oaddimm n, Vint n1 :: nil => Some (Vint (Int.add n1 n))
| Oaddimm n, Vptr b1 n1 :: nil => Some (Vptr b1 (Int.add n1 n))
| Osub, Vint n1 :: Vint n2 :: nil => Some (Vint (Int.sub n1 n2))
| Osub, Vptr b1 n1 :: Vint n2 :: nil => Some (Vptr b1 (Int.sub n1 n2))
| Osub, Vptr b1 n1 :: Vptr b2 n2 :: nil =>
if eq_block b1 b2 then Some (Vint (Int.sub n1 n2)) else None
| Osubshift s, Vint n1 :: Vint n2 :: nil => Some (Vint (Int.sub n1 (eval_shift s n2)))
| Osubshift s, Vptr b1 n1 :: Vint n2 :: nil => Some (Vptr b1 (Int.sub n1 (eval_shift s n2)))
| Orsubshift s, Vint n1 :: Vint n2 :: nil => Some (Vint (Int.sub (eval_shift s n2) n1))
| Orsubimm n, Vint n1 :: nil => Some (Vint (Int.sub n n1))
| Omul, Vint n1 :: Vint n2 :: nil => Some (Vint (Int.mul n1 n2))
| Odiv, Vint n1 :: Vint n2 :: nil =>
if Int.eq n2 Int.zero then None else Some (Vint (Int.divs n1 n2))
| Odivu, Vint n1 :: Vint n2 :: nil =>
if Int.eq n2 Int.zero then None else Some (Vint (Int.divu n1 n2))
| Oand, Vint n1 :: Vint n2 :: nil => Some (Vint (Int.and n1 n2))
| Oandshift s, Vint n1 :: Vint n2 :: nil => Some (Vint (Int.and n1 (eval_shift s n2)))
| Oandimm n, Vint n1 :: nil => Some (Vint (Int.and n1 n))
| Oor, Vint n1 :: Vint n2 :: nil => Some (Vint (Int.or n1 n2))
| Oorshift s, Vint n1 :: Vint n2 :: nil => Some (Vint (Int.or n1 (eval_shift s n2)))
| Oorimm n, Vint n1 :: nil => Some (Vint (Int.or n1 n))
| Oxor, Vint n1 :: Vint n2 :: nil => Some (Vint (Int.xor n1 n2))
| Oxorshift s, Vint n1 :: Vint n2 :: nil => Some (Vint (Int.xor n1 (eval_shift s n2)))
| Oxorimm n, Vint n1 :: nil => Some (Vint (Int.xor n1 n))
| Obic, Vint n1 :: Vint n2 :: nil => Some (Vint (Int.and n1 (Int.not n2)))
| Obicshift s, Vint n1 :: Vint n2 :: nil => Some (Vint (Int.and n1 (Int.not (eval_shift s n2))))
| Onot, Vint n1 :: nil => Some (Vint (Int.not n1))
| Onotshift s, Vint n1 :: nil => Some (Vint (Int.not (eval_shift s n1)))
| Oshl, Vint n1 :: Vint n2 :: nil =>
if Int.ltu n2 (Int.repr 32) then Some (Vint (Int.shl n1 n2)) else None
| Oshr, Vint n1 :: Vint n2 :: nil =>
if Int.ltu n2 (Int.repr 32) then Some (Vint (Int.shr n1 n2)) else None
| Oshru, Vint n1 :: Vint n2 :: nil =>
if Int.ltu n2 (Int.repr 32) then Some (Vint (Int.shru n1 n2)) else None
| Oshift s, Vint n :: nil => Some (Vint (eval_shift s n))
| Oshrximm n, Vint n1 :: nil =>
if Int.ltu n (Int.repr 31) then Some (Vint (Int.shrx n1 n)) else None
| Onegf, Vfloat f1 :: nil => Some (Vfloat (Float.neg f1))
| Oabsf, Vfloat f1 :: nil => Some (Vfloat (Float.abs f1))
| Oaddf, Vfloat f1 :: Vfloat f2 :: nil => Some (Vfloat (Float.add f1 f2))
| Osubf, Vfloat f1 :: Vfloat f2 :: nil => Some (Vfloat (Float.sub f1 f2))
| Omulf, Vfloat f1 :: Vfloat f2 :: nil => Some (Vfloat (Float.mul f1 f2))
| Odivf, Vfloat f1 :: Vfloat f2 :: nil => Some (Vfloat (Float.div f1 f2))
| Osingleoffloat, v1 :: nil =>
Some (Val.singleoffloat v1)
| Ointoffloat, Vfloat f1 :: nil =>
Some (Vint (Float.intoffloat f1))
| Ointuoffloat, Vfloat f1 :: nil =>
Some (Vint (Float.intuoffloat f1))
| Ofloatofint, Vint n1 :: nil =>
Some (Vfloat (Float.floatofint n1))
| Ofloatofintu, Vint n1 :: nil =>
Some (Vfloat (Float.floatofintu n1))
| Ocmp c, _ =>
match eval_condition c vl with
| None => None
| Some false => Some Vfalse
| Some true => Some Vtrue
end
| _, _ => None
end.
Definition eval_addressing
(F: Set) (genv: Genv.t F) (sp: val)
(addr: addressing) (vl: list val) : option val :=
match addr, vl with
| Aindexed n, Vptr b1 n1 :: nil =>
Some (Vptr b1 (Int.add n1 n))
| Aindexed2, Vptr b1 n1 :: Vint n2 :: nil =>
Some (Vptr b1 (Int.add n1 n2))
| Aindexed2, Vint n1 :: Vptr b2 n2 :: nil =>
Some (Vptr b2 (Int.add n1 n2))
| Aindexed2shift s, Vptr b1 n1 :: Vint n2 :: nil =>
Some (Vptr b1 (Int.add n1 (eval_shift s n2)))
| Ainstack ofs, nil =>
offset_sp sp ofs
| _, _ => None
end.
Definition negate_condition (cond: condition): condition :=
match cond with
| Ccomp c => Ccomp(negate_comparison c)
| Ccompu c => Ccompu(negate_comparison c)
| Ccompshift c s => Ccompshift (negate_comparison c) s
| Ccompushift c s => Ccompushift (negate_comparison c) s
| Ccompimm c n => Ccompimm (negate_comparison c) n
| Ccompuimm c n => Ccompuimm (negate_comparison c) n
| Ccompf c => Cnotcompf c
| Cnotcompf c => Ccompf c
end.
Ltac FuncInv :=
match goal with
| H: (match ?x with nil => _ | _ :: _ => _ end = Some _) |- _ =>
destruct x; simpl in H; try discriminate; FuncInv
| H: (match ?v with Vundef => _ | Vint _ => _ | Vfloat _ => _ | Vptr _ _ => _ end = Some _) |- _ =>
destruct v; simpl in H; try discriminate; FuncInv
| H: (Some _ = Some _) |- _ =>
injection H; intros; clear H; FuncInv
| _ =>
idtac
end.
Remark eval_negate_compare_null:
forall c n b,
eval_compare_null c n = Some b ->
eval_compare_null (negate_comparison c) n = Some (negb b).
Proof.
intros until b. unfold eval_compare_null.
case (Int.eq n Int.zero).
destruct c; intro EQ; simplify_eq EQ; intros; subst b; reflexivity.
intro; discriminate.
Qed.
Lemma eval_negate_condition:
forall (cond: condition) (vl: list val) (b: bool),
eval_condition cond vl = Some b ->
eval_condition (negate_condition cond) vl = Some (negb b).
Proof.
intros.
destruct cond; simpl in H; FuncInv; try subst b; simpl.
rewrite Int.negate_cmp. auto.
apply eval_negate_compare_null; auto.
apply eval_negate_compare_null; auto.
destruct (eq_block b0 b1). rewrite Int.negate_cmp. congruence.
destruct c; simpl in H; inv H; auto.
rewrite Int.negate_cmpu. auto.
rewrite Int.negate_cmp. auto.
apply eval_negate_compare_null; auto.
rewrite Int.negate_cmpu. auto.
rewrite Int.negate_cmp. auto.
apply eval_negate_compare_null; auto.
rewrite Int.negate_cmpu. auto.
auto.
rewrite negb_elim. auto.
Qed.
(** [eval_operation] and [eval_addressing] depend on a global environment
for resolving references to global symbols. We show that they give
the same results if a global environment is replaced by another that
assigns the same addresses to the same symbols. *)
Section GENV_TRANSF.
Variable F1 F2: Set.
Variable ge1: Genv.t F1.
Variable ge2: Genv.t F2.
Hypothesis agree_on_symbols:
forall (s: ident), Genv.find_symbol ge2 s = Genv.find_symbol ge1 s.
Lemma eval_operation_preserved:
forall sp op vl,
eval_operation ge2 sp op vl = eval_operation ge1 sp op vl.
Proof.
intros.
unfold eval_operation; destruct op; try rewrite agree_on_symbols;
reflexivity.
Qed.
Lemma eval_addressing_preserved:
forall sp addr vl,
eval_addressing ge2 sp addr vl = eval_addressing ge1 sp addr vl.
Proof.
intros.
assert (UNUSED: forall (s: ident), Genv.find_symbol ge2 s = Genv.find_symbol ge1 s).
exact agree_on_symbols.
unfold eval_addressing; destruct addr; try rewrite agree_on_symbols;
reflexivity.
Qed.
End GENV_TRANSF.
(** Recognition of move operations. *)
Definition is_move_operation
(A: Set) (op: operation) (args: list A) : option A :=
match op, args with
| Omove, arg :: nil => Some arg
| _, _ => None
end.
Lemma is_move_operation_correct:
forall (A: Set) (op: operation) (args: list A) (a: A),
is_move_operation op args = Some a ->
op = Omove /\ args = a :: nil.
Proof.
intros until a. unfold is_move_operation; destruct op;
try (intros; discriminate).
destruct args. intros; discriminate.
destruct args. intros. intuition congruence.
intros; discriminate.
Qed.
(** Static typing of conditions, operators and addressing modes. *)
Definition type_of_condition (c: condition) : list typ :=
match c with
| Ccomp _ => Tint :: Tint :: nil
| Ccompu _ => Tint :: Tint :: nil
| Ccompshift _ _ => Tint :: Tint :: nil
| Ccompushift _ _ => Tint :: Tint :: nil
| Ccompimm _ _ => Tint :: nil
| Ccompuimm _ _ => Tint :: nil
| Ccompf _ => Tfloat :: Tfloat :: nil
| Cnotcompf _ => Tfloat :: Tfloat :: nil
end.
Definition type_of_operation (op: operation) : list typ * typ :=
match op with
| Omove => (nil, Tint) (* treated specially *)
| Ointconst _ => (nil, Tint)
| Ofloatconst _ => (nil, Tfloat)
| Oaddrsymbol _ _ => (nil, Tint)
| Oaddrstack _ => (nil, Tint)
| Ocast8signed => (Tint :: nil, Tint)
| Ocast8unsigned => (Tint :: nil, Tint)
| Ocast16signed => (Tint :: nil, Tint)
| Ocast16unsigned => (Tint :: nil, Tint)
| Oadd => (Tint :: Tint :: nil, Tint)
| Oaddshift _ => (Tint :: Tint :: nil, Tint)
| Oaddimm _ => (Tint :: nil, Tint)
| Osub => (Tint :: Tint :: nil, Tint)
| Osubshift _ => (Tint :: Tint :: nil, Tint)
| Orsubshift _ => (Tint :: Tint :: nil, Tint)
| Orsubimm _ => (Tint :: nil, Tint)
| Omul => (Tint :: Tint :: nil, Tint)
| Odiv => (Tint :: Tint :: nil, Tint)
| Odivu => (Tint :: Tint :: nil, Tint)
| Oand => (Tint :: Tint :: nil, Tint)
| Oandshift _ => (Tint :: Tint :: nil, Tint)
| Oandimm _ => (Tint :: nil, Tint)
| Oor => (Tint :: Tint :: nil, Tint)
| Oorshift _ => (Tint :: Tint :: nil, Tint)
| Oorimm _ => (Tint :: nil, Tint)
| Oxor => (Tint :: Tint :: nil, Tint)
| Oxorshift _ => (Tint :: Tint :: nil, Tint)
| Oxorimm _ => (Tint :: nil, Tint)
| Obic => (Tint :: Tint :: nil, Tint)
| Obicshift _ => (Tint :: Tint :: nil, Tint)
| Onot => (Tint :: nil, Tint)
| Onotshift _ => (Tint :: nil, Tint)
| Oshl => (Tint :: Tint :: nil, Tint)
| Oshr => (Tint :: Tint :: nil, Tint)
| Oshru => (Tint :: Tint :: nil, Tint)
| Oshift _ => (Tint :: nil, Tint)
| Oshrximm _ => (Tint :: nil, Tint)
| Onegf => (Tfloat :: nil, Tfloat)
| Oabsf => (Tfloat :: nil, Tfloat)
| Oaddf => (Tfloat :: Tfloat :: nil, Tfloat)
| Osubf => (Tfloat :: Tfloat :: nil, Tfloat)
| Omulf => (Tfloat :: Tfloat :: nil, Tfloat)
| Odivf => (Tfloat :: Tfloat :: nil, Tfloat)
| Osingleoffloat => (Tfloat :: nil, Tfloat)
| Ointoffloat => (Tfloat :: nil, Tint)
| Ointuoffloat => (Tfloat :: nil, Tint)
| Ofloatofint => (Tint :: nil, Tfloat)
| Ofloatofintu => (Tint :: nil, Tfloat)
| Ocmp c => (type_of_condition c, Tint)
end.
Definition type_of_addressing (addr: addressing) : list typ :=
match addr with
| Aindexed _ => Tint :: nil
| Aindexed2 => Tint :: Tint :: nil
| Aindexed2shift _ => Tint :: Tint :: nil
| Ainstack _ => nil
end.
Definition type_of_chunk (c: memory_chunk) : typ :=
match c with
| Mint8signed => Tint
| Mint8unsigned => Tint
| Mint16signed => Tint
| Mint16unsigned => Tint
| Mint32 => Tint
| Mfloat32 => Tfloat
| Mfloat64 => Tfloat
end.
(** Weak type soundness results for [eval_operation]:
the result values, when defined, are always of the type predicted
by [type_of_operation]. *)
Section SOUNDNESS.
Variable A: Set.
Variable genv: Genv.t A.
Lemma type_of_operation_sound:
forall op vl sp v,
op <> Omove ->
eval_operation genv sp op vl = Some v ->
Val.has_type v (snd (type_of_operation op)).
Proof.
intros.
destruct op; simpl in H0; FuncInv; try subst v; try exact I.
congruence.
destruct (Genv.find_symbol genv i); simplify_eq H0; intro; subst v; exact I.
simpl. unfold offset_sp in H0. destruct sp; try discriminate.
inversion H0. exact I.
destruct v0; exact I.
destruct v0; exact I.
destruct v0; exact I.
destruct v0; exact I.
destruct (eq_block b b0). injection H0; intro; subst v; exact I.
discriminate.
destruct (Int.eq i0 Int.zero). discriminate.
injection H0; intro; subst v; exact I.
destruct (Int.eq i0 Int.zero). discriminate.
injection H0; intro; subst v; exact I.
destruct (Int.ltu i0 (Int.repr 32)).
injection H0; intro; subst v; exact I. discriminate.
destruct (Int.ltu i0 (Int.repr 32)).
injection H0; intro; subst v; exact I. discriminate.
destruct (Int.ltu i0 (Int.repr 32)).
injection H0; intro; subst v; exact I. discriminate.
destruct (Int.ltu i (Int.repr 31)).
injection H0; intro; subst v; exact I. discriminate.
destruct v0; exact I.
destruct (eval_condition c vl).
destruct b; injection H0; intro; subst v; exact I.
discriminate.
Qed.
Lemma type_of_chunk_correct:
forall chunk m addr v,
Mem.loadv chunk m addr = Some v ->
Val.has_type v (type_of_chunk chunk).
Proof.
intro chunk.
assert (forall v, Val.has_type (Val.load_result chunk v) (type_of_chunk chunk)).
destruct v; destruct chunk; exact I.
intros until v. unfold Mem.loadv.
destruct addr; intros; try discriminate.
generalize (Mem.load_inv _ _ _ _ _ H0).
intros [X Y]. subst v. apply H.
Qed.
End SOUNDNESS.
(** Alternate definition of [eval_condition], [eval_op], [eval_addressing]
as total functions that return [Vundef] when not applicable
(instead of [None]). Used in the proof of [PPCgen]. *)
Section EVAL_OP_TOTAL.
Variable F: Set.
Variable genv: Genv.t F.
Definition find_symbol_offset (id: ident) (ofs: int) : val :=
match Genv.find_symbol genv id with
| Some b => Vptr b ofs
| None => Vundef
end.
Definition eval_shift_total (s: shift) (v: val) : val :=
match v with
| Vint n => Vint(eval_shift s n)
| _ => Vundef
end.
Definition eval_condition_total (cond: condition) (vl: list val) : val :=
match cond, vl with
| Ccomp c, v1::v2::nil => Val.cmp c v1 v2
| Ccompu c, v1::v2::nil => Val.cmpu c v1 v2
| Ccompshift c s, v1::v2::nil => Val.cmp c v1 (eval_shift_total s v2)
| Ccompushift c s, v1::v2::nil => Val.cmpu c v1 (eval_shift_total s v2)
| Ccompimm c n, v1::nil => Val.cmp c v1 (Vint n)
| Ccompuimm c n, v1::nil => Val.cmpu c v1 (Vint n)
| Ccompf c, v1::v2::nil => Val.cmpf c v1 v2
| Cnotcompf c, v1::v2::nil => Val.notbool(Val.cmpf c v1 v2)
| _, _ => Vundef
end.
Definition eval_operation_total (sp: val) (op: operation) (vl: list val) : val :=
match op, vl with
| Omove, v1::nil => v1
| Ointconst n, nil => Vint n
| Ofloatconst n, nil => Vfloat n
| Oaddrsymbol s ofs, nil => find_symbol_offset s ofs
| Oaddrstack ofs, nil => Val.add sp (Vint ofs)
| Ocast8signed, v1::nil => Val.sign_ext 8 v1
| Ocast8unsigned, v1::nil => Val.zero_ext 8 v1
| Ocast16signed, v1::nil => Val.sign_ext 16 v1
| Ocast16unsigned, v1::nil => Val.zero_ext 16 v1
| Oadd, v1::v2::nil => Val.add v1 v2
| Oaddshift s, v1::v2::nil => Val.add v1 (eval_shift_total s v2)
| Oaddimm n, v1::nil => Val.add v1 (Vint n)
| Osub, v1::v2::nil => Val.sub v1 v2
| Osubshift s, v1::v2::nil => Val.sub v1 (eval_shift_total s v2)
| Orsubshift s, v1::v2::nil => Val.sub (eval_shift_total s v2) v1
| Orsubimm n, v1::nil => Val.sub (Vint n) v1
| Omul, v1::v2::nil => Val.mul v1 v2
| Odiv, v1::v2::nil => Val.divs v1 v2
| Odivu, v1::v2::nil => Val.divu v1 v2
| Oand, v1::v2::nil => Val.and v1 v2
| Oandshift s, v1::v2::nil => Val.and v1 (eval_shift_total s v2)
| Oandimm n, v1::nil => Val.and v1 (Vint n)
| Oor, v1::v2::nil => Val.or v1 v2
| Oorshift s, v1::v2::nil => Val.or v1 (eval_shift_total s v2)
| Oorimm n, v1::nil => Val.or v1 (Vint n)
| Oxor, v1::v2::nil => Val.xor v1 v2
| Oxorshift s, v1::v2::nil => Val.xor v1 (eval_shift_total s v2)
| Oxorimm n, v1::nil => Val.xor v1 (Vint n)
| Obic, v1::v2::nil => Val.and v1 (Val.notint v2)
| Obicshift s, v1::v2::nil => Val.and v1 (Val.notint (eval_shift_total s v2))
| Onot, v1::nil => Val.notint v1
| Onotshift s, v1::nil => Val.notint (eval_shift_total s v1)
| Oshl, v1::v2::nil => Val.shl v1 v2
| Oshr, v1::v2::nil => Val.shr v1 v2
| Oshru, v1::v2::nil => Val.shru v1 v2
| Oshrximm n, v1::nil => Val.shrx v1 (Vint n)
| Oshift s, v1::nil => eval_shift_total s v1
| Onegf, v1::nil => Val.negf v1
| Oabsf, v1::nil => Val.absf v1
| Oaddf, v1::v2::nil => Val.addf v1 v2
| Osubf, v1::v2::nil => Val.subf v1 v2
| Omulf, v1::v2::nil => Val.mulf v1 v2
| Odivf, v1::v2::nil => Val.divf v1 v2
| Osingleoffloat, v1::nil => Val.singleoffloat v1
| Ointoffloat, v1::nil => Val.intoffloat v1
| Ointuoffloat, v1::nil => Val.intuoffloat v1
| Ofloatofint, v1::nil => Val.floatofint v1
| Ofloatofintu, v1::nil => Val.floatofintu v1
| Ocmp c, _ => eval_condition_total c vl
| _, _ => Vundef
end.
Definition eval_addressing_total
(sp: val) (addr: addressing) (vl: list val) : val :=
match addr, vl with
| Aindexed n, v1::nil => Val.add v1 (Vint n)
| Aindexed2, v1::v2::nil => Val.add v1 v2
| Aindexed2shift s, v1::v2::nil => Val.add v1 (eval_shift_total s v2)
| Ainstack ofs, nil => Val.add sp (Vint ofs)
| _, _ => Vundef
end.
Lemma eval_compare_mismatch_weaken:
forall c b,
eval_compare_mismatch c = Some b ->
Val.cmp_mismatch c = Val.of_bool b.
Proof.
unfold eval_compare_mismatch. intros. destruct c; inv H; auto.
Qed.
Lemma eval_compare_null_weaken:
forall c i b,
eval_compare_null c i = Some b ->
(if Int.eq i Int.zero then Val.cmp_mismatch c else Vundef) = Val.of_bool b.
Proof.
unfold eval_compare_null. intros.
destruct (Int.eq i Int.zero); try discriminate.
apply eval_compare_mismatch_weaken; auto.
Qed.
Lemma eval_condition_weaken:
forall c vl b,
eval_condition c vl = Some b ->
eval_condition_total c vl = Val.of_bool b.
Proof.
intros.
unfold eval_condition in H; destruct c; FuncInv;
try subst b; try reflexivity; simpl;
try (apply eval_compare_null_weaken; auto).
unfold eq_block in H. destruct (zeq b0 b1); try congruence.
apply eval_compare_mismatch_weaken; auto.
symmetry. apply Val.notbool_negb_1.
Qed.
Lemma eval_operation_weaken:
forall sp op vl v,
eval_operation genv sp op vl = Some v ->
eval_operation_total sp op vl = v.
Proof.
intros.
unfold eval_operation in H; destruct op; FuncInv;
try subst v; try reflexivity; simpl.
unfold find_symbol_offset.
destruct (Genv.find_symbol genv i); try discriminate.
congruence.
unfold offset_sp in H.
destruct sp; try discriminate. simpl. congruence.
unfold eq_block in H. destruct (zeq b b0); congruence.
destruct (Int.eq i0 Int.zero); congruence.
destruct (Int.eq i0 Int.zero); congruence.
destruct (Int.ltu i0 (Int.repr 32)); congruence.
destruct (Int.ltu i0 (Int.repr 32)); congruence.
destruct (Int.ltu i0 (Int.repr 32)); congruence.
unfold Int.ltu in H. destruct (zlt (Int.unsigned i) (Int.unsigned (Int.repr 31))).
unfold Int.ltu. rewrite zlt_true. congruence.
assert (Int.unsigned (Int.repr 31) < Int.unsigned (Int.repr 32)). vm_compute; auto.
omega. discriminate.
caseEq (eval_condition c vl); intros; rewrite H0 in H.
replace v with (Val.of_bool b).
eapply eval_condition_weaken; eauto.
destruct b; simpl; congruence.
discriminate.
Qed.
Lemma eval_addressing_weaken:
forall sp addr vl v,
eval_addressing genv sp addr vl = Some v ->
eval_addressing_total sp addr vl = v.
Proof.
intros.
unfold eval_addressing in H; destruct addr; FuncInv;
try subst v; simpl; try reflexivity.
decEq. apply Int.add_commut.
unfold offset_sp in H. destruct sp; simpl; congruence.
Qed.
Lemma eval_condition_total_is_bool:
forall cond vl, Val.is_bool (eval_condition_total cond vl).
Proof.
intros; destruct cond;
destruct vl; try apply Val.undef_is_bool;
destruct vl; try apply Val.undef_is_bool;
try (destruct vl; try apply Val.undef_is_bool); simpl.
apply Val.cmp_is_bool.
apply Val.cmpu_is_bool.
apply Val.cmp_is_bool.
apply Val.cmpu_is_bool.
apply Val.cmp_is_bool.
apply Val.cmpu_is_bool.
apply Val.cmpf_is_bool.
apply Val.notbool_is_bool.
Qed.
End EVAL_OP_TOTAL.
(** Compatibility of the evaluation functions with the
``is less defined'' relation over values and memory states. *)
Section EVAL_LESSDEF.
Variable F: Set.
Variable genv: Genv.t F.
Ltac InvLessdef :=
match goal with
| [ H: Val.lessdef (Vint _) _ |- _ ] =>
inv H; InvLessdef
| [ H: Val.lessdef (Vfloat _) _ |- _ ] =>
inv H; InvLessdef
| [ H: Val.lessdef (Vptr _ _) _ |- _ ] =>
inv H; InvLessdef
| [ H: Val.lessdef_list nil _ |- _ ] =>
inv H; InvLessdef
| [ H: Val.lessdef_list (_ :: _) _ |- _ ] =>
inv H; InvLessdef
| _ => idtac
end.
Lemma eval_condition_lessdef:
forall cond vl1 vl2 b,
Val.lessdef_list vl1 vl2 ->
eval_condition cond vl1 = Some b ->
eval_condition cond vl2 = Some b.
Proof.
intros. destruct cond; simpl in *; FuncInv; InvLessdef; auto.
Qed.
Ltac TrivialExists :=
match goal with
| [ |- exists v2, Some ?v1 = Some v2 /\ Val.lessdef ?v1 v2 ] =>
exists v1; split; [auto | constructor]
| _ => idtac
end.
Lemma eval_operation_lessdef:
forall sp op vl1 vl2 v1,
Val.lessdef_list vl1 vl2 ->
eval_operation genv sp op vl1 = Some v1 ->
exists v2, eval_operation genv sp op vl2 = Some v2 /\ Val.lessdef v1 v2.
Proof.
intros. destruct op; simpl in *; FuncInv; InvLessdef; TrivialExists.
exists v2; auto.
destruct (Genv.find_symbol genv i); inv H0. TrivialExists.
exists v1; auto.
exists (Val.sign_ext 8 v2); split. auto. apply Val.sign_ext_lessdef; auto.
exists (Val.zero_ext 8 v2); split. auto. apply Val.zero_ext_lessdef; auto.
exists (Val.sign_ext 16 v2); split. auto. apply Val.sign_ext_lessdef; auto.
exists (Val.zero_ext 16 v2); split. auto. apply Val.zero_ext_lessdef; auto.
destruct (eq_block b b0); inv H0. TrivialExists.
destruct (Int.eq i0 Int.zero); inv H0; TrivialExists.
destruct (Int.eq i0 Int.zero); inv H0; TrivialExists.
destruct (Int.ltu i0 (Int.repr 32)); inv H0; TrivialExists.
destruct (Int.ltu i0 (Int.repr 32)); inv H0; TrivialExists.
destruct (Int.ltu i (Int.repr 32)); inv H0; TrivialExists.
destruct (Int.ltu i0 (Int.repr 32)); inv H1; TrivialExists.
destruct (Int.ltu i0 (Int.repr 32)); inv H1; TrivialExists.
destruct (Int.ltu i (Int.repr 31)); inv H0; TrivialExists.
exists (Val.singleoffloat v2); split. auto. apply Val.singleoffloat_lessdef; auto.
caseEq (eval_condition c vl1); intros. rewrite H1 in H0.
rewrite (eval_condition_lessdef c H H1).
destruct b; inv H0; TrivialExists.
rewrite H1 in H0. discriminate.
Qed.
Lemma eval_addressing_lessdef:
forall sp addr vl1 vl2 v1,
Val.lessdef_list vl1 vl2 ->
eval_addressing genv sp addr vl1 = Some v1 ->
exists v2, eval_addressing genv sp addr vl2 = Some v2 /\ Val.lessdef v1 v2.
Proof.
intros. destruct addr; simpl in *; FuncInv; InvLessdef; TrivialExists.
exists v1; auto.
Qed.
End EVAL_LESSDEF.
(** Recognition of integers that are valid shift amounts. *)
Definition is_shift_amount_aux (n: int) :
{ Int.ltu n (Int.repr 32) = true } +
{ Int.ltu n (Int.repr 32) = false }.
Proof.
intro. case (Int.ltu n (Int.repr 32)). left; auto. right; auto.
Defined.
Definition is_shift_amount (n: int) : option shift_amount :=
match is_shift_amount_aux n with
| left H => Some(mk_shift_amount n H)
| right _ => None
end.
Lemma is_shift_amount_Some:
forall n s, is_shift_amount n = Some s -> s_amount s = n.
Proof.
intros until s. unfold is_shift_amount.
destruct (is_shift_amount_aux n).
simpl. intros. inv H. reflexivity.
congruence.
Qed.
Lemma is_shift_amount_None:
forall n, is_shift_amount n = None -> Int.ltu n (Int.repr 32) = true -> False.
Proof.
intro n. unfold is_shift_amount.
destruct (is_shift_amount_aux n).
congruence.
congruence.
Qed.
(** Transformation of addressing modes with two operands or more
into an equivalent arithmetic operation. This is used in the [Reload]
pass when a store instruction cannot be reloaded directly because
it runs out of temporary registers. *)
(** For the ARM, there are only two binary addressing mode: [Aindexed2]
and [Aindexed2shift]. The corresponding operations are [Oadd]
and [Oaddshift]. *)
Definition op_for_binary_addressing (addr: addressing) : operation :=
match addr with
| Aindexed2 => Oadd
| Aindexed2shift s => Oaddshift s
| _ => Ointconst Int.zero (* never happens *)
end.
Lemma eval_op_for_binary_addressing:
forall (F: Set) (ge: Genv.t F) sp addr args v,
(length args >= 2)%nat ->
eval_addressing ge sp addr args = Some v ->
eval_operation ge sp (op_for_binary_addressing addr) args = Some v.
Proof.
intros.
unfold eval_addressing in H0; destruct addr; FuncInv; simpl in H; try omegaContradiction; simpl.
rewrite Int.add_commut. congruence.
congruence.
congruence.
Qed.
Lemma type_op_for_binary_addressing:
forall addr,
(length (type_of_addressing addr) >= 2)%nat ->
type_of_operation (op_for_binary_addressing addr) = (type_of_addressing addr, Tint).
Proof.
intros. destruct addr; simpl in H; reflexivity || omegaContradiction.
Qed.
|