(* *********************************************************************) (* *) (* The Compcert verified compiler *) (* *) (* Xavier Leroy, INRIA Paris-Rocquencourt *) (* *) (* Copyright Institut National de Recherche en Informatique et en *) (* Automatique. All rights reserved. This file is distributed *) (* Automatique. All rights reserved. This file is distributed *) (* under the terms of the GNU General Public License as published by *) (* the Free Software Foundation, either version 2 of the License, or *) (* (at your option) any later version. This file is also distributed *) (* under the terms of the INRIA Non-Commercial License Agreement. *) (* *) (* *********************************************************************) (** Constructions of semi-lattices. *) Require Import Coqlib. Require Import Maps. Require Import FSets. (* To avoid useless definitions of inductors in extracted code. *) Local Unset Elimination Schemes. Local Unset Case Analysis Schemes. (** * Signatures of semi-lattices *) (** A semi-lattice is a type [t] equipped with an equivalence relation [eq], a boolean equivalence test [beq], a partial order [ge], a smallest element [bot], and an upper bound operation [lub]. Note that we do not demand that [lub] computes the least upper bound. *) Module Type SEMILATTICE. Variable t: Type. Variable eq: t -> t -> Prop. Hypothesis eq_refl: forall x, eq x x. Hypothesis eq_sym: forall x y, eq x y -> eq y x. Hypothesis eq_trans: forall x y z, eq x y -> eq y z -> eq x z. Variable beq: t -> t -> bool. Hypothesis beq_correct: forall x y, beq x y = true -> eq x y. Variable ge: t -> t -> Prop. Hypothesis ge_refl: forall x y, eq x y -> ge x y. Hypothesis ge_trans: forall x y z, ge x y -> ge y z -> ge x z. Variable bot: t. Hypothesis ge_bot: forall x, ge x bot. Variable lub: t -> t -> t. Hypothesis ge_lub_left: forall x y, ge (lub x y) x. Hypothesis ge_lub_right: forall x y, ge (lub x y) y. End SEMILATTICE. (** A semi-lattice ``with top'' is similar, but also has a greatest element [top]. *) Module Type SEMILATTICE_WITH_TOP. Include Type SEMILATTICE. Variable top: t. Hypothesis ge_top: forall x, ge top x. End SEMILATTICE_WITH_TOP. (** * Semi-lattice over maps *) Set Implicit Arguments. (** Given a semi-lattice (without top) [L], the following functor implements a semi-lattice structure over finite maps from positive numbers to [L.t]. The default value for these maps is [L.bot]. Bottom elements are not smashed. *) Module LPMap1(L: SEMILATTICE) <: SEMILATTICE. Definition t := PTree.t L.t. Definition get (p: positive) (x: t) : L.t := match x!p with None => L.bot | Some x => x end. Definition set (p: positive) (v: L.t) (x: t) : t := if L.beq v L.bot then PTree.remove p x else PTree.set p v x. Lemma gsspec: forall p v x q, L.eq (get q (set p v x)) (if peq q p then v else get q x). Proof. intros. unfold set, get. destruct (L.beq v L.bot) eqn:EBOT. rewrite PTree.grspec. unfold PTree.elt_eq. destruct (peq q p). apply L.eq_sym. apply L.beq_correct; auto. apply L.eq_refl. rewrite PTree.gsspec. destruct (peq q p); apply L.eq_refl. Qed. Definition eq (x y: t) : Prop := forall p, L.eq (get p x) (get p y). Lemma eq_refl: forall x, eq x x. Proof. unfold eq; intros. apply L.eq_refl. Qed. Lemma eq_sym: forall x y, eq x y -> eq y x. Proof. unfold eq; intros. apply L.eq_sym; auto. Qed. Lemma eq_trans: forall x y z, eq x y -> eq y z -> eq x z. Proof. unfold eq; intros. eapply L.eq_trans; eauto. Qed. Definition beq (x y: t) : bool := PTree.beq L.beq x y. Lemma beq_correct: forall x y, beq x y = true -> eq x y. Proof. unfold beq; intros; red; intros. unfold get. rewrite PTree.beq_correct in H. specialize (H p). destruct (x!p); destruct (y!p); intuition. apply L.beq_correct; auto. apply L.eq_refl. Qed. Definition ge (x y: t) : Prop := forall p, L.ge (get p x) (get p y). Lemma ge_refl: forall x y, eq x y -> ge x y. Proof. unfold ge, eq; intros. apply L.ge_refl. auto. Qed. Lemma ge_trans: forall x y z, ge x y -> ge y z -> ge x z. Proof. unfold ge; intros. apply L.ge_trans with (get p y); auto. Qed. Definition bot : t := PTree.empty _. Lemma get_bot: forall p, get p bot = L.bot. Proof. unfold bot, get; intros; simpl. rewrite PTree.gempty. auto. Qed. Lemma ge_bot: forall x, ge x bot. Proof. unfold ge; intros. rewrite get_bot. apply L.ge_bot. Qed. (** A [combine] operation over the type [PTree.t L.t] that attempts to share its result with its arguments. *) Section COMBINE. Variable f: option L.t -> option L.t -> option L.t. Hypothesis f_none_none: f None None = None. Definition opt_eq (ox oy: option L.t) : Prop := match ox, oy with | None, None => True | Some x, Some y => L.eq x y | _, _ => False end. Lemma opt_eq_refl: forall ox, opt_eq ox ox. Proof. intros. unfold opt_eq. destruct ox. apply L.eq_refl. auto. Qed. Lemma opt_eq_sym: forall ox oy, opt_eq ox oy -> opt_eq oy ox. Proof. unfold opt_eq. destruct ox; destruct oy; auto. apply L.eq_sym. Qed. Lemma opt_eq_trans: forall ox oy oz, opt_eq ox oy -> opt_eq oy oz -> opt_eq ox oz. Proof. unfold opt_eq. destruct ox; destruct oy; destruct oz; intuition. eapply L.eq_trans; eauto. Qed. Definition opt_beq (ox oy: option L.t) : bool := match ox, oy with | None, None => true | Some x, Some y => L.beq x y | _, _ => false end. Lemma opt_beq_correct: forall ox oy, opt_beq ox oy = true -> opt_eq ox oy. Proof. unfold opt_beq, opt_eq. destruct ox; destruct oy; try congruence. intros. apply L.beq_correct; auto. auto. Qed. Definition tree_eq (m1 m2: PTree.t L.t) : Prop := forall i, opt_eq (PTree.get i m1) (PTree.get i m2). Lemma tree_eq_refl: forall m, tree_eq m m. Proof. intros; red; intros; apply opt_eq_refl. Qed. Lemma tree_eq_sym: forall m1 m2, tree_eq m1 m2 -> tree_eq m2 m1. Proof. intros; red; intros; apply opt_eq_sym; auto. Qed. Lemma tree_eq_trans: forall m1 m2 m3, tree_eq m1 m2 -> tree_eq m2 m3 -> tree_eq m1 m3. Proof. intros; red; intros; apply opt_eq_trans with (PTree.get i m2); auto. Qed. Lemma tree_eq_node: forall l1 o1 r1 l2 o2 r2, tree_eq l1 l2 -> tree_eq r1 r2 -> opt_eq o1 o2 -> tree_eq (PTree.Node l1 o1 r1) (PTree.Node l2 o2 r2). Proof. intros; red; intros. destruct i; simpl; auto. Qed. Lemma tree_eq_node': forall l1 o1 r1 l2 o2 r2, tree_eq l1 l2 -> tree_eq r1 r2 -> opt_eq o1 o2 -> tree_eq (PTree.Node l1 o1 r1) (PTree.Node' l2 o2 r2). Proof. intros; red; intros. rewrite PTree.gnode'. apply tree_eq_node; auto. Qed. Lemma tree_eq_node'': forall l1 o1 r1 l2 o2 r2, tree_eq l1 l2 -> tree_eq r1 r2 -> opt_eq o1 o2 -> tree_eq (PTree.Node' l1 o1 r1) (PTree.Node' l2 o2 r2). Proof. intros; red; intros. repeat rewrite PTree.gnode'. apply tree_eq_node; auto. Qed. Hint Resolve opt_beq_correct opt_eq_refl opt_eq_sym tree_eq_refl tree_eq_sym tree_eq_node tree_eq_node' tree_eq_node'' : combine. Inductive changed: Type := Unchanged | Changed (m: PTree.t L.t). Fixpoint combine_l (m : PTree.t L.t) {struct m} : changed := match m with | PTree.Leaf => Unchanged | PTree.Node l o r => let o' := f o None in match combine_l l, combine_l r with | Unchanged, Unchanged => if opt_beq o' o then Unchanged else Changed (PTree.Node' l o' r) | Unchanged, Changed r' => Changed (PTree.Node' l o' r') | Changed l', Unchanged => Changed (PTree.Node' l' o' r) | Changed l', Changed r' => Changed (PTree.Node' l' o' r') end end. Lemma combine_l_eq: forall m, tree_eq (match combine_l m with Unchanged => m | Changed m' => m' end) (PTree.xcombine_l f m). Proof. induction m; simpl. auto with combine. destruct (combine_l m1) as [ | l']; destruct (combine_l m2) as [ | r']; auto with combine. case_eq (opt_beq (f o None) o); auto with combine. Qed. Fixpoint combine_r (m : PTree.t L.t) {struct m} : changed := match m with | PTree.Leaf => Unchanged | PTree.Node l o r => let o' := f None o in match combine_r l, combine_r r with | Unchanged, Unchanged => if opt_beq o' o then Unchanged else Changed (PTree.Node' l o' r) | Unchanged, Changed r' => Changed (PTree.Node' l o' r') | Changed l', Unchanged => Changed (PTree.Node' l' o' r) | Changed l', Changed r' => Changed (PTree.Node' l' o' r') end end. Lemma combine_r_eq: forall m, tree_eq (match combine_r m with Unchanged => m | Changed m' => m' end) (PTree.xcombine_r f m). Proof. induction m; simpl. auto with combine. destruct (combine_r m1) as [ | l']; destruct (combine_r m2) as [ | r']; auto with combine. case_eq (opt_beq (f None o) o); auto with combine. Qed. Inductive changed2 : Type := | Same | Same1 | Same2 | CC(m: PTree.t L.t). Fixpoint xcombine (m1 m2 : PTree.t L.t) {struct m1} : changed2 := match m1, m2 with | PTree.Leaf, PTree.Leaf => Same | PTree.Leaf, _ => match combine_r m2 with | Unchanged => Same2 | Changed m => CC m end | _, PTree.Leaf => match combine_l m1 with | Unchanged => Same1 | Changed m => CC m end | PTree.Node l1 o1 r1, PTree.Node l2 o2 r2 => let o := f o1 o2 in match xcombine l1 l2, xcombine r1 r2 with | Same, Same => match opt_beq o o1, opt_beq o o2 with | true, true => Same | true, false => Same1 | false, true => Same2 | false, false => CC(PTree.Node' l1 o r1) end | Same1, Same | Same, Same1 | Same1, Same1 => if opt_beq o o1 then Same1 else CC(PTree.Node' l1 o r1) | Same2, Same | Same, Same2 | Same2, Same2 => if opt_beq o o2 then Same2 else CC(PTree.Node' l2 o r2) | Same1, Same2 => CC(PTree.Node' l1 o r2) | (Same|Same1), CC r => CC(PTree.Node' l1 o r) | Same2, Same1 => CC(PTree.Node' l2 o r1) | Same2, CC r => CC(PTree.Node' l2 o r) | CC l, (Same|Same1) => CC(PTree.Node' l o r1) | CC l, Same2 => CC(PTree.Node' l o r2) | CC l, CC r => CC(PTree.Node' l o r) end end. Lemma xcombine_eq: forall m1 m2, match xcombine m1 m2 with | Same => tree_eq m1 (PTree.combine f m1 m2) /\ tree_eq m2 (PTree.combine f m1 m2) | Same1 => tree_eq m1 (PTree.combine f m1 m2) | Same2 => tree_eq m2 (PTree.combine f m1 m2) | CC m => tree_eq m (PTree.combine f m1 m2) end. Proof. Opaque combine_l combine_r PTree.xcombine_l PTree.xcombine_r. induction m1; destruct m2; simpl. split; apply tree_eq_refl. generalize (combine_r_eq (PTree.Node m2_1 o m2_2)). destruct (combine_r (PTree.Node m2_1 o m2_2)); auto. generalize (combine_l_eq (PTree.Node m1_1 o m1_2)). destruct (combine_l (PTree.Node m1_1 o m1_2)); auto. generalize (IHm1_1 m2_1) (IHm1_2 m2_2). destruct (xcombine m1_1 m2_1); destruct (xcombine m1_2 m2_2); auto with combine; intuition; case_eq (opt_beq (f o o0) o); case_eq (opt_beq (f o o0) o0); auto with combine. Qed. Definition combine (m1 m2: PTree.t L.t) : PTree.t L.t := match xcombine m1 m2 with | Same|Same1 => m1 | Same2 => m2 | CC m => m end. Lemma gcombine: forall m1 m2 i, opt_eq (PTree.get i (combine m1 m2)) (f (PTree.get i m1) (PTree.get i m2)). Proof. intros. assert (tree_eq (combine m1 m2) (PTree.combine f m1 m2)). unfold combine. generalize (xcombine_eq m1 m2). destruct (xcombine m1 m2); tauto. eapply opt_eq_trans. apply H. rewrite PTree.gcombine; auto. apply opt_eq_refl. Qed. End COMBINE. Definition lub (x y: t) : t := combine (fun a b => match a, b with | Some u, Some v => Some (L.lub u v) | None, _ => b | _, None => a end) x y. Lemma gcombine_bot: forall f t1 t2 p, f None None = None -> L.eq (get p (combine f t1 t2)) (match f t1!p t2!p with Some x => x | None => L.bot end). Proof. intros. unfold get. generalize (gcombine f H t1 t2 p). unfold opt_eq. destruct ((combine f t1 t2)!p); destruct (f t1!p t2!p). auto. contradiction. contradiction. intros; apply L.eq_refl. Qed. Lemma ge_lub_left: forall x y, ge (lub x y) x. Proof. unfold ge, lub; intros. eapply L.ge_trans. apply L.ge_refl. apply gcombine_bot; auto. unfold get. destruct x!p. destruct y!p. apply L.ge_lub_left. apply L.ge_refl. apply L.eq_refl. apply L.ge_bot. Qed. Lemma ge_lub_right: forall x y, ge (lub x y) y. Proof. unfold ge, lub; intros. eapply L.ge_trans. apply L.ge_refl. apply gcombine_bot; auto. unfold get. destruct y!p. destruct x!p. apply L.ge_lub_right. apply L.ge_refl. apply L.eq_refl. apply L.ge_bot. Qed. End LPMap1. (** Given a semi-lattice with top [L], the following functor implements a semi-lattice-with-top structure over finite maps from positive numbers to [L.t]. The default value for these maps is [L.top]. Bottom elements are smashed. *) Module LPMap(L: SEMILATTICE_WITH_TOP) <: SEMILATTICE_WITH_TOP. Inductive t' : Type := | Bot: t' | Top_except: PTree.t L.t -> t'. Definition t: Type := t'. Definition get (p: positive) (x: t) : L.t := match x with | Bot => L.bot | Top_except m => match m!p with None => L.top | Some x => x end end. Definition set (p: positive) (v: L.t) (x: t) : t := match x with | Bot => Bot | Top_except m => if L.beq v L.bot then Bot else Top_except (if L.beq v L.top then PTree.remove p m else PTree.set p v m) end. Lemma gsspec: forall p v x q, x <> Bot -> ~L.eq v L.bot -> L.eq (get q (set p v x)) (if peq q p then v else get q x). Proof. intros. unfold set. destruct x. congruence. destruct (L.beq v L.bot) eqn:EBOT. elim H0. apply L.beq_correct; auto. destruct (L.beq v L.top) eqn:ETOP; simpl. rewrite PTree.grspec. unfold PTree.elt_eq. destruct (peq q p). apply L.eq_sym. apply L.beq_correct; auto. apply L.eq_refl. rewrite PTree.gsspec. destruct (peq q p); apply L.eq_refl. Qed. Definition eq (x y: t) : Prop := forall p, L.eq (get p x) (get p y). Lemma eq_refl: forall x, eq x x. Proof. unfold eq; intros. apply L.eq_refl. Qed. Lemma eq_sym: forall x y, eq x y -> eq y x. Proof. unfold eq; intros. apply L.eq_sym; auto. Qed. Lemma eq_trans: forall x y z, eq x y -> eq y z -> eq x z. Proof. unfold eq; intros. eapply L.eq_trans; eauto. Qed. Definition beq (x y: t) : bool := match x, y with | Bot, Bot => true | Top_except m, Top_except n => PTree.beq L.beq m n | _, _ => false end. Lemma beq_correct: forall x y, beq x y = true -> eq x y. Proof. destruct x; destruct y; simpl; intro; try congruence. apply eq_refl. red; intro; simpl. rewrite PTree.beq_correct in H. generalize (H p). destruct (t0!p); destruct (t1!p); intuition. apply L.beq_correct; auto. apply L.eq_refl. Qed. Definition ge (x y: t) : Prop := forall p, L.ge (get p x) (get p y). Lemma ge_refl: forall x y, eq x y -> ge x y. Proof. unfold ge, eq; intros. apply L.ge_refl. auto. Qed. Lemma ge_trans: forall x y z, ge x y -> ge y z -> ge x z. Proof. unfold ge; intros. apply L.ge_trans with (get p y); auto. Qed. Definition bot := Bot. Lemma get_bot: forall p, get p bot = L.bot. Proof. unfold bot; intros; simpl. auto. Qed. Lemma ge_bot: forall x, ge x bot. Proof. unfold ge; intros. rewrite get_bot. apply L.ge_bot. Qed. Definition top := Top_except (PTree.empty L.t). Lemma get_top: forall p, get p top = L.top. Proof. unfold top; intros; simpl. rewrite PTree.gempty. auto. Qed. Lemma ge_top: forall x, ge top x. Proof. unfold ge; intros. rewrite get_top. apply L.ge_top. Qed. Module LM := LPMap1(L). Definition opt_lub (x y: L.t) : option L.t := let z := L.lub x y in if L.beq z L.top then None else Some z. Definition lub (x y: t) : t := match x, y with | Bot, _ => y | _, Bot => x | Top_except m, Top_except n => Top_except (LM.combine (fun a b => match a, b with | Some u, Some v => opt_lub u v | _, _ => None end) m n) end. Lemma gcombine_top: forall f t1 t2 p, f None None = None -> L.eq (get p (Top_except (LM.combine f t1 t2))) (match f t1!p t2!p with Some x => x | None => L.top end). Proof. intros. simpl. generalize (LM.gcombine f H t1 t2 p). unfold LM.opt_eq. destruct ((LM.combine f t1 t2)!p); destruct (f t1!p t2!p). auto. contradiction. contradiction. intros; apply L.eq_refl. Qed. Lemma ge_lub_left: forall x y, ge (lub x y) x. Proof. unfold ge, lub; intros. destruct x; destruct y. rewrite get_bot. apply L.ge_bot. rewrite get_bot. apply L.ge_bot. apply L.ge_refl. apply L.eq_refl. eapply L.ge_trans. apply L.ge_refl. apply gcombine_top; auto. unfold get. destruct t0!p. destruct t1!p. unfold opt_lub. destruct (L.beq (L.lub t2 t3) L.top) eqn:E. apply L.ge_top. apply L.ge_lub_left. apply L.ge_top. apply L.ge_top. Qed. Lemma ge_lub_right: forall x y, ge (lub x y) y. Proof. unfold ge, lub; intros. destruct x; destruct y. rewrite get_bot. apply L.ge_bot. apply L.ge_refl. apply L.eq_refl. rewrite get_bot. apply L.ge_bot. eapply L.ge_trans. apply L.ge_refl. apply gcombine_top; auto. unfold get. destruct t0!p; destruct t1!p. unfold opt_lub. destruct (L.beq (L.lub t2 t3) L.top) eqn:E. apply L.ge_top. apply L.ge_lub_right. apply L.ge_top. apply L.ge_top. apply L.ge_top. Qed. End LPMap. (** * Semi-lattice over a set. *) (** Given a set [S: FSetInterface.S], the following functor implements a semi-lattice over these sets, ordered by inclusion. *) Module LFSet (S: FSetInterface.WS) <: SEMILATTICE. Definition t := S.t. Definition eq (x y: t) := S.Equal x y. Definition eq_refl: forall x, eq x x := S.eq_refl. Definition eq_sym: forall x y, eq x y -> eq y x := S.eq_sym. Definition eq_trans: forall x y z, eq x y -> eq y z -> eq x z := S.eq_trans. Definition beq: t -> t -> bool := S.equal. Definition beq_correct: forall x y, beq x y = true -> eq x y := S.equal_2. Definition ge (x y: t) := S.Subset y x. Lemma ge_refl: forall x y, eq x y -> ge x y. Proof. unfold eq, ge, S.Equal, S.Subset; intros. firstorder. Qed. Lemma ge_trans: forall x y z, ge x y -> ge y z -> ge x z. Proof. unfold ge, S.Subset; intros. eauto. Qed. Definition bot: t := S.empty. Lemma ge_bot: forall x, ge x bot. Proof. unfold ge, bot, S.Subset; intros. elim (S.empty_1 H). Qed. Definition lub: t -> t -> t := S.union. Lemma ge_lub_left: forall x y, ge (lub x y) x. Proof. unfold lub, ge, S.Subset; intros. apply S.union_2; auto. Qed. Lemma ge_lub_right: forall x y, ge (lub x y) y. Proof. unfold lub, ge, S.Subset; intros. apply S.union_3; auto. Qed. End LFSet. (** * Flat semi-lattice *) (** Given a type with decidable equality [X], the following functor returns a semi-lattice structure over [X.t] complemented with a top and a bottom element. The ordering is the flat ordering [Bot < Inj x < Top]. *) Module LFlat(X: EQUALITY_TYPE) <: SEMILATTICE_WITH_TOP. Inductive t' : Type := | Bot: t' | Inj: X.t -> t' | Top: t'. Definition t : Type := t'. Definition eq (x y: t) := (x = y). Definition eq_refl: forall x, eq x x := (@refl_equal t). Definition eq_sym: forall x y, eq x y -> eq y x := (@sym_equal t). Definition eq_trans: forall x y z, eq x y -> eq y z -> eq x z := (@trans_equal t). Definition beq (x y: t) : bool := match x, y with | Bot, Bot => true | Inj u, Inj v => if X.eq u v then true else false | Top, Top => true | _, _ => false end. Lemma beq_correct: forall x y, beq x y = true -> eq x y. Proof. unfold eq; destruct x; destruct y; simpl; try congruence; intro. destruct (X.eq t0 t1); congruence. Qed. Definition ge (x y: t) : Prop := match x, y with | Top, _ => True | _, Bot => True | Inj a, Inj b => a = b | _, _ => False end. Lemma ge_refl: forall x y, eq x y -> ge x y. Proof. unfold eq, ge; intros; subst y; destruct x; auto. Qed. Lemma ge_trans: forall x y z, ge x y -> ge y z -> ge x z. Proof. unfold ge; destruct x; destruct y; try destruct z; intuition. transitivity t1; auto. Qed. Definition bot: t := Bot. Lemma ge_bot: forall x, ge x bot. Proof. destruct x; simpl; auto. Qed. Definition top: t := Top. Lemma ge_top: forall x, ge top x. Proof. destruct x; simpl; auto. Qed. Definition lub (x y: t) : t := match x, y with | Bot, _ => y | _, Bot => x | Top, _ => Top | _, Top => Top | Inj a, Inj b => if X.eq a b then Inj a else Top end. Lemma ge_lub_left: forall x y, ge (lub x y) x. Proof. destruct x; destruct y; simpl; auto. case (X.eq t0 t1); simpl; auto. Qed. Lemma ge_lub_right: forall x y, ge (lub x y) y. Proof. destruct x; destruct y; simpl; auto. case (X.eq t0 t1); simpl; auto. Qed. End LFlat. (** * Boolean semi-lattice *) (** This semi-lattice has only two elements, [bot] and [top], trivially ordered. *) Module LBoolean <: SEMILATTICE_WITH_TOP. Definition t := bool. Definition eq (x y: t) := (x = y). Definition eq_refl: forall x, eq x x := (@refl_equal t). Definition eq_sym: forall x y, eq x y -> eq y x := (@sym_equal t). Definition eq_trans: forall x y z, eq x y -> eq y z -> eq x z := (@trans_equal t). Definition beq : t -> t -> bool := eqb. Lemma beq_correct: forall x y, beq x y = true -> eq x y. Proof eqb_prop. Definition ge (x y: t) : Prop := x = y \/ x = true. Lemma ge_refl: forall x y, eq x y -> ge x y. Proof. unfold ge; tauto. Qed. Lemma ge_trans: forall x y z, ge x y -> ge y z -> ge x z. Proof. unfold ge; intuition congruence. Qed. Definition bot := false. Lemma ge_bot: forall x, ge x bot. Proof. destruct x; compute; tauto. Qed. Definition top := true. Lemma ge_top: forall x, ge top x. Proof. unfold ge, top; tauto. Qed. Definition lub (x y: t) := x || y. Lemma ge_lub_left: forall x y, ge (lub x y) x. Proof. destruct x; destruct y; compute; tauto. Qed. Lemma ge_lub_right: forall x y, ge (lub x y) y. Proof. destruct x; destruct y; compute; tauto. Qed. End LBoolean. (** * Option semi-lattice *) (** This lattice adds a top element (represented by [None]) to a given semi-lattice (whose elements are injected via [Some]). *) Module LOption(L: SEMILATTICE) <: SEMILATTICE_WITH_TOP. Definition t: Type := option L.t. Definition eq (x y: t) : Prop := match x, y with | None, None => True | Some x1, Some y1 => L.eq x1 y1 | _, _ => False end. Lemma eq_refl: forall x, eq x x. Proof. unfold eq; intros; destruct x. apply L.eq_refl. auto. Qed. Lemma eq_sym: forall x y, eq x y -> eq y x. Proof. unfold eq; intros; destruct x; destruct y; auto. apply L.eq_sym; auto. Qed. Lemma eq_trans: forall x y z, eq x y -> eq y z -> eq x z. Proof. unfold eq; intros; destruct x; destruct y; destruct z; auto. eapply L.eq_trans; eauto. contradiction. Qed. Definition beq (x y: t) : bool := match x, y with | None, None => true | Some x1, Some y1 => L.beq x1 y1 | _, _ => false end. Lemma beq_correct: forall x y, beq x y = true -> eq x y. Proof. unfold beq, eq; intros; destruct x; destruct y. apply L.beq_correct; auto. discriminate. discriminate. auto. Qed. Definition ge (x y: t) : Prop := match x, y with | None, _ => True | _, None => False | Some x1, Some y1 => L.ge x1 y1 end. Lemma ge_refl: forall x y, eq x y -> ge x y. Proof. unfold eq, ge; intros; destruct x; destruct y. apply L.ge_refl; auto. auto. elim H. auto. Qed. Lemma ge_trans: forall x y z, ge x y -> ge y z -> ge x z. Proof. unfold ge; intros; destruct x; destruct y; destruct z; auto. eapply L.ge_trans; eauto. contradiction. Qed. Definition bot : t := Some L.bot. Lemma ge_bot: forall x, ge x bot. Proof. unfold ge, bot; intros. destruct x; auto. apply L.ge_bot. Qed. Definition lub (x y: t) : t := match x, y with | None, _ => None | _, None => None | Some x1, Some y1 => Some (L.lub x1 y1) end. Lemma ge_lub_left: forall x y, ge (lub x y) x. Proof. unfold ge, lub; intros; destruct x; destruct y; auto. apply L.ge_lub_left. Qed. Lemma ge_lub_right: forall x y, ge (lub x y) y. Proof. unfold ge, lub; intros; destruct x; destruct y; auto. apply L.ge_lub_right. Qed. Definition top : t := None. Lemma ge_top: forall x, ge top x. Proof. unfold ge, top; intros. auto. Qed. End LOption.