(* *********************************************************************)
(* *)
(* The Compcert verified compiler *)
(* *)
(* Xavier Leroy, INRIA Paris-Rocquencourt *)
(* *)
(* Copyright Institut National de Recherche en Informatique et en *)
(* Automatique. All rights reserved. This file is distributed *)
(* under the terms of the GNU General Public License as published by *)
(* the Free Software Foundation, either version 2 of the License, or *)
(* (at your option) any later version. This file is also distributed *)
(* under the terms of the INRIA Non-Commercial License Agreement. *)
(* *)
(* *********************************************************************)
(** Formalizations of machine integers modulo $2^N$ #2N#. *)
Require Import Axioms.
Require Import Coqlib.
(** * Comparisons *)
Inductive comparison : Type :=
| Ceq : comparison (**r same *)
| Cne : comparison (**r different *)
| Clt : comparison (**r less than *)
| Cle : comparison (**r less than or equal *)
| Cgt : comparison (**r greater than *)
| Cge : comparison. (**r greater than or equal *)
Definition negate_comparison (c: comparison): comparison :=
match c with
| Ceq => Cne
| Cne => Ceq
| Clt => Cge
| Cle => Cgt
| Cgt => Cle
| Cge => Clt
end.
Definition swap_comparison (c: comparison): comparison :=
match c with
| Ceq => Ceq
| Cne => Cne
| Clt => Cgt
| Cle => Cge
| Cgt => Clt
| Cge => Cle
end.
(** * Parameterization by the word size, in bits. *)
Module Type WORDSIZE.
Variable wordsize: nat.
Axiom wordsize_not_zero: wordsize <> 0%nat.
End WORDSIZE.
Module Make(WS: WORDSIZE).
Definition wordsize: nat := WS.wordsize.
Definition modulus : Z := two_power_nat wordsize.
Definition half_modulus : Z := modulus / 2.
Definition max_unsigned : Z := modulus - 1.
Definition max_signed : Z := half_modulus - 1.
Definition min_signed : Z := - half_modulus.
Remark wordsize_pos:
Z_of_nat wordsize > 0.
Proof.
unfold wordsize. generalize WS.wordsize_not_zero. omega.
Qed.
Remark modulus_power:
modulus = two_p (Z_of_nat wordsize).
Proof.
unfold modulus. apply two_power_nat_two_p.
Qed.
Remark modulus_pos:
modulus > 0.
Proof.
rewrite modulus_power. apply two_p_gt_ZERO. generalize wordsize_pos; omega.
Qed.
(** * Representation of machine integers *)
(** A machine integer (type [int]) is represented as a Coq arbitrary-precision
integer (type [Z]) plus a proof that it is in the range 0 (included) to
[modulus] (excluded. *)
Record int: Type := mkint { intval: Z; intrange: 0 <= intval < modulus }.
(** The [unsigned] and [signed] functions return the Coq integer corresponding
to the given machine integer, interpreted as unsigned or signed
respectively. *)
Definition unsigned (n: int) : Z := intval n.
Definition signed (n: int) : Z :=
if zlt (unsigned n) half_modulus
then unsigned n
else unsigned n - modulus.
(** Conversely, [repr] takes a Coq integer and returns the corresponding
machine integer. The argument is treated modulo [modulus]. *)
Definition repr (x: Z) : int :=
mkint (Zmod x modulus) (Z_mod_lt x modulus modulus_pos).
Definition zero := repr 0.
Definition one := repr 1.
Definition mone := repr (-1).
Definition iwordsize := repr (Z_of_nat wordsize).
Lemma mkint_eq:
forall x y Px Py, x = y -> mkint x Px = mkint y Py.
Proof.
intros. subst y.
generalize (proof_irr Px Py); intro.
subst Py. reflexivity.
Qed.
Lemma eq_dec: forall (x y: int), {x = y} + {x <> y}.
Proof.
intros. destruct x; destruct y. case (zeq intval0 intval1); intro.
left. apply mkint_eq. auto.
right. red; intro. injection H. exact n.
Qed.
(** * Arithmetic and logical operations over machine integers *)
Definition eq (x y: int) : bool :=
if zeq (unsigned x) (unsigned y) then true else false.
Definition lt (x y: int) : bool :=
if zlt (signed x) (signed y) then true else false.
Definition ltu (x y: int) : bool :=
if zlt (unsigned x) (unsigned y) then true else false.
Definition neg (x: int) : int := repr (- unsigned x).
Definition add (x y: int) : int :=
repr (unsigned x + unsigned y).
Definition sub (x y: int) : int :=
repr (unsigned x - unsigned y).
Definition mul (x y: int) : int :=
repr (unsigned x * unsigned y).
(** [Zdiv_round] and [Zmod_round] implement signed division and modulus
with round-towards-zero behavior. *)
Definition Zdiv_round (x y: Z) : Z :=
if zlt x 0 then
if zlt y 0 then (-x) / (-y) else - ((-x) / y)
else
if zlt y 0 then -(x / (-y)) else x / y.
Definition Zmod_round (x y: Z) : Z :=
x - (Zdiv_round x y) * y.
Definition divs (x y: int) : int :=
repr (Zdiv_round (signed x) (signed y)).
Definition mods (x y: int) : int :=
repr (Zmod_round (signed x) (signed y)).
Definition divu (x y: int) : int :=
repr (unsigned x / unsigned y).
Definition modu (x y: int) : int :=
repr (Zmod (unsigned x) (unsigned y)).
Definition add_carry (x y cin: int): int :=
if zlt (unsigned x + unsigned y + unsigned cin) modulus
then zero
else one.
(** For bitwise operations, we need to convert between Coq integers [Z]
and their bit-level representations. Bit-level representations are
represented as characteristic functions, that is, functions [f]
of type [nat -> bool] such that [f i] is the value of the [i]-th bit
of the number. For [i] less than 0 or greater or equal to [wordsize],
the characteristic function is [false]. *)
Definition Z_shift_add (b: bool) (x: Z) :=
if b then 2 * x + 1 else 2 * x.
Definition Z_bin_decomp (x: Z) : bool * Z :=
match x with
| Z0 => (false, 0)
| Zpos p =>
match p with
| xI q => (true, Zpos q)
| xO q => (false, Zpos q)
| xH => (true, 0)
end
| Zneg p =>
match p with
| xI q => (true, Zneg q - 1)
| xO q => (false, Zneg q)
| xH => (true, -1)
end
end.
Fixpoint bits_of_Z (n: nat) (x: Z) {struct n}: Z -> bool :=
match n with
| O =>
(fun i: Z => false)
| S m =>
let (b, y) := Z_bin_decomp x in
let f := bits_of_Z m y in
(fun i: Z => if zeq i 0 then b else f (i - 1))
end.
Fixpoint Z_of_bits (n: nat) (f: Z -> bool) (i: Z) {struct n}: Z :=
match n with
| O => 0
| S m => Z_shift_add (f i) (Z_of_bits m f (Zsucc i))
end.
(** Bitwise logical "and", "or" and "xor" operations. *)
Definition bitwise_binop (f: bool -> bool -> bool) (x y: int) :=
let fx := bits_of_Z wordsize (unsigned x) in
let fy := bits_of_Z wordsize (unsigned y) in
repr(Z_of_bits wordsize (fun i => f (fx i) (fy i)) 0).
Definition and (x y: int): int := bitwise_binop andb x y.
Definition or (x y: int): int := bitwise_binop orb x y.
Definition xor (x y: int) : int := bitwise_binop xorb x y.
Definition not (x: int) : int := xor x mone.
(** Shifts and rotates. *)
Definition shl (x y: int): int :=
let fx := bits_of_Z wordsize (unsigned x) in
repr (Z_of_bits wordsize fx (- unsigned y)).
Definition shru (x y: int): int :=
let fx := bits_of_Z wordsize (unsigned x) in
repr (Z_of_bits wordsize fx (unsigned y)).
Definition shr (x y: int): int :=
let fx := bits_of_Z wordsize (unsigned x) in
let sx := fun i => fx (if zlt i (Z_of_nat wordsize) then i else Z_of_nat wordsize - 1) in
repr (Z_of_bits wordsize sx (unsigned y)).
(** Viewed as signed divisions by powers of two, [shrx] rounds towards
zero, while [shr] rounds towards minus infinity. *)
Definition shrx (x y: int): int :=
divs x (shl one y).
Definition shr_carry (x y: int) :=
sub (shrx x y) (shr x y).
Definition rol (x y: int) : int :=
let fx := bits_of_Z wordsize (unsigned x) in
let rx := fun i => fx (Zmod i (Z_of_nat wordsize)) in
repr (Z_of_bits wordsize rx (-unsigned y)).
Definition ror (x y: int) : int :=
let fx := bits_of_Z wordsize (unsigned x) in
let rx := fun i => fx (Zmod i (Z_of_nat wordsize)) in
repr (Z_of_bits wordsize rx (unsigned y)).
Definition rolm (x a m: int): int := and (rol x a) m.
(** Zero and sign extensions *)
Definition zero_ext (n: Z) (x: int) : int :=
let fx := bits_of_Z wordsize (unsigned x) in
repr (Z_of_bits wordsize (fun i => if zlt i n then fx i else false) 0).
Definition sign_ext (n: Z) (x: int) : int :=
let fx := bits_of_Z wordsize (unsigned x) in
repr (Z_of_bits wordsize (fun i => if zlt i n then fx i else fx (n - 1)) 0).
(** Decomposition of a number as a sum of powers of two. *)
Fixpoint Z_one_bits (n: nat) (x: Z) (i: Z) {struct n}: list Z :=
match n with
| O => nil
| S m =>
let (b, y) := Z_bin_decomp x in
if b then i :: Z_one_bits m y (i+1) else Z_one_bits m y (i+1)
end.
Definition one_bits (x: int) : list int :=
List.map repr (Z_one_bits wordsize (unsigned x) 0).
(** Recognition of powers of two. *)
Definition is_power2 (x: int) : option int :=
match Z_one_bits wordsize (unsigned x) 0 with
| i :: nil => Some (repr i)
| _ => None
end.
(** Comparisons. *)
Definition cmp (c: comparison) (x y: int) : bool :=
match c with
| Ceq => eq x y
| Cne => negb (eq x y)
| Clt => lt x y
| Cle => negb (lt y x)
| Cgt => lt y x
| Cge => negb (lt x y)
end.
Definition cmpu (c: comparison) (x y: int) : bool :=
match c with
| Ceq => eq x y
| Cne => negb (eq x y)
| Clt => ltu x y
| Cle => negb (ltu y x)
| Cgt => ltu y x
| Cge => negb (ltu x y)
end.
Definition is_false (x: int) : Prop := x = zero.
Definition is_true (x: int) : Prop := x <> zero.
Definition notbool (x: int) : int := if eq x zero then one else zero.
(** * Properties of integers and integer arithmetic *)
(** ** Properties of [modulus], [max_unsigned], etc. *)
Remark half_modulus_power:
half_modulus = two_p (Z_of_nat wordsize - 1).
Proof.
unfold half_modulus. rewrite modulus_power.
set (ws1 := Z_of_nat wordsize - 1).
replace (Z_of_nat wordsize) with (Zsucc ws1).
rewrite two_p_S. rewrite Zmult_comm. apply Z_div_mult. omega.
unfold ws1. generalize wordsize_pos; omega.
unfold ws1. omega.
Qed.
Remark half_modulus_modulus: modulus = 2 * half_modulus.
Proof.
rewrite half_modulus_power. rewrite modulus_power.
rewrite <- two_p_S. decEq. omega.
generalize wordsize_pos; omega.
Qed.
(** Relative positions, from greatest to smallest:
<<
max_unsigned
max_signed
2*wordsize-1
wordsize
0
min_signed
>>
*)
Remark half_modulus_pos: half_modulus > 0.
Proof.
rewrite half_modulus_power. apply two_p_gt_ZERO. generalize wordsize_pos; omega.
Qed.
Remark min_signed_neg: min_signed < 0.
Proof.
unfold min_signed. generalize half_modulus_pos. omega.
Qed.
Remark max_signed_pos: max_signed >= 0.
Proof.
unfold max_signed. generalize half_modulus_pos. omega.
Qed.
Remark wordsize_max_unsigned: Z_of_nat wordsize <= max_unsigned.
Proof.
assert (Z_of_nat wordsize < modulus).
rewrite modulus_power. apply two_p_strict.
generalize wordsize_pos. omega.
unfold max_unsigned. omega.
Qed.
Remark two_wordsize_max_unsigned: 2 * Z_of_nat wordsize - 1 <= max_unsigned.
Proof.
assert (2 * Z_of_nat wordsize - 1 < modulus).
rewrite modulus_power. apply two_p_strict_2. generalize wordsize_pos; omega.
unfold max_unsigned; omega.
Qed.
Remark max_signed_unsigned: max_signed < max_unsigned.
Proof.
unfold max_signed, max_unsigned. rewrite half_modulus_modulus.
generalize half_modulus_pos. omega.
Qed.
(** ** Modulo arithmetic *)
(** We define and state properties of equality and arithmetic modulo a
positive integer. *)
Section EQ_MODULO.
Variable modul: Z.
Hypothesis modul_pos: modul > 0.
Definition eqmod (x y: Z) : Prop := exists k, x = k * modul + y.
Lemma eqmod_refl: forall x, eqmod x x.
Proof.
intros; red. exists 0. omega.
Qed.
Lemma eqmod_refl2: forall x y, x = y -> eqmod x y.
Proof.
intros. subst y. apply eqmod_refl.
Qed.
Lemma eqmod_sym: forall x y, eqmod x y -> eqmod y x.
Proof.
intros x y [k EQ]; red. exists (-k). subst x. ring.
Qed.
Lemma eqmod_trans: forall x y z, eqmod x y -> eqmod y z -> eqmod x z.
Proof.
intros x y z [k1 EQ1] [k2 EQ2]; red.
exists (k1 + k2). subst x; subst y. ring.
Qed.
Lemma eqmod_small_eq:
forall x y, eqmod x y -> 0 <= x < modul -> 0 <= y < modul -> x = y.
Proof.
intros x y [k EQ] I1 I2.
generalize (Zdiv_unique _ _ _ _ EQ I2). intro.
rewrite (Zdiv_small x modul I1) in H. subst k. omega.
Qed.
Lemma eqmod_mod_eq:
forall x y, eqmod x y -> x mod modul = y mod modul.
Proof.
intros x y [k EQ]. subst x.
rewrite Zplus_comm. apply Z_mod_plus. auto.
Qed.
Lemma eqmod_mod:
forall x, eqmod x (x mod modul).
Proof.
intros; red. exists (x / modul).
rewrite Zmult_comm. apply Z_div_mod_eq. auto.
Qed.
Lemma eqmod_add:
forall a b c d, eqmod a b -> eqmod c d -> eqmod (a + c) (b + d).
Proof.
intros a b c d [k1 EQ1] [k2 EQ2]; red.
subst a; subst c. exists (k1 + k2). ring.
Qed.
Lemma eqmod_neg:
forall x y, eqmod x y -> eqmod (-x) (-y).
Proof.
intros x y [k EQ]; red. exists (-k). rewrite EQ. ring.
Qed.
Lemma eqmod_sub:
forall a b c d, eqmod a b -> eqmod c d -> eqmod (a - c) (b - d).
Proof.
intros a b c d [k1 EQ1] [k2 EQ2]; red.
subst a; subst c. exists (k1 - k2). ring.
Qed.
Lemma eqmod_mult:
forall a b c d, eqmod a c -> eqmod b d -> eqmod (a * b) (c * d).
Proof.
intros a b c d [k1 EQ1] [k2 EQ2]; red.
subst a; subst b.
exists (k1 * k2 * modul + c * k2 + k1 * d).
ring.
Qed.
End EQ_MODULO.
Lemma eqmod_divides:
forall n m x y, eqmod n x y -> Zdivide m n -> eqmod m x y.
Proof.
intros. destruct H as [k1 EQ1]. destruct H0 as [k2 EQ2].
exists (k1*k2). rewrite <- Zmult_assoc. rewrite <- EQ2. auto.
Qed.
(** We then specialize these definitions to equality modulo
$2^{wordsize}$ #2wordsize#. *)
Hint Resolve modulus_pos: ints.
Definition eqm := eqmod modulus.
Lemma eqm_refl: forall x, eqm x x.
Proof (eqmod_refl modulus).
Hint Resolve eqm_refl: ints.
Lemma eqm_refl2:
forall x y, x = y -> eqm x y.
Proof (eqmod_refl2 modulus).
Hint Resolve eqm_refl2: ints.
Lemma eqm_sym: forall x y, eqm x y -> eqm y x.
Proof (eqmod_sym modulus).
Hint Resolve eqm_sym: ints.
Lemma eqm_trans: forall x y z, eqm x y -> eqm y z -> eqm x z.
Proof (eqmod_trans modulus).
Hint Resolve eqm_trans: ints.
Lemma eqm_small_eq:
forall x y, eqm x y -> 0 <= x < modulus -> 0 <= y < modulus -> x = y.
Proof (eqmod_small_eq modulus).
Hint Resolve eqm_small_eq: ints.
Lemma eqm_add:
forall a b c d, eqm a b -> eqm c d -> eqm (a + c) (b + d).
Proof (eqmod_add modulus).
Hint Resolve eqm_add: ints.
Lemma eqm_neg:
forall x y, eqm x y -> eqm (-x) (-y).
Proof (eqmod_neg modulus).
Hint Resolve eqm_neg: ints.
Lemma eqm_sub:
forall a b c d, eqm a b -> eqm c d -> eqm (a - c) (b - d).
Proof (eqmod_sub modulus).
Hint Resolve eqm_sub: ints.
Lemma eqm_mult:
forall a b c d, eqm a c -> eqm b d -> eqm (a * b) (c * d).
Proof (eqmod_mult modulus).
Hint Resolve eqm_mult: ints.
(** ** Properties of the coercions between [Z] and [int] *)
Lemma eqm_samerepr: forall x y, eqm x y -> repr x = repr y.
Proof.
intros. unfold repr. apply mkint_eq.
apply eqmod_mod_eq. auto with ints. exact H.
Qed.
Lemma eqm_unsigned_repr:
forall z, eqm z (unsigned (repr z)).
Proof.
unfold eqm, repr, unsigned; intros; simpl. apply eqmod_mod. auto with ints.
Qed.
Hint Resolve eqm_unsigned_repr: ints.
Lemma eqm_unsigned_repr_l:
forall a b, eqm a b -> eqm (unsigned (repr a)) b.
Proof.
intros. apply eqm_trans with a.
apply eqm_sym. apply eqm_unsigned_repr. auto.
Qed.
Hint Resolve eqm_unsigned_repr_l: ints.
Lemma eqm_unsigned_repr_r:
forall a b, eqm a b -> eqm a (unsigned (repr b)).
Proof.
intros. apply eqm_trans with b. auto.
apply eqm_unsigned_repr.
Qed.
Hint Resolve eqm_unsigned_repr_r: ints.
Lemma eqm_signed_unsigned:
forall x, eqm (signed x) (unsigned x).
Proof.
intro; red; unfold signed. set (y := unsigned x).
case (zlt y half_modulus); intro.
apply eqmod_refl. red; exists (-1); ring.
Qed.
Theorem unsigned_range:
forall i, 0 <= unsigned i < modulus.
Proof.
destruct i; auto.
Qed.
Hint Resolve unsigned_range: ints.
Theorem unsigned_range_2:
forall i, 0 <= unsigned i <= max_unsigned.
Proof.
intro; unfold max_unsigned.
generalize (unsigned_range i). omega.
Qed.
Hint Resolve unsigned_range_2: ints.
Theorem signed_range:
forall i, min_signed <= signed i <= max_signed.
Proof.
intros. unfold signed.
generalize (unsigned_range i). set (n := unsigned i). intros.
case (zlt n half_modulus); intro.
unfold max_signed. generalize min_signed_neg. omega.
unfold min_signed, max_signed.
rewrite half_modulus_modulus in *. omega.
Qed.
Theorem repr_unsigned:
forall i, repr (unsigned i) = i.
Proof.
destruct i; simpl. unfold repr. apply mkint_eq. apply Zmod_small; auto.
Qed.
Hint Resolve repr_unsigned: ints.
Lemma repr_signed:
forall i, repr (signed i) = i.
Proof.
intros. transitivity (repr (unsigned i)).
apply eqm_samerepr. apply eqm_signed_unsigned. auto with ints.
Qed.
Hint Resolve repr_signed: ints.
Lemma eqm_repr_eq: forall x y, eqm x (unsigned y) -> repr x = y.
Proof.
intros. rewrite <- (repr_unsigned y). apply eqm_samerepr; auto.
Qed.
Theorem unsigned_repr:
forall z, 0 <= z <= max_unsigned -> unsigned (repr z) = z.
Proof.
intros. unfold repr, unsigned; simpl.
apply Zmod_small. unfold max_unsigned in H. fold modulus. omega.
Qed.
Hint Resolve unsigned_repr: ints.
Theorem signed_repr:
forall z, min_signed <= z <= max_signed -> signed (repr z) = z.
Proof.
intros. unfold signed. case (zle 0 z); intro.
replace (unsigned (repr z)) with z.
rewrite zlt_true. auto. unfold max_signed in H. omega.
symmetry. apply unsigned_repr. generalize max_signed_unsigned. omega.
pose (z' := z + modulus).
replace (repr z) with (repr z').
replace (unsigned (repr z')) with z'.
rewrite zlt_false. unfold z'. omega.
unfold z'. unfold min_signed in H.
rewrite half_modulus_modulus. omega.
symmetry. apply unsigned_repr.
unfold z', max_unsigned. unfold min_signed, max_signed in H.
rewrite half_modulus_modulus. omega.
apply eqm_samerepr. unfold z'; red. exists 1. omega.
Qed.
Theorem signed_eq_unsigned:
forall x, unsigned x <= max_signed -> signed x = unsigned x.
Proof.
intros. unfold signed. destruct (zlt (unsigned x) half_modulus).
auto. unfold max_signed in H. omegaContradiction.
Qed.
(** ** Properties of zero, one, minus one *)
Theorem unsigned_zero: unsigned zero = 0.
Proof.
simpl. apply Zmod_0_l.
Qed.
Theorem unsigned_one: unsigned one = 1.
Proof.
simpl. apply Zmod_small. split. omega.
unfold modulus. replace wordsize with (S(pred wordsize)).
rewrite two_power_nat_S. generalize (two_power_nat_pos (pred wordsize)).
omega.
generalize wordsize_pos. omega.
Qed.
Theorem unsigned_mone: unsigned mone = modulus - 1.
Proof.
simpl unsigned.
replace (-1) with ((modulus - 1) + (-1) * modulus).
rewrite Z_mod_plus_full. apply Zmod_small.
generalize modulus_pos. omega. omega.
Qed.
Theorem signed_zero: signed zero = 0.
Proof.
unfold signed. rewrite unsigned_zero. apply zlt_true. generalize half_modulus_pos; omega.
Qed.
Theorem signed_mone: signed mone = -1.
Proof.
unfold signed. rewrite unsigned_mone.
rewrite zlt_false. omega.
rewrite half_modulus_modulus. generalize half_modulus_pos. omega.
Qed.
Theorem one_not_zero: one <> zero.
Proof.
assert (unsigned one <> unsigned zero).
rewrite unsigned_one; rewrite unsigned_zero; congruence.
congruence.
Qed.
Theorem unsigned_repr_wordsize:
unsigned iwordsize = Z_of_nat wordsize.
Proof.
simpl. apply Zmod_small.
generalize wordsize_pos wordsize_max_unsigned; unfold max_unsigned; omega.
Qed.
(** ** Properties of equality *)
Theorem eq_sym:
forall x y, eq x y = eq y x.
Proof.
intros; unfold eq. case (zeq (unsigned x) (unsigned y)); intro.
rewrite e. rewrite zeq_true. auto.
rewrite zeq_false. auto. auto.
Qed.
Theorem eq_spec: forall (x y: int), if eq x y then x = y else x <> y.
Proof.
intros; unfold eq. case (eq_dec x y); intro.
subst y. rewrite zeq_true. auto.
rewrite zeq_false. auto.
destruct x; destruct y.
simpl. red; intro. elim n. apply mkint_eq. auto.
Qed.
Theorem eq_true: forall x, eq x x = true.
Proof.
intros. generalize (eq_spec x x); case (eq x x); intros; congruence.
Qed.
Theorem eq_false: forall x y, x <> y -> eq x y = false.
Proof.
intros. generalize (eq_spec x y); case (eq x y); intros; congruence.
Qed.
(** ** Properties of addition *)
Theorem add_unsigned: forall x y, add x y = repr (unsigned x + unsigned y).
Proof. intros; reflexivity.
Qed.
Theorem add_signed: forall x y, add x y = repr (signed x + signed y).
Proof.
intros. rewrite add_unsigned. apply eqm_samerepr.
apply eqm_add; apply eqm_sym; apply eqm_signed_unsigned.
Qed.
Theorem add_commut: forall x y, add x y = add y x.
Proof. intros; unfold add. decEq. omega. Qed.
Theorem add_zero: forall x, add x zero = x.
Proof.
intros. unfold add. rewrite unsigned_zero.
rewrite Zplus_0_r. apply repr_unsigned.
Qed.
Theorem add_zero_l: forall x, add zero x = x.
Proof.
intros. rewrite add_commut. apply add_zero.
Qed.
Theorem add_assoc: forall x y z, add (add x y) z = add x (add y z).
Proof.
intros; unfold add.
set (x' := unsigned x).
set (y' := unsigned y).
set (z' := unsigned z).
apply eqm_samerepr.
apply eqm_trans with ((x' + y') + z').
auto with ints.
rewrite <- Zplus_assoc. auto with ints.
Qed.
Theorem add_permut: forall x y z, add x (add y z) = add y (add x z).
Proof.
intros. rewrite (add_commut y z). rewrite <- add_assoc. apply add_commut.
Qed.
Theorem add_neg_zero: forall x, add x (neg x) = zero.
Proof.
intros; unfold add, neg, zero. apply eqm_samerepr.
replace 0 with (unsigned x + (- (unsigned x))).
auto with ints. omega.
Qed.
(** ** Properties of negation *)
Theorem neg_repr: forall z, neg (repr z) = repr (-z).
Proof.
intros; unfold neg. apply eqm_samerepr. auto with ints.
Qed.
Theorem neg_zero: neg zero = zero.
Proof.
unfold neg. rewrite unsigned_zero. auto.
Qed.
Theorem neg_involutive: forall x, neg (neg x) = x.
Proof.
intros; unfold neg.
apply eqm_repr_eq. eapply eqm_trans. apply eqm_neg.
apply eqm_unsigned_repr_l. apply eqm_refl. apply eqm_refl2. omega.
Qed.
Theorem neg_add_distr: forall x y, neg(add x y) = add (neg x) (neg y).
Proof.
intros; unfold neg, add. apply eqm_samerepr.
apply eqm_trans with (- (unsigned x + unsigned y)).
auto with ints.
replace (- (unsigned x + unsigned y))
with ((- unsigned x) + (- unsigned y)).
auto with ints. omega.
Qed.
(** ** Properties of subtraction *)
Theorem sub_zero_l: forall x, sub x zero = x.
Proof.
intros; unfold sub. rewrite unsigned_zero.
replace (unsigned x - 0) with (unsigned x) by omega. apply repr_unsigned.
Qed.
Theorem sub_zero_r: forall x, sub zero x = neg x.
Proof.
intros; unfold sub, neg. rewrite unsigned_zero. auto.
Qed.
Theorem sub_add_opp: forall x y, sub x y = add x (neg y).
Proof.
intros; unfold sub, add, neg. apply eqm_samerepr.
apply eqm_add; auto with ints.
Qed.
Theorem sub_idem: forall x, sub x x = zero.
Proof.
intros; unfold sub. unfold zero. decEq. omega.
Qed.
Theorem sub_add_l: forall x y z, sub (add x y) z = add (sub x z) y.
Proof.
intros. repeat rewrite sub_add_opp.
repeat rewrite add_assoc. decEq. apply add_commut.
Qed.
Theorem sub_add_r: forall x y z, sub x (add y z) = add (sub x z) (neg y).
Proof.
intros. repeat rewrite sub_add_opp.
rewrite neg_add_distr. rewrite add_permut. apply add_commut.
Qed.
Theorem sub_shifted:
forall x y z,
sub (add x z) (add y z) = sub x y.
Proof.
intros. rewrite sub_add_opp. rewrite neg_add_distr.
rewrite add_assoc.
rewrite (add_commut (neg y) (neg z)).
rewrite <- (add_assoc z). rewrite add_neg_zero.
rewrite (add_commut zero). rewrite add_zero.
symmetry. apply sub_add_opp.
Qed.
Theorem sub_signed:
forall x y, sub x y = repr (signed x - signed y).
Proof.
intros. unfold sub. apply eqm_samerepr.
apply eqm_sub; apply eqm_sym; apply eqm_signed_unsigned.
Qed.
(** ** Properties of multiplication *)
Theorem mul_commut: forall x y, mul x y = mul y x.
Proof.
intros; unfold mul. decEq. ring.
Qed.
Theorem mul_zero: forall x, mul x zero = zero.
Proof.
intros; unfold mul. rewrite unsigned_zero.
unfold zero. decEq. ring.
Qed.
Theorem mul_one: forall x, mul x one = x.
Proof.
intros; unfold mul. rewrite unsigned_one.
transitivity (repr (unsigned x)). decEq. ring.
apply repr_unsigned.
Qed.
Theorem mul_assoc: forall x y z, mul (mul x y) z = mul x (mul y z).
Proof.
intros; unfold mul.
set (x' := unsigned x).
set (y' := unsigned y).
set (z' := unsigned z).
apply eqm_samerepr. apply eqm_trans with ((x' * y') * z').
auto with ints.
rewrite <- Zmult_assoc. auto with ints.
Qed.
Theorem mul_add_distr_l:
forall x y z, mul (add x y) z = add (mul x z) (mul y z).
Proof.
intros; unfold mul, add.
apply eqm_samerepr.
set (x' := unsigned x).
set (y' := unsigned y).
set (z' := unsigned z).
apply eqm_trans with ((x' + y') * z').
auto with ints.
replace ((x' + y') * z') with (x' * z' + y' * z').
auto with ints.
ring.
Qed.
Theorem mul_add_distr_r:
forall x y z, mul x (add y z) = add (mul x y) (mul x z).
Proof.
intros. rewrite mul_commut. rewrite mul_add_distr_l.
decEq; apply mul_commut.
Qed.
Theorem neg_mul_distr_l:
forall x y, neg(mul x y) = mul (neg x) y.
Proof.
intros. unfold mul, neg.
set (x' := unsigned x). set (y' := unsigned y).
apply eqm_samerepr. apply eqm_trans with (- (x' * y')).
auto with ints.
replace (- (x' * y')) with ((-x') * y') by ring.
auto with ints.
Qed.
Theorem neg_mul_distr_r:
forall x y, neg(mul x y) = mul x (neg y).
Proof.
intros. rewrite (mul_commut x y). rewrite (mul_commut x (neg y)).
apply neg_mul_distr_l.
Qed.
Theorem mul_signed:
forall x y, mul x y = repr (signed x * signed y).
Proof.
intros; unfold mul. apply eqm_samerepr.
apply eqm_mult; apply eqm_sym; apply eqm_signed_unsigned.
Qed.
(** ** Properties of division and modulus *)
Lemma modu_divu_Euclid:
forall x y, y <> zero -> x = add (mul (divu x y) y) (modu x y).
Proof.
intros. unfold add, mul, divu, modu.
transitivity (repr (unsigned x)). auto with ints.
apply eqm_samerepr.
set (x' := unsigned x). set (y' := unsigned y).
apply eqm_trans with ((x' / y') * y' + x' mod y').
apply eqm_refl2. rewrite Zmult_comm. apply Z_div_mod_eq.
generalize (unsigned_range y); intro.
assert (unsigned y <> 0). red; intro.
elim H. rewrite <- (repr_unsigned y). unfold zero. congruence.
unfold y'. omega.
auto with ints.
Qed.
Theorem modu_divu:
forall x y, y <> zero -> modu x y = sub x (mul (divu x y) y).
Proof.
intros.
assert (forall a b c, a = add b c -> c = sub a b).
intros. subst a. rewrite sub_add_l. rewrite sub_idem.
rewrite add_commut. rewrite add_zero. auto.
apply H0. apply modu_divu_Euclid. auto.
Qed.
Theorem mods_divs:
forall x y, mods x y = sub x (mul (divs x y) y).
Proof.
intros; unfold mods, sub, mul, divs.
apply eqm_samerepr.
unfold Zmod_round.
apply eqm_sub. apply eqm_signed_unsigned.
apply eqm_unsigned_repr_r.
apply eqm_mult. auto with ints. apply eqm_signed_unsigned.
Qed.
(** ** Properties of binary decompositions *)
Lemma Z_shift_add_bin_decomp:
forall x,
Z_shift_add (fst (Z_bin_decomp x)) (snd (Z_bin_decomp x)) = x.
Proof.
destruct x; simpl.
auto.
destruct p; reflexivity.
destruct p; try reflexivity. simpl.
assert (forall z, 2 * (z + 1) - 1 = 2 * z + 1). intro; omega.
generalize (H (Zpos p)); simpl. congruence.
Qed.
Lemma Z_bin_decomp_shift_add:
forall b x, Z_bin_decomp (Z_shift_add b x) = (b, x).
Proof.
intros.
intros. unfold Z_shift_add. destruct b; destruct x; simpl; auto.
destruct p; simpl; auto. f_equal. f_equal.
rewrite <- Pplus_one_succ_r. apply Psucc_o_double_minus_one_eq_xO.
Qed.
Lemma Z_shift_add_inj:
forall b1 x1 b2 x2,
Z_shift_add b1 x1 = Z_shift_add b2 x2 -> b1 = b2 /\ x1 = x2.
Proof.
intros.
assert ((b1, x1) = (b2, x2)).
repeat rewrite <- Z_bin_decomp_shift_add. rewrite H; auto.
split; congruence.
Qed.
Lemma Z_of_bits_exten:
forall f1 f2 n i1 i2,
(forall i, 0 <= i < Z_of_nat n -> f1 (i + i1) = f2 (i + i2)) ->
Z_of_bits n f1 i1 = Z_of_bits n f2 i2.
Proof.
induction n; intros; simpl.
auto.
rewrite inj_S in H. decEq. apply (H 0). omega.
apply IHn. intros.
replace (i + Zsucc i1) with (Zsucc i + i1) by omega.
replace (i + Zsucc i2) with (Zsucc i + i2) by omega.
apply H. omega.
Qed.
Lemma Z_of_bits_of_Z:
forall x, eqm (Z_of_bits wordsize (bits_of_Z wordsize x) 0) x.
Proof.
assert (forall n x, exists k,
Z_of_bits n (bits_of_Z n x) 0 = k * two_power_nat n + x).
induction n; intros; simpl.
rewrite two_power_nat_O. exists (-x). omega.
rewrite two_power_nat_S. simpl bits_of_Z. caseEq (Z_bin_decomp x). intros b y ZBD.
rewrite zeq_true. destruct (IHn y) as [k EQ].
replace (Z_of_bits n (fun i => if zeq i 0 then b else bits_of_Z n y (i - 1)) 1)
with (Z_of_bits n (bits_of_Z n y) 0).
rewrite EQ. exists k.
rewrite <- (Z_shift_add_bin_decomp x). rewrite ZBD. simpl fst; simpl snd.
unfold Z_shift_add; destruct b; ring.
apply Z_of_bits_exten. intros.
rewrite zeq_false. decEq. omega. omega.
intro. exact (H wordsize x).
Qed.
Lemma bits_of_Z_zero:
forall n x, bits_of_Z n 0 x = false.
Proof.
induction n; simpl; intros. auto. case (zeq x 0); intro. auto. auto.
Qed.
Remark Z_bin_decomp_2xm1:
forall x, Z_bin_decomp (2 * x - 1) = (true, x - 1).
Proof.
intros. caseEq (Z_bin_decomp (2 * x - 1)). intros b y EQ.
generalize (Z_shift_add_bin_decomp (2 * x - 1)).
rewrite EQ; simpl fst; simpl snd.
replace (2 * x - 1) with (Z_shift_add true (x - 1)).
intro. elim (Z_shift_add_inj _ _ _ _ H); intros.
congruence. unfold Z_shift_add. omega.
Qed.
Lemma bits_of_Z_two_p:
forall n x i,
x >= 0 -> 0 <= i < Z_of_nat n ->
bits_of_Z n (two_p x - 1) i = zlt i x.
Proof.
induction n; intros.
simpl in H0. omegaContradiction.
destruct (zeq x 0). subst x. change (two_p 0 - 1) with 0. rewrite bits_of_Z_zero.
unfold proj_sumbool; rewrite zlt_false. auto. omega.
simpl. replace (two_p x) with (2 * two_p (x - 1)). rewrite Z_bin_decomp_2xm1.
destruct (zeq i 0). subst. unfold proj_sumbool. rewrite zlt_true. auto. omega.
rewrite inj_S in H0. rewrite IHn. unfold proj_sumbool. destruct (zlt i x).
apply zlt_true. omega.
apply zlt_false. omega.
omega. omega. rewrite <- two_p_S. decEq. omega. omega.
Qed.
Lemma bits_of_Z_mone:
forall x,
0 <= x < Z_of_nat wordsize ->
bits_of_Z wordsize (modulus - 1) x = true.
Proof.
intros. unfold modulus. rewrite two_power_nat_two_p.
rewrite bits_of_Z_two_p. unfold proj_sumbool. apply zlt_true; omega.
omega. omega.
Qed.
Lemma Z_of_bits_range:
forall f n i, 0 <= Z_of_bits n f i < two_power_nat n.
Proof.
induction n; simpl; intros.
rewrite two_power_nat_O. omega.
rewrite two_power_nat_S.
generalize (IHn (Zsucc i)).
intro. destruct (f i); unfold Z_shift_add; omega.
Qed.
Lemma Z_of_bits_range_1:
forall f i, 0 <= Z_of_bits wordsize f i < modulus.
Proof.
intros. apply Z_of_bits_range.
Qed.
Hint Resolve Z_of_bits_range_1: ints.
Lemma Z_of_bits_range_2:
forall f i, 0 <= Z_of_bits wordsize f i <= max_unsigned.
Proof.
intros. unfold max_unsigned.
generalize (Z_of_bits_range_1 f i). omega.
Qed.
Hint Resolve Z_of_bits_range_2: ints.
Lemma bits_of_Z_of_bits_gen:
forall n f i j,
0 <= i < Z_of_nat n ->
bits_of_Z n (Z_of_bits n f j) i = f (i + j).
Proof.
induction n; intros; simpl.
simpl in H. omegaContradiction.
rewrite Z_bin_decomp_shift_add.
destruct (zeq i 0).
f_equal. omega.
rewrite IHn. f_equal. omega.
rewrite inj_S in H. omega.
Qed.
Lemma bits_of_Z_of_bits:
forall n f i,
0 <= i < Z_of_nat n ->
bits_of_Z n (Z_of_bits n f 0) i = f i.
Proof.
intros. rewrite bits_of_Z_of_bits_gen; auto. decEq; omega.
Qed.
Lemma bits_of_Z_below:
forall n x i, i < 0 -> bits_of_Z n x i = false.
Proof.
induction n; intros; simpl. auto.
destruct (Z_bin_decomp x). rewrite zeq_false. apply IHn.
omega. omega.
Qed.
Lemma bits_of_Z_above:
forall n x i, i >= Z_of_nat n -> bits_of_Z n x i = false.
Proof.
induction n; intros; simpl.
auto.
caseEq (Z_bin_decomp x); intros b x1 EQ. rewrite zeq_false.
rewrite IHn.
destruct x; simpl in EQ. inv EQ. auto.
destruct p; inv EQ; auto.
destruct p; inv EQ; auto.
rewrite inj_S in H. omega. rewrite inj_S in H. omega.
Qed.
Lemma bits_of_Z_of_bits_gen':
forall n f i j,
bits_of_Z n (Z_of_bits n f j) i =
if zlt i 0 then false
else if zle (Z_of_nat n) i then false
else f (i + j).
Proof.
intros.
destruct (zlt i 0). apply bits_of_Z_below; auto.
destruct (zle (Z_of_nat n) i). apply bits_of_Z_above. omega.
apply bits_of_Z_of_bits_gen. omega.
Qed.
Lemma Z_of_bits_excl:
forall n f g h j,
(forall i, j <= i < j + Z_of_nat n -> f i && g i = false) ->
(forall i, j <= i < j + Z_of_nat n -> f i || g i = h i) ->
Z_of_bits n f j + Z_of_bits n g j = Z_of_bits n h j.
Proof.
induction n.
intros; reflexivity.
intros. simpl. rewrite inj_S in H. rewrite inj_S in H0.
rewrite <- (IHn f g h (Zsucc j)).
assert (j <= j < j + Zsucc(Z_of_nat n)). omega.
unfold Z_shift_add.
rewrite <- H0; auto.
caseEq (f j); intros; caseEq (g j); intros; simpl orb.
generalize (H j H1). rewrite H2; rewrite H3. simpl andb; congruence.
omega. omega. omega.
intros; apply H. omega.
intros; apply H0. omega.
Qed.
Lemma Z_of_bits_compose:
forall f m n i,
Z_of_bits (m + n) f i =
Z_of_bits n f (i + Z_of_nat m) * two_power_nat m
+ Z_of_bits m f i.
Proof.
induction m; intros.
simpl. repeat rewrite Zplus_0_r. rewrite two_power_nat_O. omega.
rewrite inj_S. rewrite two_power_nat_S. simpl Z_of_bits.
rewrite IHm. replace (i + Zsucc (Z_of_nat m)) with (Zsucc i + Z_of_nat m) by omega.
unfold Z_shift_add. destruct (f i); ring.
Qed.
Lemma Z_of_bits_truncate:
forall f n i,
eqm (Z_of_bits (wordsize + n) f i) (Z_of_bits wordsize f i).
Proof.
intros. exists (Z_of_bits n f (i + Z_of_nat wordsize)).
rewrite Z_of_bits_compose. fold modulus. auto.
Qed.
Lemma Z_of_bits_false:
forall f n i,
(forall j, i <= j < i + Z_of_nat n -> f j = false) ->
Z_of_bits n f i = 0.
Proof.
induction n; intros; simpl. auto.
rewrite inj_S in H. rewrite H. rewrite IHn. auto.
intros; apply H; omega. omega.
Qed.
Lemma Z_of_bits_complement:
forall f n i,
Z_of_bits n (fun j => negb (f j)) i = two_power_nat n - 1 - Z_of_bits n f i.
Proof.
induction n; intros; simpl Z_of_bits.
auto.
rewrite two_power_nat_S. rewrite IHn.
Opaque Zmult Zplus Zminus.
destruct (f i); simpl. ring. ring.
Transparent Zmult Zplus Zminus.
Qed.
Lemma Z_of_bits_true:
forall f n i,
(forall j, i <= j < i + Z_of_nat n -> f j = true) ->
Z_of_bits n f i = two_power_nat n - 1.
Proof.
intros. set (z := fun (i: Z) => false).
transitivity (Z_of_bits n (fun j => negb (z j)) i).
apply Z_of_bits_exten; intros. unfold z. rewrite H. auto. omega.
rewrite Z_of_bits_complement. rewrite Z_of_bits_false. omega.
unfold z; auto.
Qed.
(** ** Properties of bitwise and, or, xor *)
Lemma bitwise_binop_commut:
forall f,
(forall a b, f a b = f b a) ->
forall x y,
bitwise_binop f x y = bitwise_binop f y x.
Proof.
unfold bitwise_binop; intros. decEq; apply Z_of_bits_exten; intros. auto.
Qed.
Lemma bitwise_binop_assoc:
forall f,
(forall a b c, f a (f b c) = f (f a b) c) ->
forall x y z,
bitwise_binop f (bitwise_binop f x y) z =
bitwise_binop f x (bitwise_binop f y z).
Proof.
unfold bitwise_binop; intros. repeat rewrite unsigned_repr; auto with ints.
decEq; apply Z_of_bits_exten; intros.
repeat rewrite Zplus_0_r. repeat rewrite bits_of_Z_of_bits; auto.
Qed.
Lemma bitwise_binop_idem:
forall f,
(forall a, f a a = a) ->
forall x,
bitwise_binop f x x = x.
Proof.
unfold bitwise_binop; intros.
apply eqm_repr_eq. eapply eqm_trans. 2: apply Z_of_bits_of_Z.
apply eqm_refl2. apply Z_of_bits_exten. auto.
Qed.
Theorem and_commut: forall x y, and x y = and y x.
Proof (bitwise_binop_commut andb andb_comm).
Theorem and_assoc: forall x y z, and (and x y) z = and x (and y z).
Proof (bitwise_binop_assoc andb andb_assoc).
Theorem and_zero: forall x, and x zero = zero.
Proof.
intros. unfold and, bitwise_binop.
apply eqm_samerepr. eapply eqm_trans. 2: apply Z_of_bits_of_Z.
apply eqm_refl2. apply Z_of_bits_exten. intros.
rewrite unsigned_zero. rewrite bits_of_Z_zero. apply andb_b_false.
Qed.
Theorem and_mone: forall x, and x mone = x.
Proof.
intros. unfold and, bitwise_binop.
apply eqm_repr_eq. eapply eqm_trans. 2: apply Z_of_bits_of_Z.
apply eqm_refl2. apply Z_of_bits_exten; intros.
rewrite unsigned_mone. rewrite bits_of_Z_mone. apply andb_b_true.
omega.
Qed.
Theorem and_idem: forall x, and x x = x.
Proof.
intros. apply (bitwise_binop_idem andb). destruct a; auto.
Qed.
Theorem or_commut: forall x y, or x y = or y x.
Proof (bitwise_binop_commut orb orb_comm).
Theorem or_assoc: forall x y z, or (or x y) z = or x (or y z).
Proof (bitwise_binop_assoc orb orb_assoc).
Theorem or_zero: forall x, or x zero = x.
Proof.
intros. unfold or, bitwise_binop.
apply eqm_repr_eq. eapply eqm_trans. 2: apply Z_of_bits_of_Z.
apply eqm_refl2. apply Z_of_bits_exten. intros.
rewrite unsigned_zero. rewrite bits_of_Z_zero. apply orb_b_false.
Qed.
Theorem or_mone: forall x, or x mone = mone.
Proof.
intros. unfold or, bitwise_binop.
apply eqm_repr_eq. eapply eqm_trans. 2: apply Z_of_bits_of_Z.
apply eqm_refl2. apply Z_of_bits_exten. intros.
rewrite unsigned_mone. rewrite bits_of_Z_mone. apply orb_b_true.
omega.
Qed.
Theorem or_idem: forall x, or x x = x.
Proof.
intros. apply (bitwise_binop_idem orb). destruct a; auto.
Qed.
Theorem and_or_distrib:
forall x y z,
and x (or y z) = or (and x y) (and x z).
Proof.
intros; unfold and, or, bitwise_binop.
repeat rewrite unsigned_repr; auto with ints.
decEq; apply Z_of_bits_exten; intros.
repeat rewrite bits_of_Z_of_bits; repeat rewrite Zplus_0_r; auto.
apply demorgan1.
Qed.
Theorem xor_commut: forall x y, xor x y = xor y x.
Proof (bitwise_binop_commut xorb xorb_comm).
Theorem xor_assoc: forall x y z, xor (xor x y) z = xor x (xor y z).
Proof.
intros. apply (bitwise_binop_assoc xorb).
intros. symmetry. apply xorb_assoc.
Qed.
Theorem xor_zero: forall x, xor x zero = x.
Proof.
intros. unfold xor, bitwise_binop.
apply eqm_repr_eq. eapply eqm_trans. 2: apply Z_of_bits_of_Z.
apply eqm_refl2. apply Z_of_bits_exten. intros.
rewrite unsigned_zero. rewrite bits_of_Z_zero. apply xorb_false.
Qed.
Theorem xor_idem: forall x, xor x x = zero.
Proof.
intros. unfold xor, bitwise_binop.
apply eqm_repr_eq. eapply eqm_trans. 2: apply Z_of_bits_of_Z.
apply eqm_refl2. apply Z_of_bits_exten. intros.
rewrite unsigned_zero. rewrite bits_of_Z_zero. apply xorb_nilpotent.
Qed.
Theorem xor_zero_one: xor zero one = one.
Proof. rewrite xor_commut. apply xor_zero. Qed.
Theorem xor_one_one: xor one one = zero.
Proof. apply xor_idem. Qed.
Theorem and_xor_distrib:
forall x y z,
and x (xor y z) = xor (and x y) (and x z).
Proof.
intros; unfold and, xor, bitwise_binop.
repeat rewrite unsigned_repr; auto with ints.
decEq; apply Z_of_bits_exten; intros.
repeat rewrite bits_of_Z_of_bits; repeat rewrite Zplus_0_r; auto.
assert (forall a b c, a && (xorb b c) = xorb (a && b) (a && c)).
destruct a; destruct b; destruct c; reflexivity.
auto.
Qed.
(** Properties of bitwise complement.*)
Theorem not_involutive:
forall (x: int), not (not x) = x.
Proof.
intros. unfold not. rewrite xor_assoc. rewrite xor_idem. apply xor_zero.
Qed.
Theorem not_zero:
not zero = mone.
Proof.
unfold not. rewrite xor_commut. apply xor_zero.
Qed.
Theorem not_mone:
not mone = zero.
Proof.
rewrite <- (not_involutive zero). symmetry. decEq. apply not_zero.
Qed.
Theorem not_or_and_not:
forall x y, not (or x y) = and (not x) (not y).
Proof.
intros; unfold not, xor, and, or, bitwise_binop.
repeat rewrite unsigned_repr; auto with ints.
decEq; apply Z_of_bits_exten; intros.
repeat rewrite bits_of_Z_of_bits; repeat rewrite Zplus_0_r; auto.
rewrite unsigned_mone. rewrite bits_of_Z_mone; auto.
assert (forall a b, xorb (a || b) true = xorb a true && xorb b true).
destruct a; destruct b; reflexivity.
auto.
Qed.
Theorem not_and_or_not:
forall x y, not (and x y) = or (not x) (not y).
Proof.
intros. rewrite <- (not_involutive x) at 1. rewrite <- (not_involutive y) at 1.
rewrite <- not_or_and_not. apply not_involutive.
Qed.
Theorem and_not_self:
forall x, and x (not x) = zero.
Proof.
intros. unfold not. rewrite and_xor_distrib.
rewrite and_idem. rewrite and_mone. apply xor_idem.
Qed.
Theorem or_not_self:
forall x, or x (not x) = mone.
Proof.
intros. rewrite <- (not_involutive x) at 1. rewrite or_commut.
rewrite <- not_and_or_not. rewrite and_not_self. apply not_zero.
Qed.
Theorem xor_not_self:
forall x, xor x (not x) = mone.
Proof.
intros. unfold not. rewrite <- xor_assoc. rewrite xor_idem. apply not_zero.
Qed.
Theorem not_neg:
forall x, not x = add (neg x) mone.
Proof.
intros.
unfold not, xor, bitwise_binop. rewrite unsigned_mone.
set (ux := unsigned x).
set (bx := bits_of_Z wordsize ux).
transitivity (repr (Z_of_bits wordsize (fun i => negb (bx i)) 0)).
decEq. apply Z_of_bits_exten. intros. rewrite bits_of_Z_mone; auto. omega.
rewrite Z_of_bits_complement. apply eqm_samerepr. rewrite unsigned_mone. fold modulus.
replace (modulus - 1 - Z_of_bits wordsize bx 0)
with ((- Z_of_bits wordsize bx 0) + (modulus - 1)) by omega.
apply eqm_add. unfold neg. apply eqm_unsigned_repr_r. apply eqm_neg.
apply Z_of_bits_of_Z. apply eqm_refl.
Qed.
Theorem neg_not:
forall x, neg x = add (not x) one.
Proof.
intros. rewrite not_neg. rewrite add_assoc.
replace (add mone one) with zero. rewrite add_zero. auto.
apply eqm_samerepr. rewrite unsigned_mone. rewrite unsigned_one.
exists (-1). ring.
Qed.
(** Connections between [add] and bitwise logical operations. *)
Theorem add_is_or:
forall x y,
and x y = zero ->
add x y = or x y.
Proof.
intros. unfold add, or, bitwise_binop.
apply eqm_samerepr. eapply eqm_trans. apply eqm_add.
apply eqm_sym. apply Z_of_bits_of_Z.
apply eqm_sym. apply Z_of_bits_of_Z.
apply eqm_refl2.
apply Z_of_bits_excl.
intros.
replace (bits_of_Z wordsize (unsigned x) i &&
bits_of_Z wordsize (unsigned y) i)
with (bits_of_Z wordsize (unsigned (and x y)) i).
rewrite H. rewrite unsigned_zero. rewrite bits_of_Z_zero. auto.
unfold and, bitwise_binop. rewrite unsigned_repr; auto with ints.
rewrite bits_of_Z_of_bits. reflexivity. auto.
auto.
Qed.
Theorem xor_is_or:
forall x y, and x y = zero -> xor x y = or x y.
Proof.
intros. unfold xor, or, bitwise_binop.
decEq. apply Z_of_bits_exten; intros.
set (bitx := bits_of_Z wordsize (unsigned x) (i + 0)).
set (bity := bits_of_Z wordsize (unsigned y) (i + 0)).
assert (bitx && bity = false).
replace (bitx && bity)
with (bits_of_Z wordsize (unsigned (and x y)) (i + 0)).
rewrite H. rewrite unsigned_zero. apply bits_of_Z_zero.
unfold and, bitwise_binop. rewrite unsigned_repr; auto with ints.
unfold bitx, bity. rewrite bits_of_Z_of_bits. reflexivity.
omega.
destruct bitx; destruct bity; auto; simpl in H1; congruence.
Qed.
Theorem add_is_xor:
forall x y,
and x y = zero ->
add x y = xor x y.
Proof.
intros. rewrite xor_is_or; auto. apply add_is_or; auto.
Qed.
Theorem add_and:
forall x y z,
and y z = zero ->
add (and x y) (and x z) = and x (or y z).
Proof.
intros. rewrite add_is_or.
rewrite and_or_distrib; auto.
rewrite (and_commut x y).
rewrite and_assoc.
repeat rewrite <- (and_assoc x).
rewrite (and_commut (and x x)).
rewrite <- and_assoc.
rewrite H. rewrite and_commut. apply and_zero.
Qed.
(** ** Properties of shifts *)
Theorem shl_zero: forall x, shl x zero = x.
Proof.
intros. unfold shl. rewrite unsigned_zero. simpl (-0).
transitivity (repr (unsigned x)). apply eqm_samerepr. apply Z_of_bits_of_Z.
auto with ints.
Qed.
Lemma bitwise_binop_shl:
forall f x y n,
f false false = false ->
bitwise_binop f (shl x n) (shl y n) = shl (bitwise_binop f x y) n.
Proof.
intros. unfold bitwise_binop, shl.
repeat rewrite unsigned_repr; auto with ints.
decEq; apply Z_of_bits_exten; intros.
repeat rewrite Zplus_0_r.
destruct (zlt (i + -unsigned n) 0).
rewrite bits_of_Z_of_bits_gen; auto.
rewrite bits_of_Z_of_bits_gen; auto.
repeat rewrite bits_of_Z_below; auto.
repeat rewrite bits_of_Z_of_bits_gen; auto. repeat rewrite Zplus_0_r. auto.
generalize (unsigned_range n). omega.
Qed.
Theorem and_shl:
forall x y n,
and (shl x n) (shl y n) = shl (and x y) n.
Proof.
unfold and; intros. apply bitwise_binop_shl. reflexivity.
Qed.
Theorem or_shl:
forall x y n,
or (shl x n) (shl y n) = shl (or x y) n.
Proof.
unfold or; intros. apply bitwise_binop_shl. reflexivity.
Qed.
Theorem xor_shl:
forall x y n,
xor (shl x n) (shl y n) = shl (xor x y) n.
Proof.
unfold xor; intros. apply bitwise_binop_shl. reflexivity.
Qed.
Lemma ltu_inv:
forall x y, ltu x y = true -> 0 <= unsigned x < unsigned y.
Proof.
unfold ltu; intros. destruct (zlt (unsigned x) (unsigned y)).
split; auto. generalize (unsigned_range x); omega.
discriminate.
Qed.
Theorem shl_shl:
forall x y z,
ltu y iwordsize = true ->
ltu z iwordsize = true ->
ltu (add y z) iwordsize = true ->
shl (shl x y) z = shl x (add y z).
Proof.
intros. unfold shl, add.
generalize (ltu_inv _ _ H).
generalize (ltu_inv _ _ H0).
rewrite unsigned_repr_wordsize.
set (x' := unsigned x).
set (y' := unsigned y).
set (z' := unsigned z).
intros.
repeat rewrite unsigned_repr; auto with ints.
decEq; apply Z_of_bits_exten; intros n R.
rewrite bits_of_Z_of_bits_gen'.
destruct (zlt (n + - z') 0).
symmetry. apply bits_of_Z_below. omega.
destruct (zle (Z_of_nat wordsize) (n + - z')).
symmetry. apply bits_of_Z_below. omega.
decEq. omega.
generalize two_wordsize_max_unsigned; omega.
Qed.
Theorem shru_zero: forall x, shru x zero = x.
Proof.
intros. unfold shru. rewrite unsigned_zero.
transitivity (repr (unsigned x)). apply eqm_samerepr. apply Z_of_bits_of_Z.
auto with ints.
Qed.
Lemma bitwise_binop_shru:
forall f x y n,
f false false = false ->
bitwise_binop f (shru x n) (shru y n) = shru (bitwise_binop f x y) n.
Proof.
intros. unfold bitwise_binop, shru.
repeat rewrite unsigned_repr; auto with ints.
decEq; apply Z_of_bits_exten; intros.
repeat rewrite Zplus_0_r.
rewrite bits_of_Z_of_bits_gen; auto.
rewrite bits_of_Z_of_bits_gen; auto.
destruct (zlt (i + unsigned n) (Z_of_nat wordsize)).
rewrite bits_of_Z_of_bits. auto. generalize (unsigned_range n); omega.
repeat rewrite bits_of_Z_above; auto.
Qed.
Theorem and_shru:
forall x y n,
and (shru x n) (shru y n) = shru (and x y) n.
Proof.
unfold and; intros. apply bitwise_binop_shru. reflexivity.
Qed.
Theorem or_shru:
forall x y n,
or (shru x n) (shru y n) = shru (or x y) n.
Proof.
unfold or; intros. apply bitwise_binop_shru. reflexivity.
Qed.
Theorem xor_shru:
forall x y n,
xor (shru x n) (shru y n) = shru (xor x y) n.
Proof.
unfold xor; intros. apply bitwise_binop_shru. reflexivity.
Qed.
Theorem shru_shru:
forall x y z,
ltu y iwordsize = true ->
ltu z iwordsize = true ->
ltu (add y z) iwordsize = true ->
shru (shru x y) z = shru x (add y z).
Proof.
intros. unfold shru, add.
generalize (ltu_inv _ _ H).
generalize (ltu_inv _ _ H0).
rewrite unsigned_repr_wordsize.
set (x' := unsigned x).
set (y' := unsigned y).
set (z' := unsigned z).
intros. repeat rewrite unsigned_repr; auto with ints.
decEq; apply Z_of_bits_exten. intros n R.
rewrite bits_of_Z_of_bits_gen'.
destruct (zlt (n + z') 0). omegaContradiction.
destruct (zle (Z_of_nat wordsize) (n + z')).
symmetry. apply bits_of_Z_above. omega.
decEq. omega.
generalize two_wordsize_max_unsigned; omega.
Qed.
Theorem shr_zero: forall x, shr x zero = x.
Proof.
intros. unfold shr. rewrite unsigned_zero.
transitivity (repr (unsigned x)). apply eqm_samerepr.
eapply eqm_trans. 2: apply Z_of_bits_of_Z.
apply eqm_refl2. apply Z_of_bits_exten; intros.
rewrite zlt_true. auto. omega.
auto with ints.
Qed.
Lemma bitwise_binop_shr:
forall f x y n,
bitwise_binop f (shr x n) (shr y n) = shr (bitwise_binop f x y) n.
Proof.
intros. unfold bitwise_binop, shr.
repeat rewrite unsigned_repr; auto with ints.
decEq; apply Z_of_bits_exten; intros.
repeat rewrite bits_of_Z_of_bits_gen; repeat rewrite Zplus_0_r; auto.
generalize (unsigned_range n); intro.
destruct (zlt (i + unsigned n) (Z_of_nat wordsize)); omega.
Qed.
Theorem and_shr:
forall x y n,
and (shr x n) (shr y n) = shr (and x y) n.
Proof.
unfold and; intros. apply bitwise_binop_shr.
Qed.
Theorem or_shr:
forall x y n,
or (shr x n) (shr y n) = shr (or x y) n.
Proof.
unfold or; intros. apply bitwise_binop_shr.
Qed.
Theorem xor_shr:
forall x y n,
xor (shr x n) (shr y n) = shr (xor x y) n.
Proof.
unfold xor; intros. apply bitwise_binop_shr.
Qed.
Theorem shr_shr:
forall x y z,
ltu y iwordsize = true ->
ltu z iwordsize = true ->
ltu (add y z) iwordsize = true ->
shr (shr x y) z = shr x (add y z).
Proof.
intros. unfold shr, add.
generalize (ltu_inv _ _ H).
generalize (ltu_inv _ _ H0).
rewrite unsigned_repr_wordsize.
set (x' := unsigned x).
set (y' := unsigned y).
set (z' := unsigned z).
intros. repeat rewrite unsigned_repr; auto with ints.
decEq; apply Z_of_bits_exten; intros n R.
destruct (zlt (n + z') (Z_of_nat wordsize)).
rewrite bits_of_Z_of_bits_gen.
rewrite (Zplus_comm y' z'). rewrite Zplus_assoc. auto.
omega.
rewrite bits_of_Z_of_bits_gen.
decEq. symmetry. rewrite zlt_false.
destruct (zeq y' 0). rewrite zlt_true; omega. rewrite zlt_false; omega.
omega. omega.
generalize two_wordsize_max_unsigned; omega.
Qed.
Remark two_p_m1_range:
forall n,
0 <= n <= Z_of_nat wordsize ->
0 <= two_p n - 1 <= max_unsigned.
Proof.
intros. split.
assert (two_p n > 0). apply two_p_gt_ZERO. omega. omega.
assert (two_p n <= two_p (Z_of_nat wordsize)). apply two_p_monotone. auto.
unfold max_unsigned. unfold modulus. rewrite two_power_nat_two_p. omega.
Qed.
Theorem shru_shl_and:
forall x y,
ltu y iwordsize = true ->
shru (shl x y) y = and x (repr (two_p (Z_of_nat wordsize - unsigned y) - 1)).
Proof.
intros. exploit ltu_inv; eauto. rewrite unsigned_repr_wordsize. intros.
unfold and, bitwise_binop, shl, shru.
repeat rewrite unsigned_repr; auto with ints.
decEq; apply Z_of_bits_exten; intros. rewrite Zplus_0_r.
rewrite bits_of_Z_two_p.
destruct (zlt (i + unsigned y) (Z_of_nat wordsize)).
rewrite bits_of_Z_of_bits_gen. unfold proj_sumbool. rewrite zlt_true.
rewrite andb_true_r. f_equal. omega.
omega. omega.
rewrite bits_of_Z_above. unfold proj_sumbool. rewrite zlt_false. rewrite andb_false_r; auto.
omega. omega. omega. auto.
apply two_p_m1_range. omega.
Qed.
(** ** Properties of rotations *)
Theorem shl_rolm:
forall x n,
ltu n iwordsize = true ->
shl x n = rolm x n (shl mone n).
Proof.
intros. exploit ltu_inv; eauto. rewrite unsigned_repr_wordsize; intros.
unfold shl, rolm, rol, and, bitwise_binop.
repeat rewrite unsigned_repr; auto with ints.
decEq; apply Z_of_bits_exten; intros. rewrite Zplus_0_r.
repeat rewrite bits_of_Z_of_bits_gen; auto.
destruct (zlt i (unsigned n)).
assert (i + - unsigned n < 0). omega.
rewrite (bits_of_Z_below wordsize (unsigned x) _ H2).
rewrite (bits_of_Z_below wordsize (unsigned mone) _ H2).
symmetry. apply andb_b_false.
assert (0 <= i + - unsigned n < Z_of_nat wordsize).
generalize (unsigned_range n). omega.
rewrite unsigned_mone.
rewrite bits_of_Z_mone; auto. rewrite andb_b_true. decEq.
rewrite Zmod_small. omega. omega.
Qed.
Theorem shru_rolm:
forall x n,
ltu n iwordsize = true ->
shru x n = rolm x (sub iwordsize n) (shru mone n).
Proof.
intros. generalize (ltu_inv _ _ H). rewrite unsigned_repr_wordsize. intro.
unfold shru, rolm, rol, and, bitwise_binop.
repeat rewrite unsigned_repr; auto with ints.
decEq; apply Z_of_bits_exten; intros. rewrite Zplus_0_r.
repeat rewrite bits_of_Z_of_bits_gen; auto.
unfold sub. rewrite unsigned_repr_wordsize.
rewrite unsigned_repr.
case (zlt (i + unsigned n) (Z_of_nat wordsize)); intro LT2.
rewrite unsigned_mone. rewrite bits_of_Z_mone. rewrite andb_b_true.
decEq.
replace (i + - (Z_of_nat wordsize - unsigned n))
with ((i + unsigned n) + (-1) * Z_of_nat wordsize) by omega.
rewrite Z_mod_plus. symmetry. apply Zmod_small.
generalize (unsigned_range n). omega. omega. omega.
rewrite (bits_of_Z_above wordsize (unsigned x) _ LT2).
rewrite (bits_of_Z_above wordsize (unsigned mone) _ LT2).
symmetry. apply andb_b_false.
split. omega. apply Zle_trans with (Z_of_nat wordsize).
generalize (unsigned_range n); omega. apply wordsize_max_unsigned.
Qed.
Theorem rol_zero:
forall x,
rol x zero = x.
Proof.
intros. transitivity (repr (unsigned x)).
unfold rol. apply eqm_samerepr. eapply eqm_trans. 2: apply Z_of_bits_of_Z.
apply eqm_refl2. apply Z_of_bits_exten; intros. decEq. rewrite unsigned_zero.
replace (i + - 0) with (i + 0) by omega. apply Zmod_small. omega.
apply repr_unsigned.
Qed.
Lemma bitwise_binop_rol:
forall f x y n,
bitwise_binop f (rol x n) (rol y n) = rol (bitwise_binop f x y) n.
Proof.
intros. unfold bitwise_binop, rol.
repeat rewrite unsigned_repr; auto with ints.
decEq; apply Z_of_bits_exten; intros.
repeat rewrite bits_of_Z_of_bits_gen.
repeat rewrite Zplus_0_r. auto.
apply Z_mod_lt. generalize wordsize_pos; omega.
omega. omega.
Qed.
Theorem rol_and:
forall x y n,
rol (and x y) n = and (rol x n) (rol y n).
Proof.
intros. symmetry. unfold and. apply bitwise_binop_rol.
Qed.
Theorem rol_or:
forall x y n,
rol (or x y) n = or (rol x n) (rol y n).
Proof.
intros. symmetry. unfold or. apply bitwise_binop_rol.
Qed.
Theorem rol_xor:
forall x y n,
rol (xor x y) n = xor (rol x n) (rol y n).
Proof.
intros. symmetry. unfold xor. apply bitwise_binop_rol.
Qed.
Theorem rol_rol:
forall x n m,
Zdivide (Z_of_nat wordsize) modulus ->
rol (rol x n) m = rol x (modu (add n m) iwordsize).
Proof.
intros. unfold rol.
repeat rewrite unsigned_repr; auto with ints.
decEq; apply Z_of_bits_exten; intros.
repeat rewrite bits_of_Z_of_bits; repeat rewrite Zplus_0_r; auto.
rewrite bits_of_Z_of_bits_gen. decEq.
unfold modu, add.
set (W := Z_of_nat wordsize).
set (M := unsigned m); set (N := unsigned n).
assert (W > 0). unfold W; generalize wordsize_pos; omega.
assert (forall a, eqmod W a (unsigned (repr a))).
intros. eapply eqmod_divides. apply eqm_unsigned_repr. assumption.
apply eqmod_mod_eq. auto.
replace (unsigned iwordsize) with W.
apply eqmod_trans with (i - (N + M) mod W).
apply eqmod_trans with ((i - M) - N).
apply eqmod_sub. apply eqmod_sym. apply eqmod_mod. auto.
apply eqmod_refl.
replace (i - M - N) with (i - (N + M)).
apply eqmod_sub. apply eqmod_refl. apply eqmod_mod. auto.
omega.
apply eqmod_sub. apply eqmod_refl.
eapply eqmod_trans; [idtac|apply H2].
eapply eqmod_trans; [idtac|apply eqmod_mod].
apply eqmod_sym. eapply eqmod_trans; [idtac|apply eqmod_mod].
apply eqmod_sym. apply H2. auto. auto.
symmetry. unfold W. apply unsigned_repr_wordsize.
apply Z_mod_lt. generalize wordsize_pos; omega.
Qed.
Theorem rolm_zero:
forall x m,
rolm x zero m = and x m.
Proof.
intros. unfold rolm. rewrite rol_zero. auto.
Qed.
Theorem rolm_rolm:
forall x n1 m1 n2 m2,
Zdivide (Z_of_nat wordsize) modulus ->
rolm (rolm x n1 m1) n2 m2 =
rolm x (modu (add n1 n2) iwordsize)
(and (rol m1 n2) m2).
Proof.
intros.
unfold rolm. rewrite rol_and. rewrite and_assoc.
rewrite rol_rol. reflexivity. auto.
Qed.
Theorem or_rolm:
forall x n m1 m2,
or (rolm x n m1) (rolm x n m2) = rolm x n (or m1 m2).
Proof.
intros; unfold rolm. symmetry. apply and_or_distrib.
Qed.
Theorem ror_rol:
forall x y,
ltu y iwordsize = true ->
ror x y = rol x (sub iwordsize y).
Proof.
intros. unfold ror, rol, sub.
generalize (ltu_inv _ _ H).
rewrite unsigned_repr_wordsize.
intro. repeat rewrite unsigned_repr; auto with ints.
decEq; apply Z_of_bits_exten; intros. decEq.
apply eqmod_mod_eq. omega.
exists 1. omega.
generalize wordsize_pos; generalize wordsize_max_unsigned; omega.
Qed.
Theorem or_ror:
forall x y z,
ltu y iwordsize = true ->
ltu z iwordsize = true ->
add y z = iwordsize ->
ror x z = or (shl x y) (shru x z).
Proof.
intros.
generalize (ltu_inv _ _ H).
generalize (ltu_inv _ _ H0).
rewrite unsigned_repr_wordsize.
intros.
unfold or, bitwise_binop, shl, shru, ror.
set (ux := unsigned x).
repeat rewrite unsigned_repr; auto with ints.
decEq; apply Z_of_bits_exten. intros i iRANGE. rewrite Zplus_0_r.
repeat rewrite bits_of_Z_of_bits_gen; auto.
assert (y = sub iwordsize z).
rewrite <- H1. rewrite add_commut. rewrite sub_add_l. rewrite sub_idem.
rewrite add_commut. rewrite add_zero. auto.
assert (unsigned y = Z_of_nat wordsize - unsigned z).
rewrite H4. unfold sub. rewrite unsigned_repr_wordsize. apply unsigned_repr.
generalize wordsize_max_unsigned; omega.
destruct (zlt (i + unsigned z) (Z_of_nat wordsize)).
rewrite Zmod_small.
replace (bits_of_Z wordsize ux (i + - unsigned y)) with false. auto.
symmetry. apply bits_of_Z_below. omega. omega.
replace (bits_of_Z wordsize ux (i + unsigned z)) with false. rewrite orb_false_r.
decEq.
replace (i + unsigned z) with (i - unsigned y + 1 * Z_of_nat wordsize) by omega.
rewrite Z_mod_plus. apply Zmod_small. omega. generalize wordsize_pos; omega.
symmetry. apply bits_of_Z_above. auto.
Qed.
(** ** Properties of [Z_one_bits] and [is_power2]. *)
Fixpoint powerserie (l: list Z): Z :=
match l with
| nil => 0
| x :: xs => two_p x + powerserie xs
end.
Lemma Z_bin_decomp_range:
forall x n,
0 <= x < 2 * n -> 0 <= snd (Z_bin_decomp x) < n.
Proof.
intros. rewrite <- (Z_shift_add_bin_decomp x) in H.
unfold Z_shift_add in H. destruct (fst (Z_bin_decomp x)); omega.
Qed.
Lemma Z_one_bits_powerserie:
forall x, 0 <= x < modulus -> x = powerserie (Z_one_bits wordsize x 0).
Proof.
assert (forall n x i,
0 <= i ->
0 <= x < two_power_nat n ->
x * two_p i = powerserie (Z_one_bits n x i)).
induction n; intros.
simpl. rewrite two_power_nat_O in H0.
assert (x = 0). omega. subst x. omega.
rewrite two_power_nat_S in H0. simpl Z_one_bits.
generalize (Z_shift_add_bin_decomp x).
generalize (Z_bin_decomp_range x _ H0).
case (Z_bin_decomp x). simpl. intros b y RANGE SHADD.
subst x. unfold Z_shift_add.
destruct b. simpl powerserie. rewrite <- IHn.
rewrite two_p_is_exp. change (two_p 1) with 2. ring.
auto. omega. omega. auto.
rewrite <- IHn.
rewrite two_p_is_exp. change (two_p 1) with 2. ring.
auto. omega. omega. auto.
intros. rewrite <- H. change (two_p 0) with 1. omega.
omega. exact H0.
Qed.
Lemma Z_one_bits_range:
forall x i, In i (Z_one_bits wordsize x 0) -> 0 <= i < Z_of_nat wordsize.
Proof.
assert (forall n x i j,
In j (Z_one_bits n x i) -> i <= j < i + Z_of_nat n).
induction n; simpl In.
intros; elim H.
intros x i j. destruct (Z_bin_decomp x). case b.
rewrite inj_S. simpl. intros [A|B]. subst j. omega.
generalize (IHn _ _ _ B). omega.
intros B. rewrite inj_S. generalize (IHn _ _ _ B). omega.
intros. generalize (H wordsize x 0 i H0). omega.
Qed.
Lemma is_power2_rng:
forall n logn,
is_power2 n = Some logn ->
0 <= unsigned logn < Z_of_nat wordsize.
Proof.
intros n logn. unfold is_power2.
generalize (Z_one_bits_range (unsigned n)).
destruct (Z_one_bits wordsize (unsigned n) 0).
intros; discriminate.
destruct l.
intros. injection H0; intro; subst logn; clear H0.
assert (0 <= z < Z_of_nat wordsize).
apply H. auto with coqlib.
rewrite unsigned_repr. auto. generalize wordsize_max_unsigned; omega.
intros; discriminate.
Qed.
Theorem is_power2_range:
forall n logn,
is_power2 n = Some logn -> ltu logn iwordsize = true.
Proof.
intros. unfold ltu. rewrite unsigned_repr_wordsize.
generalize (is_power2_rng _ _ H).
case (zlt (unsigned logn) (Z_of_nat wordsize)); intros.
auto. omegaContradiction.
Qed.
Lemma is_power2_correct:
forall n logn,
is_power2 n = Some logn ->
unsigned n = two_p (unsigned logn).
Proof.
intros n logn. unfold is_power2.
generalize (Z_one_bits_powerserie (unsigned n) (unsigned_range n)).
generalize (Z_one_bits_range (unsigned n)).
destruct (Z_one_bits wordsize (unsigned n) 0).
intros; discriminate.
destruct l.
intros. simpl in H0. injection H1; intros; subst logn; clear H1.
rewrite unsigned_repr. replace (two_p z) with (two_p z + 0).
auto. omega. elim (H z); intros.
generalize wordsize_max_unsigned; omega.
auto with coqlib.
intros; discriminate.
Qed.
Remark two_p_range:
forall n,
0 <= n < Z_of_nat wordsize ->
0 <= two_p n <= max_unsigned.
Proof.
intros. split.
assert (two_p n > 0). apply two_p_gt_ZERO. omega. omega.
generalize (two_p_monotone_strict _ _ H). rewrite <- two_power_nat_two_p.
unfold max_unsigned, modulus. omega.
Qed.
Remark Z_one_bits_zero:
forall n i, Z_one_bits n 0 i = nil.
Proof.
induction n; intros; simpl; auto.
Qed.
Remark Z_one_bits_two_p:
forall n x i,
0 <= x < Z_of_nat n ->
Z_one_bits n (two_p x) i = (i + x) :: nil.
Proof.
induction n; intros; simpl. simpl in H. omegaContradiction.
rewrite inj_S in H.
assert (x = 0 \/ 0 < x) by omega. destruct H0.
subst x; simpl. decEq. omega. apply Z_one_bits_zero.
replace (two_p x) with (Z_shift_add false (two_p (x-1))).
rewrite Z_bin_decomp_shift_add.
replace (i + x) with ((i + 1) + (x - 1)) by omega.
apply IHn. omega.
unfold Z_shift_add. rewrite <- two_p_S. decEq; omega. omega.
Qed.
Lemma is_power2_two_p:
forall n, 0 <= n < Z_of_nat wordsize ->
is_power2 (repr (two_p n)) = Some (repr n).
Proof.
intros. unfold is_power2. rewrite unsigned_repr.
rewrite Z_one_bits_two_p. auto. auto.
apply two_p_range. auto.
Qed.
(** ** Relation between bitwise operations and multiplications / divisions by powers of 2 *)
(** Left shifts and multiplications by powers of 2. *)
Lemma Z_of_bits_shift_left:
forall f m,
m >= 0 ->
(forall i, i < 0 -> f i = false) ->
eqm (Z_of_bits wordsize f (-m)) (two_p m * Z_of_bits wordsize f 0).
Proof.
intros.
set (m' := nat_of_Z m).
assert (Z_of_nat m' = m). apply nat_of_Z_eq. auto.
generalize (Z_of_bits_compose f m' wordsize (-m)). rewrite H1.
replace (-m+m) with 0 by omega. rewrite two_power_nat_two_p. rewrite H1.
replace (Z_of_bits m' f (-m)) with 0. intro EQ.
eapply eqm_trans. apply eqm_sym. eapply Z_of_bits_truncate with (n := m').
rewrite plus_comm. rewrite EQ. apply eqm_refl2. ring.
symmetry. apply Z_of_bits_false. rewrite H1. intros. apply H0. omega.
Qed.
Lemma shl_mul_two_p:
forall x y,
shl x y = mul x (repr (two_p (unsigned y))).
Proof.
intros. unfold shl, mul. apply eqm_samerepr.
eapply eqm_trans.
apply Z_of_bits_shift_left.
generalize (unsigned_range y). omega.
intros; apply bits_of_Z_below; auto.
rewrite Zmult_comm. apply eqm_mult.
apply Z_of_bits_of_Z. apply eqm_unsigned_repr.
Qed.
Theorem shl_mul:
forall x y,
shl x y = mul x (shl one y).
Proof.
intros.
assert (shl one y = repr (two_p (unsigned y))).
rewrite shl_mul_two_p. rewrite mul_commut. rewrite mul_one. auto.
rewrite H. apply shl_mul_two_p.
Qed.
Theorem mul_pow2:
forall x n logn,
is_power2 n = Some logn ->
mul x n = shl x logn.
Proof.
intros. generalize (is_power2_correct n logn H); intro.
rewrite shl_mul_two_p. rewrite <- H0. rewrite repr_unsigned.
auto.
Qed.
(** Unsigned right shifts and unsigned divisions by powers of 2. *)
Lemma Z_of_bits_shift_right:
forall m f,
m >= 0 ->
(forall i, i >= Z_of_nat wordsize -> f i = false) ->
exists k,
Z_of_bits wordsize f 0 = k + two_p m * Z_of_bits wordsize f m /\ 0 <= k < two_p m.
Proof.
intros.
set (m' := nat_of_Z m).
assert (Z_of_nat m' = m). apply nat_of_Z_eq. auto.
generalize (Z_of_bits_compose f m' wordsize 0).
rewrite two_power_nat_two_p. rewrite H1.
rewrite plus_comm. rewrite Z_of_bits_compose.
replace (Z_of_bits m' f (0 + Z_of_nat wordsize)) with 0.
repeat rewrite Zplus_0_l. intros EQ.
exists (Z_of_bits m' f 0); split. rewrite EQ. ring.
rewrite <- H1. rewrite <- two_power_nat_two_p. apply Z_of_bits_range.
symmetry. apply Z_of_bits_false. intros. apply H0. omega.
Qed.
Lemma shru_div_two_p:
forall x y,
shru x y = repr (unsigned x / two_p (unsigned y)).
Proof.
intros. unfold shru.
set (x' := unsigned x). set (y' := unsigned y).
destruct (Z_of_bits_shift_right y' (bits_of_Z wordsize x')) as [k [EQ RANGE]].
generalize (unsigned_range y). unfold y'; omega.
intros. rewrite bits_of_Z_above; auto.
decEq. symmetry. apply Zdiv_unique with k; auto.
transitivity (Z_of_bits wordsize (bits_of_Z wordsize x') 0).
apply eqm_small_eq. apply eqm_sym. apply Z_of_bits_of_Z.
unfold x'; auto with ints. auto with ints.
rewrite EQ. ring.
Qed.
Theorem divu_pow2:
forall x n logn,
is_power2 n = Some logn ->
divu x n = shru x logn.
Proof.
intros. generalize (is_power2_correct n logn H). intro.
symmetry. unfold divu. rewrite H0. apply shru_div_two_p.
Qed.
(** Signed right shifts and signed divisions by powers of 2. *)
Lemma Z_of_bits_shift_right_neg:
forall m f,
m >= 0 ->
(forall i, i >= Z_of_nat wordsize -> f i = true) ->
exists k,
Z_of_bits wordsize f 0 - modulus =
k + two_p m * (Z_of_bits wordsize f m - modulus)
/\ 0 <= k < two_p m.
Proof.
intros.
set (m' := nat_of_Z m).
assert (Z_of_nat m' = m). apply nat_of_Z_eq. auto.
generalize (Z_of_bits_compose f m' wordsize 0).
rewrite two_power_nat_two_p. rewrite H1.
rewrite plus_comm. rewrite Z_of_bits_compose.
repeat rewrite Zplus_0_l. fold modulus.
replace (Z_of_bits m' f (Z_of_nat wordsize)) with (two_p m - 1).
intros EQ.
exists (Z_of_bits m' f 0); split.
replace (Z_of_bits wordsize f 0)
with (Z_of_bits wordsize f m * two_p m + Z_of_bits m' f 0 - (two_p m - 1) * modulus)
by omega.
ring.
rewrite <- H1. rewrite <- two_power_nat_two_p. apply Z_of_bits_range.
rewrite <- H1. rewrite <- two_power_nat_two_p.
symmetry. apply Z_of_bits_true. intros. apply H0. omega.
Qed.
Lemma sign_bit_of_Z_rec:
forall n x,
0 <= x < two_power_nat (S n) ->
bits_of_Z (S n) x (Z_of_nat n) = if zlt x (two_power_nat n) then false else true.
Proof.
induction n; intros.
rewrite two_power_nat_S in H. rewrite two_power_nat_O in *. simpl.
caseEq (Z_bin_decomp x); intros b x1 ZBD. rewrite zeq_true.
generalize (Z_shift_add_bin_decomp x). rewrite ZBD; simpl. intros. subst x.
unfold Z_shift_add in *.
destruct b. rewrite zlt_false. auto. omega. rewrite zlt_true. auto. omega.
rewrite inj_S. remember (S n) as sn. simpl. rewrite two_power_nat_S in H.
generalize (Z_shift_add_bin_decomp x). destruct (Z_bin_decomp x) as [b x1].
simpl. intros. rewrite zeq_false.
replace (Zsucc (Z_of_nat n) - 1) with (Z_of_nat n). rewrite IHn.
rewrite <- H0. subst sn. rewrite two_power_nat_S.
destruct (zlt x1 (two_power_nat n)).
rewrite zlt_true. auto. unfold Z_shift_add; destruct b; omega.
rewrite zlt_false. auto. unfold Z_shift_add; destruct b; omega.
subst x. unfold Z_shift_add in H. destruct b; omega.
omega. omega.
Qed.
Lemma sign_bit_of_Z:
forall x,
bits_of_Z wordsize (unsigned x) (Z_of_nat wordsize - 1) =
if zlt (unsigned x) half_modulus then false else true.
Proof.
intros.
rewrite half_modulus_power.
set (w1 := nat_of_Z (Z_of_nat wordsize - 1)).
assert (Z_of_nat wordsize - 1 = Z_of_nat w1).
unfold w1. rewrite nat_of_Z_eq; auto. generalize wordsize_pos; omega.
assert (wordsize = 1 + w1)%nat.
apply inj_eq_rev. rewrite inj_plus. simpl (Z_of_nat 1). omega.
rewrite H. rewrite <- two_power_nat_two_p. rewrite H0.
apply sign_bit_of_Z_rec. simpl in H0; rewrite <- H0. auto with ints.
Qed.
Lemma shr_div_two_p:
forall x y,
shr x y = repr (signed x / two_p (unsigned y)).
Proof.
intros. unfold shr.
generalize (sign_bit_of_Z x); intro SIGN.
unfold signed. destruct (zlt (unsigned x) half_modulus).
(* positive case *)
rewrite <- shru_div_two_p. unfold shru. decEq; apply Z_of_bits_exten; intros.
destruct (zlt (i + unsigned y) (Z_of_nat wordsize)). auto.
rewrite SIGN. symmetry. apply bits_of_Z_above. auto.
(* negative case *)
set (x' := unsigned x) in *. set (y' := unsigned y) in *.
set (f := fun i => bits_of_Z wordsize x'
(if zlt i (Z_of_nat wordsize) then i else Z_of_nat wordsize - 1)).
destruct (Z_of_bits_shift_right_neg y' f) as [k [EQ RANGE]].
generalize (unsigned_range y). unfold y'; omega.
intros. unfold f. rewrite zlt_false; auto.
set (A := Z_of_bits wordsize f y') in *.
set (B := Z_of_bits wordsize f 0) in *.
assert (B = Z_of_bits wordsize (bits_of_Z wordsize x') 0).
unfold B. apply Z_of_bits_exten; intros.
unfold f. rewrite zlt_true. auto. omega.
assert (B = x').
apply eqm_small_eq. rewrite H. apply Z_of_bits_of_Z.
unfold B; apply Z_of_bits_range.
unfold x'; apply unsigned_range.
assert (Q: (x' - modulus) / two_p y' = A - modulus).
apply Zdiv_unique with k; auto. rewrite <- H0. rewrite EQ. ring.
rewrite Q. apply eqm_samerepr. exists 1; ring.
Qed.
Theorem divs_pow2:
forall x n logn,
is_power2 n = Some logn ->
divs x n = shrx x logn.
Proof.
intros. generalize (is_power2_correct _ _ H); intro.
unfold shrx. rewrite shl_mul_two_p.
rewrite mul_commut. rewrite mul_one.
rewrite <- H0. rewrite repr_unsigned. auto.
Qed.
(** Unsigned modulus over [2^n] is masking with [2^n-1]. *)
Lemma Z_of_bits_mod_mask:
forall f n,
0 <= n <= Z_of_nat wordsize ->
Z_of_bits wordsize (fun i => if zlt i n then f i else false) 0 =
(Z_of_bits wordsize f 0) mod (two_p n).
Proof.
intros. set (f' := fun i => if zlt i n then f i else false).
set (n1 := nat_of_Z n). set (m1 := nat_of_Z (Z_of_nat wordsize - n)).
assert (Z_of_nat n1 = n). apply nat_of_Z_eq; omega.
assert (Z_of_nat m1 = Z_of_nat wordsize - n). apply nat_of_Z_eq; omega.
assert (n1 + m1 = wordsize)%nat. apply inj_eq_rev. rewrite inj_plus. omega.
generalize (Z_of_bits_compose f n1 m1 0).
rewrite H2. rewrite Zplus_0_l. rewrite two_power_nat_two_p. rewrite H0. intros.
generalize (Z_of_bits_compose f' n1 m1 0).
rewrite H2. rewrite Zplus_0_l. rewrite two_power_nat_two_p. rewrite H0. intros.
assert (Z_of_bits n1 f' 0 = Z_of_bits n1 f 0).
apply Z_of_bits_exten; intros. unfold f'. apply zlt_true. omega.
assert (Z_of_bits m1 f' n = 0).
apply Z_of_bits_false; intros. unfold f'. apply zlt_false. omega.
assert (Z_of_bits wordsize f' 0 = Z_of_bits n1 f 0).
rewrite H4. rewrite H5. rewrite H6. ring.
symmetry. apply Zmod_unique with (Z_of_bits m1 f n). omega.
rewrite H7. rewrite <- H0. rewrite <- two_power_nat_two_p. apply Z_of_bits_range.
Qed.
Theorem modu_and:
forall x n logn,
is_power2 n = Some logn ->
modu x n = and x (sub n one).
Proof.
intros. generalize (is_power2_correct _ _ H); intro.
generalize (is_power2_rng _ _ H); intro.
unfold modu, and, bitwise_binop. decEq.
set (ux := unsigned x).
replace ux with (Z_of_bits wordsize (bits_of_Z wordsize ux) 0).
rewrite H0. rewrite <- Z_of_bits_mod_mask.
apply Z_of_bits_exten; intros. rewrite Zplus_0_r.
rewrite bits_of_Z_of_bits; auto.
replace (unsigned (sub n one)) with (two_p (unsigned logn) - 1).
rewrite bits_of_Z_two_p. unfold proj_sumbool.
destruct (zlt i (unsigned logn)). rewrite andb_true_r; auto. rewrite andb_false_r; auto.
omega. auto.
rewrite <- H0. unfold sub. symmetry. rewrite unsigned_one. apply unsigned_repr.
rewrite H0.
assert (two_p (unsigned logn) > 0). apply two_p_gt_ZERO. omega.
generalize (two_p_range _ H1). omega.
omega.
apply eqm_small_eq. apply Z_of_bits_of_Z. apply Z_of_bits_range.
unfold ux. apply unsigned_range.
Qed.
(** ** Properties of [shrx] (signed division by a power of 2) *)
Theorem shrx_carry:
forall x y,
add (shr x y) (shr_carry x y) = shrx x y.
Proof.
intros. unfold shr_carry.
rewrite sub_add_opp. rewrite add_permut.
rewrite add_neg_zero. apply add_zero.
Qed.
Lemma Zdiv_round_Zdiv:
forall x y,
y > 0 ->
Zdiv_round x y = if zlt x 0 then (x + y - 1) / y else x / y.
Proof.
intros. unfold Zdiv_round.
destruct (zlt x 0).
rewrite zlt_false; try omega.
generalize (Z_div_mod_eq (-x) y H).
generalize (Z_mod_lt (-x) y H).
set (q := (-x) / y). set (r := (-x) mod y). intros.
symmetry.
apply Zdiv_unique with (y - r - 1).
replace x with (- (y * q) - r) by omega.
replace (-(y * q)) with ((-q) * y) by ring.
omega.
omega.
apply zlt_false. omega.
Qed.
Theorem shrx_shr:
forall x y,
ltu y (repr (Z_of_nat wordsize - 1)) = true ->
shrx x y =
shr (if lt x zero then add x (sub (shl one y) one) else x) y.
Proof.
intros. rewrite shr_div_two_p. unfold shrx. unfold divs.
exploit ltu_inv; eauto. rewrite unsigned_repr.
set (uy := unsigned y). intro RANGE.
assert (shl one y = repr (two_p uy)).
transitivity (mul one (repr (two_p uy))).
symmetry. apply mul_pow2. replace y with (repr uy).
apply is_power2_two_p. omega. apply repr_unsigned.
rewrite mul_commut. apply mul_one.
assert (two_p uy > 0). apply two_p_gt_ZERO. omega.
assert (two_p uy < half_modulus).
rewrite half_modulus_power.
apply two_p_monotone_strict. auto.
assert (two_p uy < modulus).
rewrite modulus_power. apply two_p_monotone_strict. omega.
assert (unsigned (shl one y) = two_p uy).
rewrite H0. apply unsigned_repr. unfold max_unsigned. omega.
assert (signed (shl one y) = two_p uy).
rewrite H0. apply signed_repr.
unfold max_signed. generalize min_signed_neg. omega.
rewrite H5.
rewrite Zdiv_round_Zdiv; auto.
unfold lt. rewrite signed_zero.
destruct (zlt (signed x) 0); auto.
rewrite add_signed.
assert (signed (sub (shl one y) one) = two_p uy - 1).
unfold sub. rewrite H4. rewrite unsigned_one.
apply signed_repr.
generalize min_signed_neg. unfold max_signed. omega.
rewrite H6. rewrite signed_repr. decEq. decEq. omega.
generalize (signed_range x). intros.
assert (two_p uy - 1 <= max_signed). unfold max_signed. omega.
omega.
generalize wordsize_pos wordsize_max_unsigned; omega.
Qed.
(** ** Properties of integer zero extension and sign extension. *)
Section EXTENSIONS.
Variable n: Z.
Hypothesis RANGE: 0 < n < Z_of_nat wordsize.
Remark two_p_n_pos:
two_p n > 0.
Proof. apply two_p_gt_ZERO. omega. Qed.
Remark two_p_n_range:
0 <= two_p n <= max_unsigned.
Proof. apply two_p_range. omega. Qed.
Remark two_p_n_range':
two_p n <= max_signed + 1.
Proof.
unfold max_signed. rewrite half_modulus_power.
assert (two_p n <= two_p (Z_of_nat wordsize - 1)).
apply two_p_monotone. omega.
omega.
Qed.
Remark unsigned_repr_two_p:
unsigned (repr (two_p n)) = two_p n.
Proof.
apply unsigned_repr. apply two_p_n_range.
Qed.
Remark eqm_eqmod_two_p:
forall a b, eqm a b -> eqmod (two_p n) a b.
Proof.
intros a b [k EQ].
exists (k * two_p (Z_of_nat wordsize - n)).
rewrite EQ. decEq. rewrite <- Zmult_assoc. decEq.
rewrite <- two_p_is_exp. unfold modulus. rewrite two_power_nat_two_p.
decEq. omega. omega. omega.
Qed.
Theorem zero_ext_and:
forall x, zero_ext n x = and x (repr (two_p n - 1)).
Proof.
intros; unfold zero_ext, and, bitwise_binop.
decEq; apply Z_of_bits_exten; intros.
rewrite unsigned_repr. rewrite bits_of_Z_two_p.
unfold proj_sumbool. destruct (zlt (i+0) n).
rewrite andb_true_r; auto. rewrite andb_false_r; auto.
omega. omega.
generalize two_p_n_range two_p_n_pos; omega.
Qed.
Theorem zero_ext_mod:
forall x, unsigned (zero_ext n x) = Zmod (unsigned x) (two_p n).
Proof.
intros.
replace (unsigned x) with (Z_of_bits wordsize (bits_of_Z wordsize (unsigned x)) 0).
unfold zero_ext. rewrite unsigned_repr; auto with ints.
apply Z_of_bits_mod_mask. omega.
apply eqm_small_eq; auto with ints. apply Z_of_bits_of_Z.
Qed.
Theorem zero_ext_idem:
forall x, zero_ext n (zero_ext n x) = zero_ext n x.
Proof.
intros. repeat rewrite zero_ext_and.
rewrite and_assoc. rewrite and_idem. auto.
Qed.
Theorem sign_ext_idem:
forall x, sign_ext n (sign_ext n x) = sign_ext n x.
Proof.
intros. unfold sign_ext.
repeat rewrite unsigned_repr; auto with ints.
decEq; apply Z_of_bits_exten; intros. rewrite Zplus_0_r.
repeat rewrite bits_of_Z_of_bits; auto.
destruct (zlt i n). auto. destruct (zlt (n - 1) n); auto.
omega.
Qed.
Theorem sign_ext_zero_ext:
forall x, sign_ext n (zero_ext n x) = sign_ext n x.
Proof.
intros. unfold sign_ext, zero_ext.
repeat rewrite unsigned_repr; auto with ints.
decEq; apply Z_of_bits_exten; intros. rewrite Zplus_0_r.
destruct (zlt i n); rewrite bits_of_Z_of_bits; auto.
rewrite zlt_true; auto. rewrite zlt_true; auto. omega. omega.
Qed.
Theorem zero_ext_sign_ext:
forall x, zero_ext n (sign_ext n x) = zero_ext n x.
Proof.
intros. unfold sign_ext, zero_ext.
repeat rewrite unsigned_repr; auto with ints.
decEq; apply Z_of_bits_exten; intros. rewrite Zplus_0_r.
destruct (zlt i n); auto.
rewrite bits_of_Z_of_bits; auto.
rewrite zlt_true; auto.
Qed.
Theorem sign_ext_equal_if_zero_equal:
forall x y,
zero_ext n x = zero_ext n y ->
sign_ext n x = sign_ext n y.
Proof.
intros. rewrite <- (sign_ext_zero_ext x).
rewrite <- (sign_ext_zero_ext y). congruence.
Qed.
Theorem zero_ext_shru_shl:
forall x,
let y := repr (Z_of_nat wordsize - n) in
zero_ext n x = shru (shl x y) y.
Proof.
intros.
assert (unsigned y = Z_of_nat wordsize - n).
unfold y. apply unsigned_repr. generalize wordsize_max_unsigned. omega.
rewrite zero_ext_and. symmetry.
replace n with (Z_of_nat wordsize - unsigned y).
apply shru_shl_and. unfold ltu. apply zlt_true.
rewrite H. rewrite unsigned_repr_wordsize. omega. omega.
Qed.
Theorem sign_ext_shr_shl:
forall x,
let y := repr (Z_of_nat wordsize - n) in
sign_ext n x = shr (shl x y) y.
Proof.
intros.
assert (unsigned y = Z_of_nat wordsize - n).
unfold y. apply unsigned_repr. generalize wordsize_max_unsigned. omega.
unfold sign_ext, shr, shl.
repeat rewrite unsigned_repr; auto with ints.
decEq; apply Z_of_bits_exten; intros; rewrite Zplus_0_r.
destruct (zlt i n). rewrite zlt_true. rewrite bits_of_Z_of_bits_gen.
decEq. omega. omega. omega.
rewrite zlt_false. rewrite bits_of_Z_of_bits_gen.
decEq. omega. omega. omega.
Qed.
(** [zero_ext n x] is the unique integer congruent to [x] modulo [2^n]
in the range [0...2^n-1]. *)
Lemma zero_ext_range:
forall x, 0 <= unsigned (zero_ext n x) < two_p n.
Proof.
intros. rewrite zero_ext_mod. apply Z_mod_lt. apply two_p_gt_ZERO. omega.
Qed.
Lemma eqmod_zero_ext:
forall x, eqmod (two_p n) (unsigned (zero_ext n x)) (unsigned x).
Proof.
intros. rewrite zero_ext_mod. apply eqmod_sym. apply eqmod_mod.
apply two_p_gt_ZERO. omega.
Qed.
(** [sign_ext n x] is the unique integer congruent to [x] modulo [2^n]
in the range [-2^(n-1)...2^(n-1) - 1]. *)
Lemma sign_ext_div:
forall x,
signed (sign_ext n x) =
signed (repr (unsigned x * two_p (Z_of_nat wordsize - n))) / two_p (Z_of_nat wordsize - n).
Proof.
intros.
assert (two_p (Z_of_nat wordsize - n) > 0). apply two_p_gt_ZERO. omega.
rewrite sign_ext_shr_shl. rewrite shr_div_two_p. rewrite shl_mul_two_p.
unfold mul. repeat rewrite unsigned_repr. rewrite signed_repr. auto.
apply Zdiv_interval_2. apply signed_range.
generalize min_signed_neg; omega. apply max_signed_pos.
auto.
generalize wordsize_max_unsigned; omega.
assert (two_p (Z_of_nat wordsize - n) < modulus).
rewrite modulus_power. apply two_p_monotone_strict. omega.
unfold max_unsigned. omega.
generalize wordsize_max_unsigned; omega.
Qed.
Lemma sign_ext_range:
forall x, -two_p (n-1) <= signed (sign_ext n x) < two_p (n-1).
Proof.
intros.
assert (two_p (n - 1) > 0). apply two_p_gt_ZERO. omega.
rewrite sign_ext_div. apply Zdiv_interval_1. omega. auto. apply two_p_gt_ZERO; omega.
rewrite <- Zopp_mult_distr_l. rewrite <- two_p_is_exp.
replace (n - 1 + (Z_of_nat wordsize - n)) with (Z_of_nat wordsize - 1) by omega.
rewrite <- half_modulus_power.
generalize (signed_range (repr (unsigned x * two_p (Z_of_nat wordsize - n)))).
unfold min_signed, max_signed. omega.
omega. omega.
Qed.
Lemma eqmod_sign_ext:
forall x, eqmod (two_p n) (signed (sign_ext n x)) (unsigned x).
Proof.
intros. rewrite sign_ext_div.
assert (eqm (signed (repr (unsigned x * two_p (Z_of_nat wordsize - n))))
(unsigned x * two_p (Z_of_nat wordsize - n))).
eapply eqm_trans. apply eqm_signed_unsigned. apply eqm_sym. apply eqm_unsigned_repr.
destruct H as [k EQ]. exists k.
rewrite EQ. rewrite Z_div_plus. decEq.
replace modulus with (two_p (n + (Z_of_nat wordsize - n))).
rewrite two_p_is_exp. rewrite Zmult_assoc. apply Z_div_mult.
apply two_p_gt_ZERO; omega.
omega. omega.
rewrite modulus_power. decEq. omega.
apply two_p_gt_ZERO; omega.
Qed.
Lemma eqmod_sign_ext':
forall x, eqmod (two_p n) (unsigned (sign_ext n x)) (unsigned x).
Proof.
intros. eapply eqmod_trans.
apply eqm_eqmod_two_p. auto. apply eqm_sym. apply eqm_signed_unsigned.
apply eqmod_sign_ext.
Qed.
End EXTENSIONS.
Theorem zero_ext_widen:
forall x n n',
0 < n < Z_of_nat wordsize -> n <= n' < Z_of_nat wordsize ->
zero_ext n' (zero_ext n x) = zero_ext n x.
Proof.
intros. unfold zero_ext.
repeat rewrite unsigned_repr; auto with ints.
decEq; apply Z_of_bits_exten; intros; rewrite Zplus_0_r.
destruct (zlt i n). rewrite zlt_true. rewrite bits_of_Z_of_bits. apply zlt_true.
auto. omega. omega.
destruct (zlt i n'); auto. rewrite bits_of_Z_of_bits. apply zlt_false.
auto. omega.
Qed.
Theorem sign_ext_widen:
forall x n n',
0 < n < Z_of_nat wordsize -> n <= n' < Z_of_nat wordsize ->
sign_ext n' (sign_ext n x) = sign_ext n x.
Proof.
intros. unfold sign_ext.
repeat rewrite unsigned_repr; auto with ints.
decEq; apply Z_of_bits_exten; intros; rewrite Zplus_0_r.
destruct (zlt i n). rewrite zlt_true. rewrite bits_of_Z_of_bits. apply zlt_true.
auto. omega. omega.
destruct (zlt i n'). rewrite bits_of_Z_of_bits. apply zlt_false.
auto. omega.
rewrite bits_of_Z_of_bits.
destruct (zlt (n' - 1) n). assert (n' = n) by omega. congruence. auto.
omega.
Qed.
Theorem sign_zero_ext_widen:
forall x n n',
0 < n < Z_of_nat wordsize -> n < n' < Z_of_nat wordsize ->
sign_ext n' (zero_ext n x) = zero_ext n x.
Proof.
intros. unfold sign_ext, zero_ext.
repeat rewrite unsigned_repr; auto with ints.
decEq; apply Z_of_bits_exten; intros; rewrite Zplus_0_r.
destruct (zlt i n). rewrite zlt_true. rewrite bits_of_Z_of_bits. apply zlt_true.
auto. omega. omega.
destruct (zlt i n'). rewrite bits_of_Z_of_bits. apply zlt_false.
auto. omega.
rewrite bits_of_Z_of_bits. apply zlt_false. omega. omega.
Qed.
(** ** Properties of [one_bits] (decomposition in sum of powers of two) *)
Opaque Z_one_bits. (* Otherwise, next Qed blows up! *)
Theorem one_bits_range:
forall x i, In i (one_bits x) -> ltu i iwordsize = true.
Proof.
intros. unfold one_bits in H.
elim (list_in_map_inv _ _ _ H). intros i0 [EQ IN].
subst i. unfold ltu. unfold iwordsize. apply zlt_true.
generalize (Z_one_bits_range _ _ IN). intros.
assert (0 <= Z_of_nat wordsize <= max_unsigned).
generalize wordsize_pos wordsize_max_unsigned; omega.
repeat rewrite unsigned_repr; omega.
Qed.
Fixpoint int_of_one_bits (l: list int) : int :=
match l with
| nil => zero
| a :: b => add (shl one a) (int_of_one_bits b)
end.
Theorem one_bits_decomp:
forall x, x = int_of_one_bits (one_bits x).
Proof.
intros.
transitivity (repr (powerserie (Z_one_bits wordsize (unsigned x) 0))).
transitivity (repr (unsigned x)).
auto with ints. decEq. apply Z_one_bits_powerserie.
auto with ints.
unfold one_bits.
generalize (Z_one_bits_range (unsigned x)).
generalize (Z_one_bits wordsize (unsigned x) 0).
induction l.
intros; reflexivity.
intros; simpl. rewrite <- IHl. unfold add. apply eqm_samerepr.
apply eqm_add. rewrite shl_mul_two_p. rewrite mul_commut.
rewrite mul_one. apply eqm_unsigned_repr_r.
rewrite unsigned_repr. auto with ints.
generalize (H a (in_eq _ _)). generalize wordsize_max_unsigned. omega.
auto with ints.
intros; apply H; auto with coqlib.
Qed.
(** ** Properties of comparisons *)
Theorem negate_cmp:
forall c x y, cmp (negate_comparison c) x y = negb (cmp c x y).
Proof.
intros. destruct c; simpl; try rewrite negb_elim; auto.
Qed.
Theorem negate_cmpu:
forall c x y, cmpu (negate_comparison c) x y = negb (cmpu c x y).
Proof.
intros. destruct c; simpl; try rewrite negb_elim; auto.
Qed.
Theorem swap_cmp:
forall c x y, cmp (swap_comparison c) x y = cmp c y x.
Proof.
intros. destruct c; simpl; auto. apply eq_sym. decEq. apply eq_sym.
Qed.
Theorem swap_cmpu:
forall c x y, cmpu (swap_comparison c) x y = cmpu c y x.
Proof.
intros. destruct c; simpl; auto. apply eq_sym. decEq. apply eq_sym.
Qed.
Lemma translate_eq:
forall x y d,
eq (add x d) (add y d) = eq x y.
Proof.
intros. unfold eq. case (zeq (unsigned x) (unsigned y)); intro.
unfold add. rewrite e. apply zeq_true.
apply zeq_false. unfold add. red; intro. apply n.
apply eqm_small_eq; auto with ints.
replace (unsigned x) with ((unsigned x + unsigned d) - unsigned d).
replace (unsigned y) with ((unsigned y + unsigned d) - unsigned d).
apply eqm_sub. apply eqm_trans with (unsigned (repr (unsigned x + unsigned d))).
eauto with ints. apply eqm_trans with (unsigned (repr (unsigned y + unsigned d))).
eauto with ints. eauto with ints. eauto with ints.
omega. omega.
Qed.
Lemma translate_ltu:
forall x y d,
0 <= unsigned x + unsigned d <= max_unsigned ->
0 <= unsigned y + unsigned d <= max_unsigned ->
ltu (add x d) (add y d) = ltu x y.
Proof.
intros. unfold add. unfold ltu.
repeat rewrite unsigned_repr; auto. case (zlt (unsigned x) (unsigned y)); intro.
apply zlt_true. omega.
apply zlt_false. omega.
Qed.
Theorem translate_cmpu:
forall c x y d,
0 <= unsigned x + unsigned d <= max_unsigned ->
0 <= unsigned y + unsigned d <= max_unsigned ->
cmpu c (add x d) (add y d) = cmpu c x y.
Proof.
intros. unfold cmpu.
rewrite translate_eq. repeat rewrite translate_ltu; auto.
Qed.
Lemma translate_lt:
forall x y d,
min_signed <= signed x + signed d <= max_signed ->
min_signed <= signed y + signed d <= max_signed ->
lt (add x d) (add y d) = lt x y.
Proof.
intros. repeat rewrite add_signed. unfold lt.
repeat rewrite signed_repr; auto. case (zlt (signed x) (signed y)); intro.
apply zlt_true. omega.
apply zlt_false. omega.
Qed.
Theorem translate_cmp:
forall c x y d,
min_signed <= signed x + signed d <= max_signed ->
min_signed <= signed y + signed d <= max_signed ->
cmp c (add x d) (add y d) = cmp c x y.
Proof.
intros. unfold cmp.
rewrite translate_eq. repeat rewrite translate_lt; auto.
Qed.
Theorem notbool_isfalse_istrue:
forall x, is_false x -> is_true (notbool x).
Proof.
unfold is_false, is_true, notbool; intros; subst x.
rewrite eq_true. apply one_not_zero.
Qed.
Theorem notbool_istrue_isfalse:
forall x, is_true x -> is_false (notbool x).
Proof.
unfold is_false, is_true, notbool; intros.
generalize (eq_spec x zero). case (eq x zero); intro.
contradiction. auto.
Qed.
Theorem shru_lt_zero:
forall x,
shru x (repr (Z_of_nat wordsize - 1)) = if lt x zero then one else zero.
Proof.
intros. rewrite shru_div_two_p.
replace (two_p (unsigned (repr (Z_of_nat wordsize - 1))))
with half_modulus.
generalize (unsigned_range x); intro.
unfold lt. rewrite signed_zero. unfold signed.
destruct (zlt (unsigned x) half_modulus).
rewrite zlt_false.
replace (unsigned x / half_modulus) with 0. reflexivity.
symmetry. apply Zdiv_unique with (unsigned x). ring. omega. omega.
rewrite zlt_true.
replace (unsigned x / half_modulus) with 1. reflexivity.
symmetry. apply Zdiv_unique with (unsigned x - half_modulus). ring.
rewrite half_modulus_modulus in H. omega. omega.
rewrite unsigned_repr. apply half_modulus_power.
generalize wordsize_pos wordsize_max_unsigned; omega.
Qed.
Theorem ltu_range_test:
forall x y,
ltu x y = true -> unsigned y <= max_signed ->
0 <= signed x < unsigned y.
Proof.
intros.
unfold ltu in H. destruct (zlt (unsigned x) (unsigned y)); try discriminate.
rewrite signed_eq_unsigned.
generalize (unsigned_range x). omega. omega.
Qed.
End Make.
(** * Specialization to integers of size 8, 32, and 64 bits *)
Module Wordsize_32.
Definition wordsize := 32%nat.
Remark wordsize_not_zero: wordsize <> 0%nat.
Proof. unfold wordsize; congruence. Qed.
End Wordsize_32.
Module Int := Make(Wordsize_32).
Notation int := Int.int.
Remark int_wordsize_divides_modulus:
Zdivide (Z_of_nat Int.wordsize) Int.modulus.
Proof.
exists (two_p (32-5)); reflexivity.
Qed.
Module Wordsize_8.
Definition wordsize := 8%nat.
Remark wordsize_not_zero: wordsize <> 0%nat.
Proof. unfold wordsize; congruence. Qed.
End Wordsize_8.
Module Byte := Make(Wordsize_8).
Notation byte := Byte.int.
Module Wordsize_64.
Definition wordsize := 64%nat.
Remark wordsize_not_zero: wordsize <> 0%nat.
Proof. unfold wordsize; congruence. Qed.
End Wordsize_64.
Module Int64 := Make(Wordsize_64).
Notation int64 := Int64.int.