# ***************************************************************** # # The Compcert verified compiler # # Xavier Leroy, INRIA Paris-Rocquencourt # # Copyright (c) 2013 Institut National de Recherche en Informatique et # en Automatique. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF # LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING # NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # ********************************************************************* # Helper functions for 64-bit integer arithmetic. IA32 version. .text # Division and remainder # Auxiliary function, not exported. # Input: 20(esp), 24(esp) is dividend N # 28(esp), 32(esp) is divisor D # Output: esi:edi is quotient Q # eax:edx is remainder R # ebp is preserved .balign 16 __i64_udivmod: cmpl $0, 32(%esp) # single-word divisor? (DH = 0) jne 1f # Special case 64 bits divided by 32 bits movl 28(%esp), %ecx # divide NH by DL movl 24(%esp), %eax # (will trap if D = 0) xorl %edx, %edx divl %ecx # eax = quotient, edx = remainder movl %eax, %edi # high word of quotient in edi movl 20(%esp), %eax # divide rem : NL by DL divl %ecx # eax = quotient, edx = remainder movl %eax, %esi # low word of quotient in esi */ movl %edx, %eax # low word of remainder in eax xorl %edx, %edx # high word of remainder is 0, in edx ret # The general case 1: movl 28(%esp), %ecx # esi:ecx = D movl 32(%esp), %esi movl 20(%esp), %eax # edx:eax = N movl 24(%esp), %edx # Scale D and N down, giving D' and N', until D' fits in 32 bits 2: shrl $1, %esi # shift D' right by one rcrl $1, %ecx shrl $1, %edx # shift N' right by one rcrl $1, %eax testl %esi, %esi # repeat until D'H = 0 jnz 2b # Divide N' by D' to get an approximate quotient divl %ecx # eax = quotient, edx = remainder movl %eax, %esi # save tentative quotient Q in esi # Check for off by one quotient # Compute Q * D 3: movl 32(%esp), %ecx imull %esi, %ecx # ecx = Q * DH movl 28(%esp), %eax mull %esi # edx:eax = Q * DL add %ecx, %edx # edx:eax = Q * D jc 5f # overflow in addition means Q is too high # Compare Q * D with N, computing the remainder in the process movl %eax, %ecx movl 20(%esp), %eax subl %ecx, %eax movl %edx, %ecx movl 24(%esp), %edx sbbl %ecx, %edx # edx:eax = N - Q * D jnc 4f # no carry: N >= Q * D, we are fine decl %esi # carry: N < Q * D, adjust Q down by 1 addl 28(%esp), %eax # and remainder up by D adcl 32(%esp), %edx # Finished 4: xorl %edi, %edi # high half of quotient is 0 ret # Special case when Q * D overflows 5: decl %esi # adjust Q down by 1 jmp 3b # and redo check & computation of remainder # Unsigned division .globl __i64_udiv .balign 16 __i64_udiv: pushl %ebp pushl %esi pushl %edi call __i64_udivmod movl %esi, %eax movl %edi, %edx popl %edi popl %esi popl %ebp ret .type __i64_udiv, @function .size __i64_udiv, . - __i64_udiv # Unsigned remainder .globl __i64_umod .balign 16 __i64_umod: pushl %ebp pushl %esi pushl %edi call __i64_udivmod popl %edi popl %esi popl %ebp ret .type __i64_umod, @function .size __i64_umod, . - __i64_umod # Signed division .globl __i64_sdiv .balign 16 __i64_sdiv: pushl %ebp pushl %esi pushl %edi movl 20(%esp), %esi # esi = NH movl %esi, %ebp # save sign of N in ebp testl %esi, %esi jge 1f # if N < 0, negl 16(%esp) # N = -N adcl $0, %esi negl %esi movl %esi, 20(%esp) 1: movl 28(%esp), %esi # esi = DH xorl %esi, %ebp # sign of result in ebp testl %esi, %esi jge 2f # if D < 0, negl 24(%esp) # D = -D adcl $0, %esi negl %esi movl %esi, 28(%esp) 2: call __i64_udivmod testl %ebp, %ebp # apply sign to result jge 3f negl %esi adcl $0, %edi negl %edi 3: movl %esi, %eax movl %edi, %edx popl %edi popl %esi popl %ebp ret .type __i64_sdiv, @function .size __i64_sdiv, . - __i64_sdiv # Signed remainder .globl __i64_smod .balign 16 __i64_smod: pushl %ebp pushl %esi pushl %edi movl 20(%esp), %esi # esi = NH movl %esi, %ebp # save sign of result in ebp testl %esi, %esi jge 1f # if N < 0, negl 16(%esp) # N = -N adcl $0, %esi negl %esi movl %esi, 20(%esp) 1: movl 28(%esp), %esi # esi = DH testl %esi, %esi jge 2f # if D < 0, negl 24(%esp) # D = -D adcl $0, %esi negl %esi movl %esi, 28(%esp) 2: call __i64_udivmod testl %ebp, %ebp # apply sign to result jge 3f negl %eax adcl $0, %edx negl %edx 3: popl %edi popl %esi popl %ebp ret .type __i64_sdiv, @function .size __i64_sdiv, . - __i64_sdiv # Note on shifts: # IA32 shift instructions treat their amount (in %cl) modulo 32 # Shift left .globl __i64_shl .balign 16 __i64_shl: movl 12(%esp), %ecx # ecx = shift amount, treated mod 64 testb $32, %cl jne 1f # shift amount < 32 movl 4(%esp), %eax movl 8(%esp), %edx shldl %cl, %eax, %edx # edx = high(XH:XL << amount) shll %cl, %eax # eax = XL << amount ret # shift amount >= 32 1: movl 4(%esp), %edx shll %cl, %edx # edx = XL << (amount - 32) xorl %eax, %eax # eax = 0 ret .type __i64_shl, @function .size __i64_shl, . - __i64_shl # Shift right unsigned .globl __i64_shr .balign 16 __i64_shr: movl 12(%esp), %ecx # ecx = shift amount, treated mod 64 testb $32, %cl jne 1f # shift amount < 32 movl 4(%esp), %eax movl 8(%esp), %edx shrdl %cl, %edx, %eax # eax = low(XH:XL >> amount) shrl %cl, %edx # edx = XH >> amount ret # shift amount >= 32 1: movl 8(%esp), %eax shrl %cl, %eax # eax = XH >> (amount - 32) xorl %edx, %edx # edx = 0 ret .type __i64_shr, @function .size __i64_shr, . - __i64_shr # Shift right signed .globl __i64_sar .balign 16 __i64_sar: movl 12(%esp), %ecx # ecx = shift amount, treated mod 64 testb $32, %cl jne 1f # shift amount < 32 movl 4(%esp), %eax movl 8(%esp), %edx shrdl %cl, %edx, %eax # eax = low(XH:XL >> amount) sarl %cl, %edx # edx = XH >> amount (signed) ret # shift amount >= 32 1: movl 8(%esp), %eax movl %eax, %edx sarl %cl, %eax # eax = XH >> (amount - 32) sarl $31, %edx # edx = sign of X ret .type __i64_sar, @function .size __i64_sar, . - __i64_sar # Unsigned comparison .globl __i64_ucmp .balign 16 __i64_ucmp: movl 8(%esp), %eax # compare high words cmpl 16(%esp), %eax jne 1f # if high words equal, movl 4(%esp), %eax # compare low words cmpl 12(%esp), %eax 1: seta %al # AL = 1 if >, 0 if <= setb %dl # DL = 1 if <, 0 if >= subb %dl, %al # AL = 0 if same, 1 if >, -1 if < movsbl %al, %eax ret .type __i64_ucmp, @function .size __i64_ucmp, . - __i64_ucmp # Signed comparison .globl __i64_scmp .balign 16 __i64_scmp: movl 8(%esp), %eax # compare high words (signed) cmpl 16(%esp), %eax je 1f # if different, setg %al # extract result setl %dl subb %dl, %al movsbl %al, %eax ret 1: movl 4(%esp), %eax # if high words equal, cmpl 12(%esp), %eax # compare low words (unsigned) seta %al # and extract result setb %dl subb %dl, %al movsbl %al, %eax ret .type __i64_scmp, @function .size __i64_scmp, . - __i64_scmp # Conversion signed long -> float .globl __i64_stod .balign 16 __i64_stod: fildll 4(%esp) ret .type __i64_stod, @function .size __i64_stod, . - __i64_stod # Conversion unsigned long -> float .globl __i64_utod .balign 16 __i64_utod: fildll 4(%esp) # convert as if signed cmpl $0, 8(%esp) # is argument >= 2^63? jns 1f fadds LC1 # adjust by 2^64 1: ret .type __i64_stod, @function .size __i64_stod, . - __i64_stod .balign 4 LC1: .long 0x5f800000 # 2^64 in single precision # Conversion float -> signed long .globl __i64_dtos .balign 16 __i64_dtos: subl $4, %esp # Change rounding mode to "round towards zero" fnstcw 0(%esp) movw 0(%esp), %ax movb $12, %ah movw %ax, 2(%esp) fldcw 2(%esp) # Convert fldl 8(%esp) fistpll 8(%esp) # Restore rounding mode fldcw 0(%esp) # Load result in edx:eax movl 8(%esp), %eax movl 12(%esp), %edx addl $4, %esp ret .type __i64_dtos, @function .size __i64_dtos, . - __i64_dtos # Conversion float -> unsigned long .globl __i64_dtou .balign 16 __i64_dtou: subl $4, %esp # Change rounding mode to "round towards zero" fnstcw 0(%esp) movw 0(%esp), %ax movb $12, %ah movw %ax, 2(%esp) fldcw 2(%esp) # Compare argument with 2^63 fldl (4+4)(%esp) flds LC2 fucomp fnstsw %ax sahf jbe 1f # branch if not (ARG < 2^63) # Argument < 2^63: convert as is fistpll 8(%esp) movl 8(%esp), %eax movl 12(%esp), %edx jmp 2f # Argument > 2^63: offset ARG by -2^63, then convert, then offset RES by 2^63 1: fsubs LC2 fistpll 8(%esp) movl 8(%esp), %eax movl 12(%esp), %edx addl $0x80000000, %edx # Restore rounding mode 2: fldcw 0(%esp) addl $4, %esp ret .type __i64_dtou, @function .size __i64_dtou, . - __i64_dtou .balign 4 LC2: .long 0x5f000000 # 2^63 in single precision