1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
|
(* *********************************************************************)
(* *)
(* The Compcert verified compiler *)
(* *)
(* Xavier Leroy, INRIA Paris-Rocquencourt *)
(* *)
(* Copyright Institut National de Recherche en Informatique et en *)
(* Automatique. All rights reserved. This file is distributed *)
(* under the terms of the INRIA Non-Commercial License Agreement. *)
(* *)
(* *********************************************************************)
(** Abstract syntax and semantics for ARM assembly language *)
Require Import Coqlib.
Require Import Maps.
Require Import AST.
Require Import Integers.
Require Import Floats.
Require Import Values.
Require Import Mem.
Require Import Events.
Require Import Globalenvs.
Require Import Smallstep.
Require Import Locations.
Require Stacklayout.
Require Conventions.
(** * Abstract syntax *)
(** Integer registers, floating-point registers. *)
Inductive ireg: Set :=
| IR0: ireg | IR1: ireg | IR2: ireg | IR3: ireg
| IR4: ireg | IR5: ireg | IR6: ireg | IR7: ireg
| IR8: ireg | IR9: ireg | IR10: ireg | IR11: ireg
| IR12: ireg | IR13: ireg | IR14: ireg.
Inductive freg: Set :=
| FR0: freg | FR1: freg | FR2: freg | FR3: freg
| FR4: freg | FR5: freg | FR6: freg | FR7: freg.
Lemma ireg_eq: forall (x y: ireg), {x=y} + {x<>y}.
Proof. decide equality. Defined.
Lemma freg_eq: forall (x y: freg), {x=y} + {x<>y}.
Proof. decide equality. Defined.
(** Bits in the condition register. *)
Inductive crbit: Set :=
| CReq: crbit (**r equal *)
| CRne: crbit (**r not equal *)
| CRhs: crbit (**r unsigned higher or same *)
| CRlo: crbit (**r unsigned lower *)
| CRmi: crbit (**r negative *)
| CRpl: crbit (**r positive *)
| CRhi: crbit (**r unsigned higher *)
| CRls: crbit (**r unsigned lower or same *)
| CRge: crbit (**r signed greater or equal *)
| CRlt: crbit (**r signed less than *)
| CRgt: crbit (**r signed greater *)
| CRle: crbit. (**r signed less than or equal *)
Lemma crbit_eq: forall (x y: crbit), {x=y} + {x<>y}.
Proof. decide equality. Defined.
(** The instruction set. Most instructions correspond exactly to
actual instructions of the PowerPC processor. See the PowerPC
reference manuals for more details. Some instructions,
described below, are pseudo-instructions: they expand to
canned instruction sequences during the printing of the assembly
code. *)
Definition label := positive.
Inductive shift_op : Set :=
| SOimm: int -> shift_op
| SOreg: ireg -> shift_op
| SOlslimm: ireg -> int -> shift_op
| SOlslreg: ireg -> ireg -> shift_op
| SOlsrimm: ireg -> int -> shift_op
| SOlsrreg: ireg -> ireg -> shift_op
| SOasrimm: ireg -> int -> shift_op
| SOasrreg: ireg -> ireg -> shift_op
| SOrorimm: ireg -> int -> shift_op
| SOrorreg: ireg -> ireg -> shift_op.
Inductive shift_addr : Set :=
| SAimm: int -> shift_addr
| SAreg: ireg -> shift_addr
| SAlsl: ireg -> int -> shift_addr
| SAlsr: ireg -> int -> shift_addr
| SAasr: ireg -> int -> shift_addr
| SAror: ireg -> int -> shift_addr.
Inductive instruction : Set :=
(* Core instructions *)
| Padd: ireg -> ireg -> shift_op -> instruction (**r integer addition *)
| Pand: ireg -> ireg -> shift_op -> instruction (**r bitwise and *)
| Pb: label -> instruction (**r branch to label *)
| Pbc: crbit -> label -> instruction (**r conditional branch to label *)
| Pbsymb: ident -> instruction (**r branch to symbol *)
| Pbreg: ireg -> instruction (**r computed branch *)
| Pblsymb: ident -> instruction (**r branch and link to symbol *)
| Pblreg: ireg -> instruction (**r computed branch and link *)
| Pbic: ireg -> ireg -> shift_op -> instruction (**r bitwise bit-clear *)
| Pcmp: ireg -> shift_op -> instruction (**r integer comparison *)
| Peor: ireg -> ireg -> shift_op -> instruction (**r bitwise exclusive or *)
| Pldr: ireg -> ireg -> shift_addr -> instruction (**r int32 load *)
| Pldrb: ireg -> ireg -> shift_addr -> instruction (**r unsigned int8 load *)
| Pldrh: ireg -> ireg -> shift_addr -> instruction (**r unsigned int16 load *)
| Pldrsb: ireg -> ireg -> shift_addr -> instruction (**r signed int8 load *)
| Pldrsh: ireg -> ireg -> shift_addr -> instruction (**r unsigned int16 load *)
| Pmov: ireg -> shift_op -> instruction (**r integer move *)
| Pmovc: crbit -> ireg -> shift_op -> instruction (**r integer conditional move *)
| Pmul: ireg -> ireg -> ireg -> instruction (**r integer multiplication *)
| Pmvn: ireg -> shift_op -> instruction (**r integer complement *)
| Porr: ireg -> ireg -> shift_op -> instruction (**r bitwise or *)
| Prsb: ireg -> ireg -> shift_op -> instruction (**r integer reverse subtraction *)
| Pstr: ireg -> ireg -> shift_addr -> instruction (**r int32 store *)
| Pstrb: ireg -> ireg -> shift_addr -> instruction (**r int8 store *)
| Pstrh: ireg -> ireg -> shift_addr -> instruction (**r int16 store *)
| Psdiv: ireg -> ireg -> ireg -> instruction (**r signed division *)
| Psub: ireg -> ireg -> shift_op -> instruction (**r integer subtraction *)
| Pudiv: ireg -> ireg -> ireg -> instruction (**r unsigned division *)
(* Floating-point coprocessor instructions *)
| Pabsd: freg -> freg -> instruction (**r float absolute value *)
| Padfd: freg -> freg -> freg -> instruction (**r float addition *)
| Pcmf: freg -> freg -> instruction (**r float comparison *)
| Pdvfd: freg -> freg -> freg -> instruction (**r float division *)
| Pfixz: ireg -> freg -> instruction (**r float to signed int *)
| Pfixzu: ireg -> freg -> instruction (**r float to unsigned int *)
| Pfltd: freg -> ireg -> instruction (**r signed int to float *)
| Pfltud: freg -> ireg -> instruction (**r unsigned int to float *)
| Pldfd: freg -> ireg -> int -> instruction (**r float64 load *)
| Pldfs: freg -> ireg -> int -> instruction (**r float32 load *)
| Plifd: freg -> float -> instruction (**r load float constant *)
| Pmnfd: freg -> freg -> instruction (**r float opposite *)
| Pmvfd: freg -> freg -> instruction (**r float move *)
| Pmvfs: freg -> freg -> instruction (**r float move single precision *)
| Pmufd: freg -> freg -> freg -> instruction (**r float multiplication *)
| Pstfd: freg -> ireg -> int -> instruction (**r float64 store *)
| Pstfs: freg -> ireg -> int -> instruction (**r float32 store *)
| Psufd: freg -> freg -> freg -> instruction (**r float subtraction *)
(* Pseudo-instructions *)
| Pallocframe: Z -> Z -> int -> instruction (**r allocate new stack frame *)
| Pfreeframe: int -> instruction (**r deallocate stack frame and restore previous frame *)
| Plabel: label -> instruction (**r define a code label *)
| Ploadsymbol: ireg -> ident -> int -> instruction. (**r load the address of a symbol *)
(** The pseudo-instructions are the following:
- [Plabel]: define a code label at the current program point
- [Plfi]: load a floating-point constant in a float register.
Expands to a float load [lfd] from an address in the constant data section
initialized with the floating-point constant:
<<
addis r2, 0, ha16(lbl)
lfd rdst, lo16(lbl)(r2)
.const_data
lbl: .double floatcst
.text
>>
Initialized data in the constant data section are not modeled here,
which is why we use a pseudo-instruction for this purpose.
- [Pfcti]: convert a float to an integer. This requires a transfer
via memory of a 32-bit integer from a float register to an int register,
which our memory model cannot express. Expands to:
<<
fctiwz f13, rsrc
stfdu f13, -8(r1)
lwz rdst, 4(r1)
addi r1, r1, 8
>>
- [Pictf]: convert a signed integer to a float. This requires complicated
bit-level manipulations of IEEE floats through mixed float and integer
arithmetic over a memory word, which our memory model and axiomatization
of floats cannot express. Expands to:
<<
addis r2, 0, 0x4330
stwu r2, -8(r1)
addis r2, rsrc, 0x8000
stw r2, 4(r1)
addis r2, 0, ha16(lbl)
lfd f13, lo16(lbl)(r2)
lfd rdst, 0(r1)
addi r1, r1, 8
fsub rdst, rdst, f13
.const_data
lbl: .long 0x43300000, 0x80000000
.text
>>
(Don't worry if you do not understand this instruction sequence: intimate
knowledge of IEEE float arithmetic is necessary.)
- [Piuctf]: convert an unsigned integer to a float. The expansion is close
to that [Pictf], and equally obscure.
<<
addis r2, 0, 0x4330
stwu r2, -8(r1)
stw rsrc, 4(r1)
addis r2, 0, ha16(lbl)
lfd f13, lo16(lbl)(r2)
lfd rdst, 0(r1)
addi r1, r1, 8
fsub rdst, rdst, f13
.const_data
lbl: .long 0x43300000, 0x00000000
.text
>>
- [Pallocframe lo hi]: in the formal semantics, this pseudo-instruction
allocates a memory block with bounds [lo] and [hi], stores the value
of register [r1] (the stack pointer, by convention) at the bottom
of this block, and sets [r1] to a pointer to the bottom of this
block. In the printed PowerPC assembly code, this allocation
is just a store-decrement of register [r1]:
<<
stwu r1, (lo - hi)(r1)
>>
This cannot be expressed in our memory model, which does not reflect
the fact that stack frames are adjacent and allocated/freed
following a stack discipline.
- [Pfreeframe]: in the formal semantics, this pseudo-instruction
reads the bottom word of the block pointed by [r1] (the stack pointer),
frees this block, and sets [r1] to the value of the bottom word.
In the printed PowerPC assembly code, this freeing
is just a load of register [r1] relative to [r1] itself:
<<
lwz r1, 0(r1)
>>
Again, our memory model cannot comprehend that this operation
frees (logically) the current stack frame.
*)
Definition code := list instruction.
Definition fundef := AST.fundef code.
Definition program := AST.program fundef unit.
(** * Operational semantics *)
(** The PowerPC has a great many registers, some general-purpose, some very
specific. We model only the following registers: *)
Inductive preg: Set :=
| IR: ireg -> preg (**r integer registers *)
| FR: freg -> preg (**r float registers *)
| CR: crbit -> preg (**r bits in the condition register *)
| PC: preg. (**r program counter *)
Coercion IR: ireg >-> preg.
Coercion FR: freg >-> preg.
Coercion CR: crbit >-> preg.
Lemma preg_eq: forall (x y: preg), {x=y} + {x<>y}.
Proof. decide equality. apply ireg_eq. apply freg_eq. apply crbit_eq. Defined.
Module PregEq.
Definition t := preg.
Definition eq := preg_eq.
End PregEq.
Module Pregmap := EMap(PregEq).
(** The semantics operates over a single mapping from registers
(type [preg]) to values. We maintain (but do not enforce)
the convention that integer registers are mapped to values of
type [Tint], float registers to values of type [Tfloat],
and condition bits to either [Vzero] or [Vone]. *)
Definition regset := Pregmap.t val.
Definition genv := Genv.t fundef.
Notation "a # b" := (a b) (at level 1, only parsing).
Notation "a # b <- c" := (Pregmap.set b c a) (at level 1, b at next level).
Section RELSEM.
(** Looking up instructions in a code sequence by position. *)
Fixpoint find_instr (pos: Z) (c: code) {struct c} : option instruction :=
match c with
| nil => None
| i :: il => if zeq pos 0 then Some i else find_instr (pos - 1) il
end.
(** Position corresponding to a label *)
Definition is_label (lbl: label) (instr: instruction) : bool :=
match instr with
| Plabel lbl' => if peq lbl lbl' then true else false
| _ => false
end.
Lemma is_label_correct:
forall lbl instr,
if is_label lbl instr then instr = Plabel lbl else instr <> Plabel lbl.
Proof.
intros. destruct instr; simpl; try discriminate.
case (peq lbl l); intro; congruence.
Qed.
Fixpoint label_pos (lbl: label) (pos: Z) (c: code) {struct c} : option Z :=
match c with
| nil => None
| instr :: c' =>
if is_label lbl instr then Some (pos + 1) else label_pos lbl (pos + 1) c'
end.
Variable ge: genv.
(** The semantics is purely small-step and defined as a function
from the current state (a register set + a memory state)
to either [OK rs' m'] where [rs'] and [m'] are the updated register
set and memory state after execution of the instruction at [rs#PC],
or [Error] if the processor is stuck. *)
Inductive outcome: Set :=
| OK: regset -> mem -> outcome
| Error: outcome.
(** Manipulations over the [PC] register: continuing with the next
instruction ([nextinstr]) or branching to a label ([goto_label]). *)
Definition nextinstr (rs: regset) :=
rs#PC <- (Val.add rs#PC Vone).
Definition goto_label (c: code) (lbl: label) (rs: regset) (m: mem) :=
match label_pos lbl 0 c with
| None => Error
| Some pos =>
match rs#PC with
| Vptr b ofs => OK (rs#PC <- (Vptr b (Int.repr pos))) m
| _ => Error
end
end.
(** Evaluation of [shift_op] operands *)
Definition eval_shift_op (so: shift_op) (rs: regset) :=
match so with
| SOimm n => Vint n
| SOreg r => rs r
| SOlslimm r n => Val.shl (rs r) (Vint n)
| SOlslreg r r' => Val.shl (rs r) (rs r')
| SOlsrimm r n => Val.shru (rs r) (Vint n)
| SOlsrreg r r' => Val.shru (rs r) (rs r')
| SOasrimm r n => Val.shr (rs r) (Vint n)
| SOasrreg r r' => Val.shr (rs r) (rs r')
| SOrorimm r n => Val.ror (rs r) (Vint n)
| SOrorreg r r' => Val.ror (rs r) (rs r')
end.
(** Evaluation of [shift_addr] operands *)
Definition eval_shift_addr (sa: shift_addr) (rs: regset) :=
match sa with
| SAimm n => Vint n
| SAreg r => rs r
| SAlsl r n => Val.shl (rs r) (Vint n)
| SAlsr r n => Val.shru (rs r) (Vint n)
| SAasr r n => Val.shr (rs r) (Vint n)
| SAror r n => Val.ror (rs r) (Vint n)
end.
(** Auxiliaries for memory accesses *)
Definition exec_load (chunk: memory_chunk) (addr: val) (r: preg)
(rs: regset) (m: mem) :=
match Mem.loadv chunk m addr with
| None => Error
| Some v => OK (nextinstr (rs#r <- v)) m
end.
Definition exec_store (chunk: memory_chunk) (addr: val) (r: preg)
(rs: regset) (m: mem) :=
match Mem.storev chunk m addr (rs r) with
| None => Error
| Some m' => OK (nextinstr rs) m'
end.
(** Operations over condition bits. *)
Definition compare_int (rs: regset) (v1 v2: val) :=
rs#CReq <- (Val.cmp Ceq v1 v2)
#CRne <- (Val.cmp Cne v1 v2)
#CRhs <- (Val.cmpu Cge v1 v2)
#CRlo <- (Val.cmpu Clt v1 v2)
#CRmi <- Vundef
#CRpl <- Vundef
#CRhi <- (Val.cmpu Cgt v1 v2)
#CRls <- (Val.cmpu Cle v1 v2)
#CRge <- (Val.cmp Cge v1 v2)
#CRlt <- (Val.cmp Clt v1 v2)
#CRgt <- (Val.cmp Cgt v1 v2)
#CRle <- (Val.cmp Cle v1 v2).
Definition compare_float (rs: regset) (v1 v2: val) :=
rs#CReq <- (Val.cmpf Ceq v1 v2)
#CRne <- (Val.cmpf Cne v1 v2)
#CRhs <- Vundef
#CRlo <- Vundef
#CRmi <- (Val.cmpf Clt v1 v2) (* lt *)
#CRpl <- (Val.notbool (Val.cmpf Clt v1 v2)) (* not lt *)
#CRhi <- (Val.notbool (Val.cmpf Cle v1 v2)) (* not le *)
#CRls <- (Val.cmpf Cle v1 v2) (* le *)
#CRge <- (Val.cmpf Cge v1 v2) (* ge *)
#CRlt <- (Val.notbool (Val.cmpf Cge v1 v2)) (* not ge *)
#CRgt <- (Val.cmpf Cgt v1 v2) (* gt *)
#CRle <- (Val.notbool (Val.cmpf Cgt v1 v2)). (* not gt *)
(** Execution of a single instruction [i] in initial state
[rs] and [m]. Return updated state. For instructions
that correspond to actual PowerPC instructions, the cases are
straightforward transliterations of the informal descriptions
given in the PowerPC reference manuals. For pseudo-instructions,
refer to the informal descriptions given above. Note that
we set to [Vundef] the registers used as temporaries by the
expansions of the pseudo-instructions, so that the PPC code
we generate cannot use those registers to hold values that
must survive the execution of the pseudo-instruction.
*)
Definition symbol_offset (id: ident) (ofs: int) : val :=
match Genv.find_symbol ge id with
| Some b => Vptr b ofs
| None => Vundef
end.
Definition exec_instr (c: code) (i: instruction) (rs: regset) (m: mem) : outcome :=
match i with
| Padd r1 r2 so =>
OK (nextinstr (rs#r1 <- (Val.add rs#r2 (eval_shift_op so rs)))) m
| Pand r1 r2 so =>
OK (nextinstr (rs#r1 <- (Val.and rs#r2 (eval_shift_op so rs)))) m
| Pb lbl =>
goto_label c lbl rs m
| Pbc bit lbl =>
match rs#bit with
| Vint n => if Int.eq n Int.zero then OK (nextinstr rs) m else goto_label c lbl rs m
| _ => Error
end
| Pbsymb id =>
OK (rs#PC <- (symbol_offset id Int.zero)) m
| Pbreg r =>
OK (rs#PC <- (rs#r)) m
| Pblsymb id =>
OK (rs#IR14 <- (Val.add rs#PC Vone) #PC <- (symbol_offset id Int.zero)) m
| Pblreg r =>
OK (rs#IR14 <- (Val.add rs#PC Vone) #PC <- (rs#r)) m
| Pbic r1 r2 so =>
OK (nextinstr (rs#r1 <- (Val.and rs#r2 (Val.notint (eval_shift_op so rs))))) m
| Pcmp r1 so =>
OK (nextinstr (compare_int rs rs#r1 (eval_shift_op so rs))) m
| Peor r1 r2 so =>
OK (nextinstr (rs#r1 <- (Val.xor rs#r2 (eval_shift_op so rs)))) m
| Pldr r1 r2 sa =>
exec_load Mint32 (Val.add rs#r2 (eval_shift_addr sa rs)) r1 rs m
| Pldrb r1 r2 sa =>
exec_load Mint8unsigned (Val.add rs#r2 (eval_shift_addr sa rs)) r1 rs m
| Pldrh r1 r2 sa =>
exec_load Mint16unsigned (Val.add rs#r2 (eval_shift_addr sa rs)) r1 rs m
| Pldrsb r1 r2 sa =>
exec_load Mint8signed (Val.add rs#r2 (eval_shift_addr sa rs)) r1 rs m
| Pldrsh r1 r2 sa =>
exec_load Mint16signed (Val.add rs#r2 (eval_shift_addr sa rs)) r1 rs m
| Pmov r1 so =>
OK (nextinstr (rs#r1 <- (eval_shift_op so rs))) m
| Pmovc bit r1 so =>
match rs#bit with
| Vint n => if Int.eq n Int.zero
then OK (nextinstr rs) m
else OK (nextinstr (rs#r1 <- (eval_shift_op so rs))) m
| _ => Error
end
| Pmul r1 r2 r3 =>
OK (nextinstr (rs#r1 <- (Val.mul rs#r2 rs#r3))) m
| Pmvn r1 so =>
OK (nextinstr (rs#r1 <- (Val.notint (eval_shift_op so rs)))) m
| Porr r1 r2 so =>
OK (nextinstr (rs#r1 <- (Val.or rs#r2 (eval_shift_op so rs)))) m
| Prsb r1 r2 so =>
OK (nextinstr (rs#r1 <- (Val.sub (eval_shift_op so rs) rs#r2))) m
| Pstr r1 r2 sa =>
exec_store Mint32 (Val.add rs#r2 (eval_shift_addr sa rs)) r1 rs m
| Pstrb r1 r2 sa =>
exec_store Mint8unsigned (Val.add rs#r2 (eval_shift_addr sa rs)) r1 rs m
| Pstrh r1 r2 sa =>
exec_store Mint16unsigned (Val.add rs#r2 (eval_shift_addr sa rs)) r1 rs m
| Psdiv rd r1 r2 =>
OK (nextinstr (rs#rd <- (Val.divs rs#r1 rs#r2))) m
| Psub r1 r2 so =>
OK (nextinstr (rs#r1 <- (Val.sub rs#r2 (eval_shift_op so rs)))) m
| Pudiv rd r1 r2 =>
OK (nextinstr (rs#rd <- (Val.divu rs#r1 rs#r2))) m
(* Floating-point coprocessor instructions *)
| Pabsd r1 r2 =>
OK (nextinstr (rs#r1 <- (Val.absf rs#r2))) m
| Padfd r1 r2 r3 =>
OK (nextinstr (rs#r1 <- (Val.addf rs#r2 rs#r3))) m
| Pcmf r1 r2 =>
OK (nextinstr (compare_float rs rs#r1 rs#r2)) m
| Pdvfd r1 r2 r3 =>
OK (nextinstr (rs#r1 <- (Val.divf rs#r2 rs#r3))) m
| Pfixz r1 r2 =>
OK (nextinstr (rs#r1 <- (Val.intoffloat rs#r2))) m
| Pfixzu r1 r2 =>
OK (nextinstr (rs#r1 <- (Val.intuoffloat rs#r2))) m
| Pfltd r1 r2 =>
OK (nextinstr (rs#r1 <- (Val.floatofint rs#r2))) m
| Pfltud r1 r2 =>
OK (nextinstr (rs#r1 <- (Val.floatofintu rs#r2))) m
| Pldfd r1 r2 n =>
exec_load Mfloat64 (Val.add rs#r2 (Vint n)) r1 rs m
| Pldfs r1 r2 n =>
exec_load Mfloat32 (Val.add rs#r2 (Vint n)) r1 rs m
| Plifd r1 f =>
OK (nextinstr (rs#r1 <- (Vfloat f))) m
| Pmnfd r1 r2 =>
OK (nextinstr (rs#r1 <- (Val.negf rs#r2))) m
| Pmvfd r1 r2 =>
OK (nextinstr (rs#r1 <- (rs#r2))) m
| Pmvfs r1 r2 =>
OK (nextinstr (rs#r1 <- (Val.singleoffloat rs#r2))) m
| Pmufd r1 r2 r3 =>
OK (nextinstr (rs#r1 <- (Val.mulf rs#r2 rs#r3))) m
| Pstfd r1 r2 n =>
exec_store Mfloat64 (Val.add rs#r2 (Vint n)) r1 rs m
| Pstfs r1 r2 n =>
exec_store Mfloat32 (Val.add rs#r2 (Vint n)) r1 rs m
| Psufd r1 r2 r3 =>
OK (nextinstr (rs#r1 <- (Val.subf rs#r2 rs#r3))) m
(* Pseudo-instructions *)
| Pallocframe lo hi pos =>
let (m1, stk) := Mem.alloc m lo hi in
let sp := (Vptr stk (Int.repr lo)) in
match Mem.storev Mint32 m1 (Val.add sp (Vint pos)) rs#IR13 with
| None => Error
| Some m2 => OK (nextinstr (rs#IR13 <- sp)) m2
end
| Pfreeframe pos =>
match Mem.loadv Mint32 m (Val.add rs#IR13 (Vint pos)) with
| None => Error
| Some v =>
match rs#IR13 with
| Vptr stk ofs => OK (nextinstr (rs#IR13 <- v)) (Mem.free m stk)
| _ => Error
end
end
| Plabel lbl =>
OK (nextinstr rs) m
| Ploadsymbol r1 lbl ofs =>
OK (nextinstr (rs#r1 <- (symbol_offset lbl ofs))) m
end.
(** Translation of the LTL/Linear/Mach view of machine registers
to the ARM view. ARM has two different types for registers
(integer and float) while LTL et al have only one. The
[ireg_of] and [freg_of] are therefore partial in principle.
To keep things simpler, we make them return nonsensical
results when applied to a LTL register of the wrong type.
The proof in [ARMgenproof] will show that this never happens.
Note that no LTL register maps to [IR14].
This register is reserved as temporary, to be used
by the generated ARM code. *)
Definition ireg_of (r: mreg) : ireg :=
match r with
| R0 => IR0 | R1 => IR1 | R2 => IR2 | R3 => IR3
| R4 => IR4 | R5 => IR5 | R6 => IR6 | R7 => IR7
| R8 => IR8 | R9 => IR9 | R11 => IR11
| IT1 => IR10 | IT2 => IR12
| _ => IR0 (* should not happen *)
end.
Definition freg_of (r: mreg) : freg :=
match r with
| F0 => FR0 | F1 => FR1
| F4 => FR4 | F5 => FR5 | F6 => FR6 | F7 => FR7
| FT1 => FR2 | FT2 => FR3
| _ => FR0 (* should not happen *)
end.
Definition preg_of (r: mreg) :=
match mreg_type r with
| Tint => IR (ireg_of r)
| Tfloat => FR (freg_of r)
end.
(** Extract the values of the arguments of an external call.
We exploit the calling conventions from module [Conventions], except that
we use PPC registers instead of locations. *)
Inductive extcall_arg (rs: regset) (m: mem): loc -> val -> Prop :=
| extcall_arg_reg: forall r,
extcall_arg rs m (R r) (rs (preg_of r))
| extcall_arg_int_stack: forall ofs bofs v,
bofs = Stacklayout.fe_ofs_arg + 4 * ofs ->
Mem.loadv Mint32 m (Val.add (rs (IR IR13)) (Vint (Int.repr bofs))) = Some v ->
extcall_arg rs m (S (Outgoing ofs Tint)) v
| extcall_arg_float_stack: forall ofs bofs v,
bofs = Stacklayout.fe_ofs_arg + 4 * ofs ->
Mem.loadv Mfloat64 m (Val.add (rs (IR IR13)) (Vint (Int.repr bofs))) = Some v ->
extcall_arg rs m (S (Outgoing ofs Tfloat)) v.
Inductive extcall_args (rs: regset) (m: mem): list loc -> list val -> Prop :=
| extcall_args_nil:
extcall_args rs m nil nil
| extcall_args_cons: forall l1 ll v1 vl,
extcall_arg rs m l1 v1 -> extcall_args rs m ll vl ->
extcall_args rs m (l1 :: ll) (v1 :: vl).
Definition extcall_arguments
(rs: regset) (m: mem) (sg: signature) (args: list val) : Prop :=
extcall_args rs m (Conventions.loc_arguments sg) args.
Definition loc_external_result (sg: signature) : preg :=
preg_of (Conventions.loc_result sg).
(** Execution of the instruction at [rs#PC]. *)
Inductive state: Set :=
| State: regset -> mem -> state.
Inductive step: state -> trace -> state -> Prop :=
| exec_step_internal:
forall b ofs c i rs m rs' m',
rs PC = Vptr b ofs ->
Genv.find_funct_ptr ge b = Some (Internal c) ->
find_instr (Int.unsigned ofs) c = Some i ->
exec_instr c i rs m = OK rs' m' ->
step (State rs m) E0 (State rs' m')
| exec_step_external:
forall b ef args res rs m t rs',
rs PC = Vptr b Int.zero ->
Genv.find_funct_ptr ge b = Some (External ef) ->
event_match ef args t res ->
extcall_arguments rs m ef.(ef_sig) args ->
rs' = (rs#(loc_external_result ef.(ef_sig)) <- res
#PC <- (rs IR14)) ->
step (State rs m) t (State rs' m).
End RELSEM.
(** Execution of whole programs. *)
Inductive initial_state (p: program): state -> Prop :=
| initial_state_intro:
let ge := Genv.globalenv p in
let m0 := Genv.init_mem p in
let rs0 :=
(Pregmap.init Vundef)
# PC <- (symbol_offset ge p.(prog_main) Int.zero)
# IR14 <- Vzero
# IR13 <- (Vptr Mem.nullptr Int.zero) in
initial_state p (State rs0 m0).
Inductive final_state: state -> int -> Prop :=
| final_state_intro: forall rs m r,
rs#PC = Vzero ->
rs#IR0 = Vint r ->
final_state (State rs m) r.
Definition exec_program (p: program) (beh: program_behavior) : Prop :=
program_behaves step (initial_state p) final_state (Genv.globalenv p) beh.
(** For compatibility with PowerPC *)
Parameter low_half: val -> val.
Parameter high_half: val -> val.
|