(* *********************************************************************) (* *) (* The Compcert verified compiler *) (* *) (* Xavier Leroy, INRIA Paris-Rocquencourt *) (* *) (* Copyright Institut National de Recherche en Informatique et en *) (* Automatique. All rights reserved. This file is distributed *) (* under the terms of the GNU General Public License as published by *) (* the Free Software Foundation, either version 2 of the License, or *) (* (at your option) any later version. This file is also distributed *) (* under the terms of the INRIA Non-Commercial License Agreement. *) (* *) (* *********************************************************************) (** Formalizations of machine integers modulo $2^N$ #2N#. *) Require Import Eqdep_dec. Require Import Zquot. Require Import Zwf. Require Import Coqlib. (** * Comparisons *) Inductive comparison : Type := | Ceq : comparison (**r same *) | Cne : comparison (**r different *) | Clt : comparison (**r less than *) | Cle : comparison (**r less than or equal *) | Cgt : comparison (**r greater than *) | Cge : comparison. (**r greater than or equal *) Definition negate_comparison (c: comparison): comparison := match c with | Ceq => Cne | Cne => Ceq | Clt => Cge | Cle => Cgt | Cgt => Cle | Cge => Clt end. Definition swap_comparison (c: comparison): comparison := match c with | Ceq => Ceq | Cne => Cne | Clt => Cgt | Cle => Cge | Cgt => Clt | Cge => Cle end. (** * Parameterization by the word size, in bits. *) Module Type WORDSIZE. Variable wordsize: nat. Axiom wordsize_not_zero: wordsize <> 0%nat. End WORDSIZE. (* To avoid useless definitions of inductors in extracted code. *) Local Unset Elimination Schemes. Local Unset Case Analysis Schemes. Module Make(WS: WORDSIZE). Definition wordsize: nat := WS.wordsize. Definition zwordsize: Z := Z_of_nat wordsize. Definition modulus : Z := two_power_nat wordsize. Definition half_modulus : Z := modulus / 2. Definition max_unsigned : Z := modulus - 1. Definition max_signed : Z := half_modulus - 1. Definition min_signed : Z := - half_modulus. Remark wordsize_pos: zwordsize > 0. Proof. unfold zwordsize, wordsize. generalize WS.wordsize_not_zero. omega. Qed. Remark modulus_power: modulus = two_p zwordsize. Proof. unfold modulus. apply two_power_nat_two_p. Qed. Remark modulus_pos: modulus > 0. Proof. rewrite modulus_power. apply two_p_gt_ZERO. generalize wordsize_pos; omega. Qed. (** * Representation of machine integers *) (** A machine integer (type [int]) is represented as a Coq arbitrary-precision integer (type [Z]) plus a proof that it is in the range 0 (included) to [modulus] (excluded). *) Record int: Type := mkint { intval: Z; intrange: -1 < intval < modulus }. (** Fast normalization modulo [2^wordsize] *) Fixpoint P_mod_two_p (p: positive) (n: nat) {struct n} : Z := match n with | O => 0 | S m => match p with | xH => 1 | xO q => Z.double (P_mod_two_p q m) | xI q => Z.succ_double (P_mod_two_p q m) end end. Definition Z_mod_modulus (x: Z) : Z := match x with | Z0 => 0 | Zpos p => P_mod_two_p p wordsize | Zneg p => let r := P_mod_two_p p wordsize in if zeq r 0 then 0 else modulus - r end. Lemma P_mod_two_p_range: forall n p, 0 <= P_mod_two_p p n < two_power_nat n. Proof. induction n; simpl; intros. - rewrite two_power_nat_O. omega. - rewrite two_power_nat_S. destruct p. + generalize (IHn p). rewrite Z.succ_double_spec. omega. + generalize (IHn p). rewrite Z.double_spec. omega. + generalize (two_power_nat_pos n). omega. Qed. Lemma P_mod_two_p_eq: forall n p, P_mod_two_p p n = (Zpos p) mod (two_power_nat n). Proof. assert (forall n p, exists y, Zpos p = y * two_power_nat n + P_mod_two_p p n). { induction n; simpl; intros. - rewrite two_power_nat_O. exists (Zpos p). ring. - rewrite two_power_nat_S. destruct p. + destruct (IHn p) as [y EQ]. exists y. change (Zpos p~1) with (2 * Zpos p + 1). rewrite EQ. rewrite Z.succ_double_spec. ring. + destruct (IHn p) as [y EQ]. exists y. change (Zpos p~0) with (2 * Zpos p). rewrite EQ. rewrite (Z.double_spec (P_mod_two_p p n)). ring. + exists 0; omega. } intros. destruct (H n p) as [y EQ]. symmetry. apply Zmod_unique with y. auto. apply P_mod_two_p_range. Qed. Lemma Z_mod_modulus_range: forall x, 0 <= Z_mod_modulus x < modulus. Proof. intros; unfold Z_mod_modulus. destruct x. - generalize modulus_pos; omega. - apply P_mod_two_p_range. - set (r := P_mod_two_p p wordsize). assert (0 <= r < modulus) by apply P_mod_two_p_range. destruct (zeq r 0). + generalize modulus_pos; omega. + omega. Qed. Lemma Z_mod_modulus_range': forall x, -1 < Z_mod_modulus x < modulus. Proof. intros. generalize (Z_mod_modulus_range x); omega. Qed. Lemma Z_mod_modulus_eq: forall x, Z_mod_modulus x = x mod modulus. Proof. intros. unfold Z_mod_modulus. destruct x. - rewrite Zmod_0_l. auto. - apply P_mod_two_p_eq. - generalize (P_mod_two_p_range wordsize p) (P_mod_two_p_eq wordsize p). fold modulus. intros A B. exploit (Z_div_mod_eq (Zpos p) modulus). apply modulus_pos. intros C. set (q := Zpos p / modulus) in *. set (r := P_mod_two_p p wordsize) in *. rewrite <- B in C. change (Z.neg p) with (- (Z.pos p)). destruct (zeq r 0). + symmetry. apply Zmod_unique with (-q). rewrite C; rewrite e. ring. generalize modulus_pos; omega. + symmetry. apply Zmod_unique with (-q - 1). rewrite C. ring. omega. Qed. (** The [unsigned] and [signed] functions return the Coq integer corresponding to the given machine integer, interpreted as unsigned or signed respectively. *) Definition unsigned (n: int) : Z := intval n. Definition signed (n: int) : Z := let x := unsigned n in if zlt x half_modulus then x else x - modulus. (** Conversely, [repr] takes a Coq integer and returns the corresponding machine integer. The argument is treated modulo [modulus]. *) Definition repr (x: Z) : int := mkint (Z_mod_modulus x) (Z_mod_modulus_range' x). Definition zero := repr 0. Definition one := repr 1. Definition mone := repr (-1). Definition iwordsize := repr zwordsize. Lemma mkint_eq: forall x y Px Py, x = y -> mkint x Px = mkint y Py. Proof. intros. subst y. assert (forall (n m: Z) (P1 P2: n < m), P1 = P2). { unfold Zlt; intros. apply eq_proofs_unicity. intros c1 c2. destruct c1; destruct c2; (left; reflexivity) || (right; congruence). } destruct Px as [Px1 Px2]. destruct Py as [Py1 Py2]. rewrite (H _ _ Px1 Py1). rewrite (H _ _ Px2 Py2). reflexivity. Qed. Lemma eq_dec: forall (x y: int), {x = y} + {x <> y}. Proof. intros. destruct x; destruct y. destruct (zeq intval0 intval1). left. apply mkint_eq. auto. right. red; intro. injection H. exact n. Defined. (** * Arithmetic and logical operations over machine integers *) Definition eq (x y: int) : bool := if zeq (unsigned x) (unsigned y) then true else false. Definition lt (x y: int) : bool := if zlt (signed x) (signed y) then true else false. Definition ltu (x y: int) : bool := if zlt (unsigned x) (unsigned y) then true else false. Definition neg (x: int) : int := repr (- unsigned x). Definition add (x y: int) : int := repr (unsigned x + unsigned y). Definition sub (x y: int) : int := repr (unsigned x - unsigned y). Definition mul (x y: int) : int := repr (unsigned x * unsigned y). Definition divs (x y: int) : int := repr (Z.quot (signed x) (signed y)). Definition mods (x y: int) : int := repr (Z.rem (signed x) (signed y)). Definition divu (x y: int) : int := repr (unsigned x / unsigned y). Definition modu (x y: int) : int := repr ((unsigned x) mod (unsigned y)). (** Bitwise boolean operations. *) Definition and (x y: int): int := repr (Z.land (unsigned x) (unsigned y)). Definition or (x y: int): int := repr (Z.lor (unsigned x) (unsigned y)). Definition xor (x y: int) : int := repr (Z.lxor (unsigned x) (unsigned y)). Definition not (x: int) : int := xor x mone. (** Shifts and rotates. *) Definition shl (x y: int): int := repr (Z.shiftl (unsigned x) (unsigned y)). Definition shru (x y: int): int := repr (Z.shiftr (unsigned x) (unsigned y)). Definition shr (x y: int): int := repr (Z.shiftr (signed x) (unsigned y)). Definition rol (x y: int) : int := let n := (unsigned y) mod zwordsize in repr (Z.lor (Z.shiftl (unsigned x) n) (Z.shiftr (unsigned x) (zwordsize - n))). Definition ror (x y: int) : int := let n := (unsigned y) mod zwordsize in repr (Z.lor (Z.shiftr (unsigned x) n) (Z.shiftl (unsigned x) (zwordsize - n))). Definition rolm (x a m: int): int := and (rol x a) m. (** Viewed as signed divisions by powers of two, [shrx] rounds towards zero, while [shr] rounds towards minus infinity. *) Definition shrx (x y: int): int := divs x (shl one y). (** High half of full multiply. *) Definition mulhu (x y: int): int := repr ((unsigned x * unsigned y) / modulus). Definition mulhs (x y: int): int := repr ((signed x * signed y) / modulus). (** Condition flags *) Definition negative (x: int): int := if lt x zero then one else zero. Definition add_carry (x y cin: int): int := if zlt (unsigned x + unsigned y + unsigned cin) modulus then zero else one. Definition add_overflow (x y cin: int): int := let s := signed x + signed y + signed cin in if zle min_signed s && zle s max_signed then zero else one. Definition sub_borrow (x y bin: int): int := if zlt (unsigned x - unsigned y - unsigned bin) 0 then one else zero. Definition sub_overflow (x y bin: int): int := let s := signed x - signed y - signed bin in if zle min_signed s && zle s max_signed then zero else one. (** [shr_carry x y] is 1 if [x] is negative and at least one 1 bit is shifted away. *) Definition shr_carry (x y: int) : int := if lt x zero && negb (eq (and x (sub (shl one y) one)) zero) then one else zero. (** Zero and sign extensions *) Definition Zshiftin (b: bool) (x: Z) : Z := if b then Z.succ_double x else Z.double x. (** In pseudo-code: << Fixpoint Zzero_ext (n: Z) (x: Z) : Z := if zle n 0 then 0 else Zshiftin (Z.odd x) (Zzero_ext (Z.pred n) (Z.div2 x)). Fixpoint Zsign_ext (n: Z) (x: Z) : Z := if zle n 1 then if Z.odd x then -1 else 0 else Zshiftin (Z.odd x) (Zzero_ext (Z.pred n) (Z.div2 x)). >> We encode this [nat]-like recursion using the [Z.iter] iteration function, in order to make the [Zzero_ext] and [Zsign_ext] functions efficiently executable within Coq. *) Definition Zzero_ext (n: Z) (x: Z) : Z := Z.iter n (fun rec x => Zshiftin (Z.odd x) (rec (Z.div2 x))) (fun x => 0) x. Definition Zsign_ext (n: Z) (x: Z) : Z := Z.iter (Z.pred n) (fun rec x => Zshiftin (Z.odd x) (rec (Z.div2 x))) (fun x => if Z.odd x then -1 else 0) x. Definition zero_ext (n: Z) (x: int) : int := repr (Zzero_ext n (unsigned x)). Definition sign_ext (n: Z) (x: int) : int := repr (Zsign_ext n (unsigned x)). (** Decomposition of a number as a sum of powers of two. *) Fixpoint Z_one_bits (n: nat) (x: Z) (i: Z) {struct n}: list Z := match n with | O => nil | S m => if Z.odd x then i :: Z_one_bits m (Z.div2 x) (i+1) else Z_one_bits m (Z.div2 x) (i+1) end. Definition one_bits (x: int) : list int := List.map repr (Z_one_bits wordsize (unsigned x) 0). (** Recognition of powers of two. *) Definition is_power2 (x: int) : option int := match Z_one_bits wordsize (unsigned x) 0 with | i :: nil => Some (repr i) | _ => None end. (** Comparisons. *) Definition cmp (c: comparison) (x y: int) : bool := match c with | Ceq => eq x y | Cne => negb (eq x y) | Clt => lt x y | Cle => negb (lt y x) | Cgt => lt y x | Cge => negb (lt x y) end. Definition cmpu (c: comparison) (x y: int) : bool := match c with | Ceq => eq x y | Cne => negb (eq x y) | Clt => ltu x y | Cle => negb (ltu y x) | Cgt => ltu y x | Cge => negb (ltu x y) end. Definition is_false (x: int) : Prop := x = zero. Definition is_true (x: int) : Prop := x <> zero. Definition notbool (x: int) : int := if eq x zero then one else zero. (** * Properties of integers and integer arithmetic *) (** ** Properties of [modulus], [max_unsigned], etc. *) Remark half_modulus_power: half_modulus = two_p (zwordsize - 1). Proof. unfold half_modulus. rewrite modulus_power. set (ws1 := zwordsize - 1). replace (zwordsize) with (Zsucc ws1). rewrite two_p_S. rewrite Zmult_comm. apply Z_div_mult. omega. unfold ws1. generalize wordsize_pos; omega. unfold ws1. omega. Qed. Remark half_modulus_modulus: modulus = 2 * half_modulus. Proof. rewrite half_modulus_power. rewrite modulus_power. rewrite <- two_p_S. apply f_equal. omega. generalize wordsize_pos; omega. Qed. (** Relative positions, from greatest to smallest: << max_unsigned max_signed 2*wordsize-1 wordsize 0 min_signed >> *) Remark half_modulus_pos: half_modulus > 0. Proof. rewrite half_modulus_power. apply two_p_gt_ZERO. generalize wordsize_pos; omega. Qed. Remark min_signed_neg: min_signed < 0. Proof. unfold min_signed. generalize half_modulus_pos. omega. Qed. Remark max_signed_pos: max_signed >= 0. Proof. unfold max_signed. generalize half_modulus_pos. omega. Qed. Remark wordsize_max_unsigned: zwordsize <= max_unsigned. Proof. assert (zwordsize < modulus). rewrite modulus_power. apply two_p_strict. generalize wordsize_pos. omega. unfold max_unsigned. omega. Qed. Remark two_wordsize_max_unsigned: 2 * zwordsize - 1 <= max_unsigned. Proof. assert (2 * zwordsize - 1 < modulus). rewrite modulus_power. apply two_p_strict_2. generalize wordsize_pos; omega. unfold max_unsigned; omega. Qed. Remark max_signed_unsigned: max_signed < max_unsigned. Proof. unfold max_signed, max_unsigned. rewrite half_modulus_modulus. generalize half_modulus_pos. omega. Qed. Lemma unsigned_repr_eq: forall x, unsigned (repr x) = Zmod x modulus. Proof. intros. simpl. apply Z_mod_modulus_eq. Qed. Lemma signed_repr_eq: forall x, signed (repr x) = if zlt (Zmod x modulus) half_modulus then Zmod x modulus else Zmod x modulus - modulus. Proof. intros. unfold signed. rewrite unsigned_repr_eq. auto. Qed. (** ** Modulo arithmetic *) (** We define and state properties of equality and arithmetic modulo a positive integer. *) Section EQ_MODULO. Variable modul: Z. Hypothesis modul_pos: modul > 0. Definition eqmod (x y: Z) : Prop := exists k, x = k * modul + y. Lemma eqmod_refl: forall x, eqmod x x. Proof. intros; red. exists 0. omega. Qed. Lemma eqmod_refl2: forall x y, x = y -> eqmod x y. Proof. intros. subst y. apply eqmod_refl. Qed. Lemma eqmod_sym: forall x y, eqmod x y -> eqmod y x. Proof. intros x y [k EQ]; red. exists (-k). subst x. ring. Qed. Lemma eqmod_trans: forall x y z, eqmod x y -> eqmod y z -> eqmod x z. Proof. intros x y z [k1 EQ1] [k2 EQ2]; red. exists (k1 + k2). subst x; subst y. ring. Qed. Lemma eqmod_small_eq: forall x y, eqmod x y -> 0 <= x < modul -> 0 <= y < modul -> x = y. Proof. intros x y [k EQ] I1 I2. generalize (Zdiv_unique _ _ _ _ EQ I2). intro. rewrite (Zdiv_small x modul I1) in H. subst k. omega. Qed. Lemma eqmod_mod_eq: forall x y, eqmod x y -> x mod modul = y mod modul. Proof. intros x y [k EQ]. subst x. rewrite Zplus_comm. apply Z_mod_plus. auto. Qed. Lemma eqmod_mod: forall x, eqmod x (x mod modul). Proof. intros; red. exists (x / modul). rewrite Zmult_comm. apply Z_div_mod_eq. auto. Qed. Lemma eqmod_add: forall a b c d, eqmod a b -> eqmod c d -> eqmod (a + c) (b + d). Proof. intros a b c d [k1 EQ1] [k2 EQ2]; red. subst a; subst c. exists (k1 + k2). ring. Qed. Lemma eqmod_neg: forall x y, eqmod x y -> eqmod (-x) (-y). Proof. intros x y [k EQ]; red. exists (-k). rewrite EQ. ring. Qed. Lemma eqmod_sub: forall a b c d, eqmod a b -> eqmod c d -> eqmod (a - c) (b - d). Proof. intros a b c d [k1 EQ1] [k2 EQ2]; red. subst a; subst c. exists (k1 - k2). ring. Qed. Lemma eqmod_mult: forall a b c d, eqmod a c -> eqmod b d -> eqmod (a * b) (c * d). Proof. intros a b c d [k1 EQ1] [k2 EQ2]; red. subst a; subst b. exists (k1 * k2 * modul + c * k2 + k1 * d). ring. Qed. End EQ_MODULO. Lemma eqmod_divides: forall n m x y, eqmod n x y -> Zdivide m n -> eqmod m x y. Proof. intros. destruct H as [k1 EQ1]. destruct H0 as [k2 EQ2]. exists (k1*k2). rewrite <- Zmult_assoc. rewrite <- EQ2. auto. Qed. (** We then specialize these definitions to equality modulo $2^{wordsize}$ #2wordsize#. *) Hint Resolve modulus_pos: ints. Definition eqm := eqmod modulus. Lemma eqm_refl: forall x, eqm x x. Proof (eqmod_refl modulus). Hint Resolve eqm_refl: ints. Lemma eqm_refl2: forall x y, x = y -> eqm x y. Proof (eqmod_refl2 modulus). Hint Resolve eqm_refl2: ints. Lemma eqm_sym: forall x y, eqm x y -> eqm y x. Proof (eqmod_sym modulus). Hint Resolve eqm_sym: ints. Lemma eqm_trans: forall x y z, eqm x y -> eqm y z -> eqm x z. Proof (eqmod_trans modulus). Hint Resolve eqm_trans: ints. Lemma eqm_small_eq: forall x y, eqm x y -> 0 <= x < modulus -> 0 <= y < modulus -> x = y. Proof (eqmod_small_eq modulus). Hint Resolve eqm_small_eq: ints. Lemma eqm_add: forall a b c d, eqm a b -> eqm c d -> eqm (a + c) (b + d). Proof (eqmod_add modulus). Hint Resolve eqm_add: ints. Lemma eqm_neg: forall x y, eqm x y -> eqm (-x) (-y). Proof (eqmod_neg modulus). Hint Resolve eqm_neg: ints. Lemma eqm_sub: forall a b c d, eqm a b -> eqm c d -> eqm (a - c) (b - d). Proof (eqmod_sub modulus). Hint Resolve eqm_sub: ints. Lemma eqm_mult: forall a b c d, eqm a c -> eqm b d -> eqm (a * b) (c * d). Proof (eqmod_mult modulus). Hint Resolve eqm_mult: ints. (** ** Properties of the coercions between [Z] and [int] *) Lemma eqm_samerepr: forall x y, eqm x y -> repr x = repr y. Proof. intros. unfold repr. apply mkint_eq. rewrite !Z_mod_modulus_eq. apply eqmod_mod_eq. auto with ints. exact H. Qed. Lemma eqm_unsigned_repr: forall z, eqm z (unsigned (repr z)). Proof. unfold eqm; intros. rewrite unsigned_repr_eq. apply eqmod_mod. auto with ints. Qed. Hint Resolve eqm_unsigned_repr: ints. Lemma eqm_unsigned_repr_l: forall a b, eqm a b -> eqm (unsigned (repr a)) b. Proof. intros. apply eqm_trans with a. apply eqm_sym. apply eqm_unsigned_repr. auto. Qed. Hint Resolve eqm_unsigned_repr_l: ints. Lemma eqm_unsigned_repr_r: forall a b, eqm a b -> eqm a (unsigned (repr b)). Proof. intros. apply eqm_trans with b. auto. apply eqm_unsigned_repr. Qed. Hint Resolve eqm_unsigned_repr_r: ints. Lemma eqm_signed_unsigned: forall x, eqm (signed x) (unsigned x). Proof. intros; red. unfold signed. set (y := unsigned x). case (zlt y half_modulus); intro. apply eqmod_refl. red; exists (-1); ring. Qed. Theorem unsigned_range: forall i, 0 <= unsigned i < modulus. Proof. destruct i. simpl. omega. Qed. Hint Resolve unsigned_range: ints. Theorem unsigned_range_2: forall i, 0 <= unsigned i <= max_unsigned. Proof. intro; unfold max_unsigned. generalize (unsigned_range i). omega. Qed. Hint Resolve unsigned_range_2: ints. Theorem signed_range: forall i, min_signed <= signed i <= max_signed. Proof. intros. unfold signed. generalize (unsigned_range i). set (n := unsigned i). intros. case (zlt n half_modulus); intro. unfold max_signed. generalize min_signed_neg. omega. unfold min_signed, max_signed. rewrite half_modulus_modulus in *. omega. Qed. Theorem repr_unsigned: forall i, repr (unsigned i) = i. Proof. destruct i; simpl. unfold repr. apply mkint_eq. rewrite Z_mod_modulus_eq. apply Zmod_small; omega. Qed. Hint Resolve repr_unsigned: ints. Lemma repr_signed: forall i, repr (signed i) = i. Proof. intros. transitivity (repr (unsigned i)). apply eqm_samerepr. apply eqm_signed_unsigned. auto with ints. Qed. Hint Resolve repr_signed: ints. Opaque repr. Lemma eqm_repr_eq: forall x y, eqm x (unsigned y) -> repr x = y. Proof. intros. rewrite <- (repr_unsigned y). apply eqm_samerepr; auto. Qed. Theorem unsigned_repr: forall z, 0 <= z <= max_unsigned -> unsigned (repr z) = z. Proof. intros. rewrite unsigned_repr_eq. apply Zmod_small. unfold max_unsigned in H. omega. Qed. Hint Resolve unsigned_repr: ints. Theorem signed_repr: forall z, min_signed <= z <= max_signed -> signed (repr z) = z. Proof. intros. unfold signed. destruct (zle 0 z). replace (unsigned (repr z)) with z. rewrite zlt_true. auto. unfold max_signed in H. omega. symmetry. apply unsigned_repr. generalize max_signed_unsigned. omega. pose (z' := z + modulus). replace (repr z) with (repr z'). replace (unsigned (repr z')) with z'. rewrite zlt_false. unfold z'. omega. unfold z'. unfold min_signed in H. rewrite half_modulus_modulus. omega. symmetry. apply unsigned_repr. unfold z', max_unsigned. unfold min_signed, max_signed in H. rewrite half_modulus_modulus. omega. apply eqm_samerepr. unfold z'; red. exists 1. omega. Qed. Theorem signed_eq_unsigned: forall x, unsigned x <= max_signed -> signed x = unsigned x. Proof. intros. unfold signed. destruct (zlt (unsigned x) half_modulus). auto. unfold max_signed in H. omegaContradiction. Qed. Theorem signed_positive: forall x, signed x >= 0 <-> unsigned x <= max_signed. Proof. intros. unfold signed, max_signed. generalize (unsigned_range x) half_modulus_modulus half_modulus_pos; intros. destruct (zlt (unsigned x) half_modulus); omega. Qed. (** ** Properties of zero, one, minus one *) Theorem unsigned_zero: unsigned zero = 0. Proof. unfold zero; rewrite unsigned_repr_eq. apply Zmod_0_l. Qed. Theorem unsigned_one: unsigned one = 1. Proof. unfold one; rewrite unsigned_repr_eq. apply Zmod_small. split. omega. unfold modulus. replace wordsize with (S(pred wordsize)). rewrite two_power_nat_S. generalize (two_power_nat_pos (pred wordsize)). omega. generalize wordsize_pos. unfold zwordsize. omega. Qed. Theorem unsigned_mone: unsigned mone = modulus - 1. Proof. unfold mone; rewrite unsigned_repr_eq. replace (-1) with ((modulus - 1) + (-1) * modulus). rewrite Z_mod_plus_full. apply Zmod_small. generalize modulus_pos. omega. omega. Qed. Theorem signed_zero: signed zero = 0. Proof. unfold signed. rewrite unsigned_zero. apply zlt_true. generalize half_modulus_pos; omega. Qed. Theorem signed_mone: signed mone = -1. Proof. unfold signed. rewrite unsigned_mone. rewrite zlt_false. omega. rewrite half_modulus_modulus. generalize half_modulus_pos. omega. Qed. Theorem one_not_zero: one <> zero. Proof. assert (unsigned one <> unsigned zero). rewrite unsigned_one; rewrite unsigned_zero; congruence. congruence. Qed. Theorem unsigned_repr_wordsize: unsigned iwordsize = zwordsize. Proof. unfold iwordsize; rewrite unsigned_repr_eq. apply Zmod_small. generalize wordsize_pos wordsize_max_unsigned; unfold max_unsigned; omega. Qed. (** ** Properties of equality *) Theorem eq_sym: forall x y, eq x y = eq y x. Proof. intros; unfold eq. case (zeq (unsigned x) (unsigned y)); intro. rewrite e. rewrite zeq_true. auto. rewrite zeq_false. auto. auto. Qed. Theorem eq_spec: forall (x y: int), if eq x y then x = y else x <> y. Proof. intros; unfold eq. case (eq_dec x y); intro. subst y. rewrite zeq_true. auto. rewrite zeq_false. auto. destruct x; destruct y. simpl. red; intro. elim n. apply mkint_eq. auto. Qed. Theorem eq_true: forall x, eq x x = true. Proof. intros. generalize (eq_spec x x); case (eq x x); intros; congruence. Qed. Theorem eq_false: forall x y, x <> y -> eq x y = false. Proof. intros. generalize (eq_spec x y); case (eq x y); intros; congruence. Qed. Theorem eq_signed: forall x y, eq x y = if zeq (signed x) (signed y) then true else false. Proof. intros. predSpec eq eq_spec x y. subst x. rewrite zeq_true; auto. destruct (zeq (signed x) (signed y)); auto. elim H. rewrite <- (repr_signed x). rewrite <- (repr_signed y). congruence. Qed. (** ** Properties of addition *) Theorem add_unsigned: forall x y, add x y = repr (unsigned x + unsigned y). Proof. intros; reflexivity. Qed. Theorem add_signed: forall x y, add x y = repr (signed x + signed y). Proof. intros. rewrite add_unsigned. apply eqm_samerepr. apply eqm_add; apply eqm_sym; apply eqm_signed_unsigned. Qed. Theorem add_commut: forall x y, add x y = add y x. Proof. intros; unfold add. decEq. omega. Qed. Theorem add_zero: forall x, add x zero = x. Proof. intros. unfold add. rewrite unsigned_zero. rewrite Zplus_0_r. apply repr_unsigned. Qed. Theorem add_zero_l: forall x, add zero x = x. Proof. intros. rewrite add_commut. apply add_zero. Qed. Theorem add_assoc: forall x y z, add (add x y) z = add x (add y z). Proof. intros; unfold add. set (x' := unsigned x). set (y' := unsigned y). set (z' := unsigned z). apply eqm_samerepr. apply eqm_trans with ((x' + y') + z'). auto with ints. rewrite <- Zplus_assoc. auto with ints. Qed. Theorem add_permut: forall x y z, add x (add y z) = add y (add x z). Proof. intros. rewrite (add_commut y z). rewrite <- add_assoc. apply add_commut. Qed. Theorem add_neg_zero: forall x, add x (neg x) = zero. Proof. intros; unfold add, neg, zero. apply eqm_samerepr. replace 0 with (unsigned x + (- (unsigned x))). auto with ints. omega. Qed. Theorem unsigned_add_carry: forall x y, unsigned (add x y) = unsigned x + unsigned y - unsigned (add_carry x y zero) * modulus. Proof. intros. unfold add, add_carry. rewrite unsigned_zero. rewrite Zplus_0_r. rewrite unsigned_repr_eq. generalize (unsigned_range x) (unsigned_range y). intros. destruct (zlt (unsigned x + unsigned y) modulus). rewrite unsigned_zero. apply Zmod_unique with 0. omega. omega. rewrite unsigned_one. apply Zmod_unique with 1. omega. omega. Qed. Corollary unsigned_add_either: forall x y, unsigned (add x y) = unsigned x + unsigned y \/ unsigned (add x y) = unsigned x + unsigned y - modulus. Proof. intros. rewrite unsigned_add_carry. unfold add_carry. rewrite unsigned_zero. rewrite Zplus_0_r. destruct (zlt (unsigned x + unsigned y) modulus). rewrite unsigned_zero. left; omega. rewrite unsigned_one. right; omega. Qed. (** ** Properties of negation *) Theorem neg_repr: forall z, neg (repr z) = repr (-z). Proof. intros; unfold neg. apply eqm_samerepr. auto with ints. Qed. Theorem neg_zero: neg zero = zero. Proof. unfold neg. rewrite unsigned_zero. auto. Qed. Theorem neg_involutive: forall x, neg (neg x) = x. Proof. intros; unfold neg. apply eqm_repr_eq. eapply eqm_trans. apply eqm_neg. apply eqm_unsigned_repr_l. apply eqm_refl. apply eqm_refl2. omega. Qed. Theorem neg_add_distr: forall x y, neg(add x y) = add (neg x) (neg y). Proof. intros; unfold neg, add. apply eqm_samerepr. apply eqm_trans with (- (unsigned x + unsigned y)). auto with ints. replace (- (unsigned x + unsigned y)) with ((- unsigned x) + (- unsigned y)). auto with ints. omega. Qed. (** ** Properties of subtraction *) Theorem sub_zero_l: forall x, sub x zero = x. Proof. intros; unfold sub. rewrite unsigned_zero. replace (unsigned x - 0) with (unsigned x) by omega. apply repr_unsigned. Qed. Theorem sub_zero_r: forall x, sub zero x = neg x. Proof. intros; unfold sub, neg. rewrite unsigned_zero. auto. Qed. Theorem sub_add_opp: forall x y, sub x y = add x (neg y). Proof. intros; unfold sub, add, neg. apply eqm_samerepr. apply eqm_add; auto with ints. Qed. Theorem sub_idem: forall x, sub x x = zero. Proof. intros; unfold sub. unfold zero. decEq. omega. Qed. Theorem sub_add_l: forall x y z, sub (add x y) z = add (sub x z) y. Proof. intros. repeat rewrite sub_add_opp. repeat rewrite add_assoc. decEq. apply add_commut. Qed. Theorem sub_add_r: forall x y z, sub x (add y z) = add (sub x z) (neg y). Proof. intros. repeat rewrite sub_add_opp. rewrite neg_add_distr. rewrite add_permut. apply add_commut. Qed. Theorem sub_shifted: forall x y z, sub (add x z) (add y z) = sub x y. Proof. intros. rewrite sub_add_opp. rewrite neg_add_distr. rewrite add_assoc. rewrite (add_commut (neg y) (neg z)). rewrite <- (add_assoc z). rewrite add_neg_zero. rewrite (add_commut zero). rewrite add_zero. symmetry. apply sub_add_opp. Qed. Theorem sub_signed: forall x y, sub x y = repr (signed x - signed y). Proof. intros. unfold sub. apply eqm_samerepr. apply eqm_sub; apply eqm_sym; apply eqm_signed_unsigned. Qed. Theorem unsigned_sub_borrow: forall x y, unsigned (sub x y) = unsigned x - unsigned y + unsigned (sub_borrow x y zero) * modulus. Proof. intros. unfold sub, sub_borrow. rewrite unsigned_zero. rewrite Zminus_0_r. rewrite unsigned_repr_eq. generalize (unsigned_range x) (unsigned_range y). intros. destruct (zlt (unsigned x - unsigned y) 0). rewrite unsigned_one. apply Zmod_unique with (-1). omega. omega. rewrite unsigned_zero. apply Zmod_unique with 0. omega. omega. Qed. (** ** Properties of multiplication *) Theorem mul_commut: forall x y, mul x y = mul y x. Proof. intros; unfold mul. decEq. ring. Qed. Theorem mul_zero: forall x, mul x zero = zero. Proof. intros; unfold mul. rewrite unsigned_zero. unfold zero. decEq. ring. Qed. Theorem mul_one: forall x, mul x one = x. Proof. intros; unfold mul. rewrite unsigned_one. transitivity (repr (unsigned x)). decEq. ring. apply repr_unsigned. Qed. Theorem mul_mone: forall x, mul x mone = neg x. Proof. intros; unfold mul, neg. rewrite unsigned_mone. apply eqm_samerepr. replace (-unsigned x) with (0 - unsigned x) by omega. replace (unsigned x * (modulus - 1)) with (unsigned x * modulus - unsigned x) by ring. apply eqm_sub. exists (unsigned x). omega. apply eqm_refl. Qed. Theorem mul_assoc: forall x y z, mul (mul x y) z = mul x (mul y z). Proof. intros; unfold mul. set (x' := unsigned x). set (y' := unsigned y). set (z' := unsigned z). apply eqm_samerepr. apply eqm_trans with ((x' * y') * z'). auto with ints. rewrite <- Zmult_assoc. auto with ints. Qed. Theorem mul_add_distr_l: forall x y z, mul (add x y) z = add (mul x z) (mul y z). Proof. intros; unfold mul, add. apply eqm_samerepr. set (x' := unsigned x). set (y' := unsigned y). set (z' := unsigned z). apply eqm_trans with ((x' + y') * z'). auto with ints. replace ((x' + y') * z') with (x' * z' + y' * z'). auto with ints. ring. Qed. Theorem mul_add_distr_r: forall x y z, mul x (add y z) = add (mul x y) (mul x z). Proof. intros. rewrite mul_commut. rewrite mul_add_distr_l. decEq; apply mul_commut. Qed. Theorem neg_mul_distr_l: forall x y, neg(mul x y) = mul (neg x) y. Proof. intros. unfold mul, neg. set (x' := unsigned x). set (y' := unsigned y). apply eqm_samerepr. apply eqm_trans with (- (x' * y')). auto with ints. replace (- (x' * y')) with ((-x') * y') by ring. auto with ints. Qed. Theorem neg_mul_distr_r: forall x y, neg(mul x y) = mul x (neg y). Proof. intros. rewrite (mul_commut x y). rewrite (mul_commut x (neg y)). apply neg_mul_distr_l. Qed. Theorem mul_signed: forall x y, mul x y = repr (signed x * signed y). Proof. intros; unfold mul. apply eqm_samerepr. apply eqm_mult; apply eqm_sym; apply eqm_signed_unsigned. Qed. (** ** Properties of division and modulus *) Lemma modu_divu_Euclid: forall x y, y <> zero -> x = add (mul (divu x y) y) (modu x y). Proof. intros. unfold add, mul, divu, modu. transitivity (repr (unsigned x)). auto with ints. apply eqm_samerepr. set (x' := unsigned x). set (y' := unsigned y). apply eqm_trans with ((x' / y') * y' + x' mod y'). apply eqm_refl2. rewrite Zmult_comm. apply Z_div_mod_eq. generalize (unsigned_range y); intro. assert (unsigned y <> 0). red; intro. elim H. rewrite <- (repr_unsigned y). unfold zero. congruence. unfold y'. omega. auto with ints. Qed. Theorem modu_divu: forall x y, y <> zero -> modu x y = sub x (mul (divu x y) y). Proof. intros. assert (forall a b c, a = add b c -> c = sub a b). intros. subst a. rewrite sub_add_l. rewrite sub_idem. rewrite add_commut. rewrite add_zero. auto. apply H0. apply modu_divu_Euclid. auto. Qed. Lemma mods_divs_Euclid: forall x y, x = add (mul (divs x y) y) (mods x y). Proof. intros. unfold add, mul, divs, mods. transitivity (repr (signed x)). auto with ints. apply eqm_samerepr. set (x' := signed x). set (y' := signed y). apply eqm_trans with ((Z.quot x' y') * y' + Z.rem x' y'). apply eqm_refl2. rewrite Zmult_comm. apply Z.quot_rem'. apply eqm_add; auto with ints. apply eqm_unsigned_repr_r. apply eqm_mult; auto with ints. unfold y'. apply eqm_signed_unsigned. Qed. Theorem mods_divs: forall x y, mods x y = sub x (mul (divs x y) y). Proof. intros. assert (forall a b c, a = add b c -> c = sub a b). intros. subst a. rewrite sub_add_l. rewrite sub_idem. rewrite add_commut. rewrite add_zero. auto. apply H. apply mods_divs_Euclid. Qed. Theorem divu_one: forall x, divu x one = x. Proof. unfold divu; intros. rewrite unsigned_one. rewrite Zdiv_1_r. apply repr_unsigned. Qed. Theorem modu_one: forall x, modu x one = zero. Proof. intros. rewrite modu_divu. rewrite divu_one. rewrite mul_one. apply sub_idem. apply one_not_zero. Qed. Theorem divs_mone: forall x, divs x mone = neg x. Proof. unfold divs, neg; intros. rewrite signed_mone. replace (Z.quot (signed x) (-1)) with (- (signed x)). apply eqm_samerepr. apply eqm_neg. apply eqm_signed_unsigned. set (x' := signed x). set (one := 1). change (-1) with (- one). rewrite Zquot_opp_r. assert (Z.quot x' one = x'). symmetry. apply Zquot_unique_full with 0. red. change (Z.abs one) with 1. destruct (zle 0 x'). left. omega. right. omega. unfold one; ring. congruence. Qed. Theorem mods_mone: forall x, mods x mone = zero. Proof. intros. rewrite mods_divs. rewrite divs_mone. rewrite <- neg_mul_distr_l. rewrite mul_mone. rewrite neg_involutive. apply sub_idem. Qed. (** ** Bit-level properties *) (** ** Properties of bit-level operations over [Z] *) Remark Ztestbit_0: forall n, Z.testbit 0 n = false. Proof Z.testbit_0_l. Remark Ztestbit_1: forall n, Z.testbit 1 n = zeq n 0. Proof. intros. destruct n; simpl; auto. Qed. Remark Ztestbit_m1: forall n, 0 <= n -> Z.testbit (-1) n = true. Proof. intros. destruct n; simpl; auto. Qed. Remark Zshiftin_spec: forall b x, Zshiftin b x = 2 * x + (if b then 1 else 0). Proof. unfold Zshiftin; intros. destruct b. - rewrite Z.succ_double_spec. omega. - rewrite Z.double_spec. omega. Qed. Remark Zshiftin_inj: forall b1 x1 b2 x2, Zshiftin b1 x1 = Zshiftin b2 x2 -> b1 = b2 /\ x1 = x2. Proof. intros. rewrite !Zshiftin_spec in H. destruct b1; destruct b2. split; [auto|omega]. omegaContradiction. omegaContradiction. split; [auto|omega]. Qed. Remark Zdecomp: forall x, x = Zshiftin (Z.odd x) (Z.div2 x). Proof. intros. destruct x; simpl. - auto. - destruct p; auto. - destruct p; auto. simpl. rewrite Pos.pred_double_succ. auto. Qed. Remark Ztestbit_shiftin: forall b x n, 0 <= n -> Z.testbit (Zshiftin b x) n = if zeq n 0 then b else Z.testbit x (Z.pred n). Proof. intros. rewrite Zshiftin_spec. destruct (zeq n 0). - subst n. destruct b. + apply Z.testbit_odd_0. + rewrite Zplus_0_r. apply Z.testbit_even_0. - assert (0 <= Z.pred n) by omega. set (n' := Z.pred n) in *. replace n with (Z.succ n') by (unfold n'; omega). destruct b. + apply Z.testbit_odd_succ; auto. + rewrite Zplus_0_r. apply Z.testbit_even_succ; auto. Qed. Remark Ztestbit_shiftin_base: forall b x, Z.testbit (Zshiftin b x) 0 = b. Proof. intros. rewrite Ztestbit_shiftin. apply zeq_true. omega. Qed. Remark Ztestbit_shiftin_succ: forall b x n, 0 <= n -> Z.testbit (Zshiftin b x) (Z.succ n) = Z.testbit x n. Proof. intros. rewrite Ztestbit_shiftin. rewrite zeq_false. rewrite Z.pred_succ. auto. omega. omega. Qed. Remark Ztestbit_eq: forall n x, 0 <= n -> Z.testbit x n = if zeq n 0 then Z.odd x else Z.testbit (Z.div2 x) (Z.pred n). Proof. intros. rewrite (Zdecomp x) at 1. apply Ztestbit_shiftin; auto. Qed. Remark Ztestbit_base: forall x, Z.testbit x 0 = Z.odd x. Proof. intros. rewrite Ztestbit_eq. apply zeq_true. omega. Qed. Remark Ztestbit_succ: forall n x, 0 <= n -> Z.testbit x (Z.succ n) = Z.testbit (Z.div2 x) n. Proof. intros. rewrite Ztestbit_eq. rewrite zeq_false. rewrite Z.pred_succ. auto. omega. omega. Qed. Lemma eqmod_same_bits: forall n x y, (forall i, 0 <= i < Z.of_nat n -> Z.testbit x i = Z.testbit y i) -> eqmod (two_power_nat n) x y. Proof. induction n; intros. - change (two_power_nat 0) with 1. exists (x-y); ring. - rewrite two_power_nat_S. assert (eqmod (two_power_nat n) (Z.div2 x) (Z.div2 y)). apply IHn. intros. rewrite <- !Ztestbit_succ. apply H. rewrite inj_S; omega. omega. omega. destruct H0 as [k EQ]. exists k. rewrite (Zdecomp x). rewrite (Zdecomp y). replace (Z.odd y) with (Z.odd x). rewrite EQ. rewrite !Zshiftin_spec. ring. exploit (H 0). rewrite inj_S; omega. rewrite !Ztestbit_base. auto. Qed. Lemma eqm_same_bits: forall x y, (forall i, 0 <= i < zwordsize -> Z.testbit x i = Z.testbit y i) -> eqm x y. Proof (eqmod_same_bits wordsize). Lemma same_bits_eqmod: forall n x y i, eqmod (two_power_nat n) x y -> 0 <= i < Z.of_nat n -> Z.testbit x i = Z.testbit y i. Proof. induction n; intros. - simpl in H0. omegaContradiction. - rewrite inj_S in H0. rewrite two_power_nat_S in H. rewrite !(Ztestbit_eq i); intuition. destruct H as [k EQ]. assert (EQ': Zshiftin (Z.odd x) (Z.div2 x) = Zshiftin (Z.odd y) (k * two_power_nat n + Z.div2 y)). { rewrite (Zdecomp x) in EQ. rewrite (Zdecomp y) in EQ. rewrite EQ. rewrite !Zshiftin_spec. ring. } exploit Zshiftin_inj; eauto. intros [A B]. destruct (zeq i 0). + auto. + apply IHn. exists k; auto. omega. Qed. Lemma same_bits_eqm: forall x y i, eqm x y -> 0 <= i < zwordsize -> Z.testbit x i = Z.testbit y i. Proof (same_bits_eqmod wordsize). Remark two_power_nat_infinity: forall x, 0 <= x -> exists n, x < two_power_nat n. Proof. intros x0 POS0; pattern x0; apply natlike_ind; auto. exists O. compute; auto. intros. destruct H0 as [n LT]. exists (S n). rewrite two_power_nat_S. generalize (two_power_nat_pos n). omega. Qed. Lemma equal_same_bits: forall x y, (forall i, 0 <= i -> Z.testbit x i = Z.testbit y i) -> x = y. Proof. intros. set (z := if zlt x y then y - x else x - y). assert (0 <= z). unfold z; destruct (zlt x y); omega. exploit (two_power_nat_infinity z); auto. intros [n LT]. assert (eqmod (two_power_nat n) x y). apply eqmod_same_bits. intros. apply H. tauto. assert (eqmod (two_power_nat n) z 0). unfold z. destruct (zlt x y). replace 0 with (y - y) by omega. apply eqmod_sub. apply eqmod_refl. auto. replace 0 with (x - x) by omega. apply eqmod_sub. apply eqmod_refl. apply eqmod_sym; auto. assert (z = 0). apply eqmod_small_eq with (two_power_nat n). auto. omega. generalize (two_power_nat_pos n); omega. unfold z in H3. destruct (zlt x y); omega. Qed. Lemma Z_one_complement: forall i, 0 <= i -> forall x, Z.testbit (-x-1) i = negb (Z.testbit x i). Proof. intros i0 POS0. pattern i0. apply Zlt_0_ind; auto. intros i IND POS x. rewrite (Zdecomp x). set (y := Z.div2 x). replace (- Zshiftin (Z.odd x) y - 1) with (Zshiftin (negb (Z.odd x)) (- y - 1)). rewrite !Ztestbit_shiftin; auto. destruct (zeq i 0). auto. apply IND. omega. rewrite !Zshiftin_spec. destruct (Z.odd x); simpl negb; ring. Qed. Lemma Ztestbit_above: forall n x i, 0 <= x < two_power_nat n -> i >= Z.of_nat n -> Z.testbit x i = false. Proof. induction n; intros. - change (two_power_nat 0) with 1 in H. replace x with 0 by omega. apply Z.testbit_0_l. - rewrite inj_S in H0. rewrite Ztestbit_eq. rewrite zeq_false. apply IHn. rewrite two_power_nat_S in H. rewrite (Zdecomp x) in H. rewrite Zshiftin_spec in H. destruct (Z.odd x); omega. omega. omega. omega. Qed. Lemma Ztestbit_above_neg: forall n x i, -two_power_nat n <= x < 0 -> i >= Z.of_nat n -> Z.testbit x i = true. Proof. intros. set (y := -x-1). assert (Z.testbit y i = false). apply Ztestbit_above with n. unfold y; omega. auto. unfold y in H1. rewrite Z_one_complement in H1. change true with (negb false). rewrite <- H1. rewrite negb_involutive; auto. omega. Qed. Lemma Zsign_bit: forall n x, 0 <= x < two_power_nat (S n) -> Z.testbit x (Z_of_nat n) = if zlt x (two_power_nat n) then false else true. Proof. induction n; intros. - change (two_power_nat 1) with 2 in H. assert (x = 0 \/ x = 1) by omega. destruct H0; subst x; reflexivity. - rewrite inj_S. rewrite Ztestbit_eq. rewrite zeq_false. rewrite Z.pred_succ. rewrite IHn. rewrite two_power_nat_S. destruct (zlt (Z.div2 x) (two_power_nat n)); rewrite (Zdecomp x); rewrite Zshiftin_spec. rewrite zlt_true. auto. destruct (Z.odd x); omega. rewrite zlt_false. auto. destruct (Z.odd x); omega. rewrite (Zdecomp x) in H; rewrite Zshiftin_spec in H. rewrite two_power_nat_S in H. destruct (Z.odd x); omega. omega. omega. Qed. Lemma Zshiftin_ind: forall (P: Z -> Prop), P 0 -> (forall b x, 0 <= x -> P x -> P (Zshiftin b x)) -> forall x, 0 <= x -> P x. Proof. intros. destruct x. - auto. - induction p. + change (P (Zshiftin true (Z.pos p))). auto. + change (P (Zshiftin false (Z.pos p))). auto. + change (P (Zshiftin true 0)). apply H0. omega. auto. - compute in H1. intuition congruence. Qed. Lemma Zshiftin_pos_ind: forall (P: Z -> Prop), P 1 -> (forall b x, 0 < x -> P x -> P (Zshiftin b x)) -> forall x, 0 < x -> P x. Proof. intros. destruct x; simpl in H1; try discriminate. induction p. + change (P (Zshiftin true (Z.pos p))). auto. + change (P (Zshiftin false (Z.pos p))). auto. + auto. Qed. Lemma Ztestbit_le: forall x y, 0 <= y -> (forall i, 0 <= i -> Z.testbit x i = true -> Z.testbit y i = true) -> x <= y. Proof. intros x y0 POS0; revert x; pattern y0; apply Zshiftin_ind; auto; intros. - replace x with 0. omega. apply equal_same_bits; intros. rewrite Ztestbit_0. destruct (Z.testbit x i) as [] eqn:E; auto. exploit H; eauto. rewrite Ztestbit_0. auto. - assert (Z.div2 x0 <= x). { apply H0. intros. exploit (H1 (Zsucc i)). omega. rewrite Ztestbit_succ; auto. rewrite Ztestbit_shiftin_succ; auto. } rewrite (Zdecomp x0). rewrite !Zshiftin_spec. destruct (Z.odd x0) as [] eqn:E1; destruct b as [] eqn:E2; try omega. exploit (H1 0). omega. rewrite Ztestbit_base; auto. rewrite Ztestbit_shiftin_base. congruence. Qed. (** ** Bit-level reasoning over type [int] *) Definition testbit (x: int) (i: Z) : bool := Z.testbit (unsigned x) i. Lemma testbit_repr: forall x i, 0 <= i < zwordsize -> testbit (repr x) i = Z.testbit x i. Proof. intros. unfold testbit. apply same_bits_eqm; auto with ints. Qed. Lemma same_bits_eq: forall x y, (forall i, 0 <= i < zwordsize -> testbit x i = testbit y i) -> x = y. Proof. intros. rewrite <- (repr_unsigned x). rewrite <- (repr_unsigned y). apply eqm_samerepr. apply eqm_same_bits. auto. Qed. Lemma bits_above: forall x i, i >= zwordsize -> testbit x i = false. Proof. intros. apply Ztestbit_above with wordsize; auto. apply unsigned_range. Qed. Lemma bits_zero: forall i, testbit zero i = false. Proof. intros. unfold testbit. rewrite unsigned_zero. apply Ztestbit_0. Qed. Remark bits_one: forall n, testbit one n = zeq n 0. Proof. unfold testbit; intros. rewrite unsigned_one. apply Ztestbit_1. Qed. Lemma bits_mone: forall i, 0 <= i < zwordsize -> testbit mone i = true. Proof. intros. unfold mone. rewrite testbit_repr; auto. apply Ztestbit_m1. omega. Qed. Hint Rewrite bits_zero bits_mone : ints. Ltac bit_solve := intros; apply same_bits_eq; intros; autorewrite with ints; auto with bool. Lemma sign_bit_of_unsigned: forall x, testbit x (zwordsize - 1) = if zlt (unsigned x) half_modulus then false else true. Proof. intros. unfold testbit. set (ws1 := pred wordsize). assert (zwordsize - 1 = Z_of_nat ws1). unfold zwordsize, ws1, wordsize. destruct WS.wordsize as [] eqn:E. elim WS.wordsize_not_zero; auto. rewrite inj_S. simpl. omega. assert (half_modulus = two_power_nat ws1). rewrite two_power_nat_two_p. rewrite <- H. apply half_modulus_power. rewrite H; rewrite H0. apply Zsign_bit. rewrite two_power_nat_S. rewrite <- H0. rewrite <- half_modulus_modulus. apply unsigned_range. Qed. Lemma bits_signed: forall x i, 0 <= i -> Z.testbit (signed x) i = testbit x (if zlt i zwordsize then i else zwordsize - 1). Proof. intros. destruct (zlt i zwordsize). - apply same_bits_eqm. apply eqm_signed_unsigned. omega. - unfold signed. rewrite sign_bit_of_unsigned. destruct (zlt (unsigned x) half_modulus). + apply Ztestbit_above with wordsize. apply unsigned_range. auto. + apply Ztestbit_above_neg with wordsize. fold modulus. generalize (unsigned_range x). omega. auto. Qed. Lemma bits_le: forall x y, (forall i, 0 <= i < zwordsize -> testbit x i = true -> testbit y i = true) -> unsigned x <= unsigned y. Proof. intros. apply Ztestbit_le. generalize (unsigned_range y); omega. intros. fold (testbit y i). destruct (zlt i zwordsize). apply H. omega. auto. fold (testbit x i) in H1. rewrite bits_above in H1; auto. congruence. Qed. (** ** Properties of bitwise and, or, xor *) Lemma bits_and: forall x y i, 0 <= i < zwordsize -> testbit (and x y) i = testbit x i && testbit y i. Proof. intros. unfold and. rewrite testbit_repr; auto. rewrite Z.land_spec; intuition. Qed. Lemma bits_or: forall x y i, 0 <= i < zwordsize -> testbit (or x y) i = testbit x i || testbit y i. Proof. intros. unfold or. rewrite testbit_repr; auto. rewrite Z.lor_spec; intuition. Qed. Lemma bits_xor: forall x y i, 0 <= i < zwordsize -> testbit (xor x y) i = xorb (testbit x i) (testbit y i). Proof. intros. unfold xor. rewrite testbit_repr; auto. rewrite Z.lxor_spec; intuition. Qed. Lemma bits_not: forall x i, 0 <= i < zwordsize -> testbit (not x) i = negb (testbit x i). Proof. intros. unfold not. rewrite bits_xor; auto. rewrite bits_mone; auto. Qed. Hint Rewrite bits_and bits_or bits_xor bits_not: ints. Theorem and_commut: forall x y, and x y = and y x. Proof. bit_solve. Qed. Theorem and_assoc: forall x y z, and (and x y) z = and x (and y z). Proof. bit_solve. Qed. Theorem and_zero: forall x, and x zero = zero. Proof. bit_solve. apply andb_b_false. Qed. Corollary and_zero_l: forall x, and zero x = zero. Proof. intros. rewrite and_commut. apply and_zero. Qed. Theorem and_mone: forall x, and x mone = x. Proof. bit_solve. apply andb_b_true. Qed. Corollary and_mone_l: forall x, and mone x = x. Proof. intros. rewrite and_commut. apply and_mone. Qed. Theorem and_idem: forall x, and x x = x. Proof. bit_solve. destruct (testbit x i); auto. Qed. Theorem or_commut: forall x y, or x y = or y x. Proof. bit_solve. Qed. Theorem or_assoc: forall x y z, or (or x y) z = or x (or y z). Proof. bit_solve. Qed. Theorem or_zero: forall x, or x zero = x. Proof. bit_solve. Qed. Corollary or_zero_l: forall x, or zero x = x. Proof. intros. rewrite or_commut. apply or_zero. Qed. Theorem or_mone: forall x, or x mone = mone. Proof. bit_solve. Qed. Theorem or_idem: forall x, or x x = x. Proof. bit_solve. destruct (testbit x i); auto. Qed. Theorem and_or_distrib: forall x y z, and x (or y z) = or (and x y) (and x z). Proof. bit_solve. apply demorgan1. Qed. Corollary and_or_distrib_l: forall x y z, and (or x y) z = or (and x z) (and y z). Proof. intros. rewrite (and_commut (or x y)). rewrite and_or_distrib. f_equal; apply and_commut. Qed. Theorem or_and_distrib: forall x y z, or x (and y z) = and (or x y) (or x z). Proof. bit_solve. apply orb_andb_distrib_r. Qed. Corollary or_and_distrib_l: forall x y z, or (and x y) z = and (or x z) (or y z). Proof. intros. rewrite (or_commut (and x y)). rewrite or_and_distrib. f_equal; apply or_commut. Qed. Theorem and_or_absorb: forall x y, and x (or x y) = x. Proof. bit_solve. assert (forall a b, a && (a || b) = a) by destr_bool. auto. Qed. Theorem or_and_absorb: forall x y, or x (and x y) = x. Proof. bit_solve. assert (forall a b, a || (a && b) = a) by destr_bool. auto. Qed. Theorem xor_commut: forall x y, xor x y = xor y x. Proof. bit_solve. apply xorb_comm. Qed. Theorem xor_assoc: forall x y z, xor (xor x y) z = xor x (xor y z). Proof. bit_solve. apply xorb_assoc. Qed. Theorem xor_zero: forall x, xor x zero = x. Proof. bit_solve. apply xorb_false. Qed. Corollary xor_zero_l: forall x, xor zero x = x. Proof. intros. rewrite xor_commut. apply xor_zero. Qed. Theorem xor_idem: forall x, xor x x = zero. Proof. bit_solve. apply xorb_nilpotent. Qed. Theorem xor_zero_one: xor zero one = one. Proof. rewrite xor_commut. apply xor_zero. Qed. Theorem xor_one_one: xor one one = zero. Proof. apply xor_idem. Qed. Theorem xor_zero_equal: forall x y, xor x y = zero -> x = y. Proof. intros. apply same_bits_eq; intros. assert (xorb (testbit x i) (testbit y i) = false). rewrite <- bits_xor; auto. rewrite H. apply bits_zero. destruct (testbit x i); destruct (testbit y i); reflexivity || discriminate. Qed. Theorem and_xor_distrib: forall x y z, and x (xor y z) = xor (and x y) (and x z). Proof. bit_solve. assert (forall a b c, a && (xorb b c) = xorb (a && b) (a && c)) by destr_bool. auto. Qed. Theorem and_le: forall x y, unsigned (and x y) <= unsigned x. Proof. intros. apply bits_le; intros. rewrite bits_and in H0; auto. rewrite andb_true_iff in H0. tauto. Qed. Theorem or_le: forall x y, unsigned x <= unsigned (or x y). Proof. intros. apply bits_le; intros. rewrite bits_or; auto. rewrite H0; auto. Qed. (** Properties of bitwise complement.*) Theorem not_involutive: forall (x: int), not (not x) = x. Proof. intros. unfold not. rewrite xor_assoc. rewrite xor_idem. apply xor_zero. Qed. Theorem not_zero: not zero = mone. Proof. unfold not. rewrite xor_commut. apply xor_zero. Qed. Theorem not_mone: not mone = zero. Proof. rewrite <- (not_involutive zero). symmetry. decEq. apply not_zero. Qed. Theorem not_or_and_not: forall x y, not (or x y) = and (not x) (not y). Proof. bit_solve. apply negb_orb. Qed. Theorem not_and_or_not: forall x y, not (and x y) = or (not x) (not y). Proof. bit_solve. apply negb_andb. Qed. Theorem and_not_self: forall x, and x (not x) = zero. Proof. bit_solve. Qed. Theorem or_not_self: forall x, or x (not x) = mone. Proof. bit_solve. Qed. Theorem xor_not_self: forall x, xor x (not x) = mone. Proof. bit_solve. destruct (testbit x i); auto. Qed. Lemma unsigned_not: forall x, unsigned (not x) = max_unsigned - unsigned x. Proof. intros. transitivity (unsigned (repr(-unsigned x - 1))). f_equal. bit_solve. rewrite testbit_repr; auto. symmetry. apply Z_one_complement. omega. rewrite unsigned_repr_eq. apply Zmod_unique with (-1). unfold max_unsigned. omega. generalize (unsigned_range x). unfold max_unsigned. omega. Qed. Theorem not_neg: forall x, not x = add (neg x) mone. Proof. bit_solve. rewrite <- (repr_unsigned x) at 1. unfold add. rewrite !testbit_repr; auto. transitivity (Z.testbit (-unsigned x - 1) i). symmetry. apply Z_one_complement. omega. apply same_bits_eqm; auto. replace (-unsigned x - 1) with (-unsigned x + (-1)) by omega. apply eqm_add. unfold neg. apply eqm_unsigned_repr. rewrite unsigned_mone. exists (-1). ring. Qed. Theorem neg_not: forall x, neg x = add (not x) one. Proof. intros. rewrite not_neg. rewrite add_assoc. replace (add mone one) with zero. rewrite add_zero. auto. apply eqm_samerepr. rewrite unsigned_mone. rewrite unsigned_one. exists (-1). ring. Qed. Theorem sub_add_not: forall x y, sub x y = add (add x (not y)) one. Proof. intros. rewrite sub_add_opp. rewrite neg_not. rewrite ! add_assoc. auto. Qed. Theorem sub_add_not_3: forall x y b, b = zero \/ b = one -> sub (sub x y) b = add (add x (not y)) (xor b one). Proof. intros. rewrite ! sub_add_not. rewrite ! add_assoc. f_equal. f_equal. rewrite <- neg_not. rewrite <- sub_add_opp. destruct H; subst b. rewrite xor_zero_l. rewrite sub_zero_l. auto. rewrite xor_idem. rewrite sub_idem. auto. Qed. Theorem sub_borrow_add_carry: forall x y b, b = zero \/ b = one -> sub_borrow x y b = xor (add_carry x (not y) (xor b one)) one. Proof. intros. unfold sub_borrow, add_carry. rewrite unsigned_not. replace (unsigned (xor b one)) with (1 - unsigned b). destruct (zlt (unsigned x - unsigned y - unsigned b)). rewrite zlt_true. rewrite xor_zero_l; auto. unfold max_unsigned; omega. rewrite zlt_false. rewrite xor_idem; auto. unfold max_unsigned; omega. destruct H; subst b. rewrite xor_zero_l. rewrite unsigned_one, unsigned_zero; auto. rewrite xor_idem. rewrite unsigned_one, unsigned_zero; auto. Qed. (** Connections between [add] and bitwise logical operations. *) Lemma Z_add_is_or: forall i, 0 <= i -> forall x y, (forall j, 0 <= j <= i -> Z.testbit x j && Z.testbit y j = false) -> Z.testbit (x + y) i = Z.testbit x i || Z.testbit y i. Proof. intros i0 POS0. pattern i0. apply Zlt_0_ind; auto. intros i IND POS x y EXCL. rewrite (Zdecomp x) in *. rewrite (Zdecomp y) in *. transitivity (Z.testbit (Zshiftin (Z.odd x || Z.odd y) (Z.div2 x + Z.div2 y)) i). - f_equal. rewrite !Zshiftin_spec. exploit (EXCL 0). omega. rewrite !Ztestbit_shiftin_base. intros. Opaque Z.mul. destruct (Z.odd x); destruct (Z.odd y); simpl in *; discriminate || ring. - rewrite !Ztestbit_shiftin; auto. destruct (zeq i 0). + auto. + apply IND. omega. intros. exploit (EXCL (Z.succ j)). omega. rewrite !Ztestbit_shiftin_succ. auto. omega. omega. Qed. Theorem add_is_or: forall x y, and x y = zero -> add x y = or x y. Proof. bit_solve. unfold add. rewrite testbit_repr; auto. apply Z_add_is_or. omega. intros. assert (testbit (and x y) j = testbit zero j) by congruence. autorewrite with ints in H2. assumption. omega. Qed. Theorem xor_is_or: forall x y, and x y = zero -> xor x y = or x y. Proof. bit_solve. assert (testbit (and x y) i = testbit zero i) by congruence. autorewrite with ints in H1; auto. destruct (testbit x i); destruct (testbit y i); simpl in *; congruence. Qed. Theorem add_is_xor: forall x y, and x y = zero -> add x y = xor x y. Proof. intros. rewrite xor_is_or; auto. apply add_is_or; auto. Qed. Theorem add_and: forall x y z, and y z = zero -> add (and x y) (and x z) = and x (or y z). Proof. intros. rewrite add_is_or. rewrite and_or_distrib; auto. rewrite (and_commut x y). rewrite and_assoc. repeat rewrite <- (and_assoc x). rewrite (and_commut (and x x)). rewrite <- and_assoc. rewrite H. rewrite and_commut. apply and_zero. Qed. (** ** Properties of shifts *) Lemma bits_shl: forall x y i, 0 <= i < zwordsize -> testbit (shl x y) i = if zlt i (unsigned y) then false else testbit x (i - unsigned y). Proof. intros. unfold shl. rewrite testbit_repr; auto. destruct (zlt i (unsigned y)). apply Z.shiftl_spec_low. auto. apply Z.shiftl_spec_high. omega. omega. Qed. Lemma bits_shru: forall x y i, 0 <= i < zwordsize -> testbit (shru x y) i = if zlt (i + unsigned y) zwordsize then testbit x (i + unsigned y) else false. Proof. intros. unfold shru. rewrite testbit_repr; auto. rewrite Z.shiftr_spec. fold (testbit x (i + unsigned y)). destruct (zlt (i + unsigned y) zwordsize). auto. apply bits_above; auto. omega. Qed. Lemma bits_shr: forall x y i, 0 <= i < zwordsize -> testbit (shr x y) i = testbit x (if zlt (i + unsigned y) zwordsize then i + unsigned y else zwordsize - 1). Proof. intros. unfold shr. rewrite testbit_repr; auto. rewrite Z.shiftr_spec. apply bits_signed. generalize (unsigned_range y); omega. omega. Qed. Hint Rewrite bits_shl bits_shru bits_shr: ints. Theorem shl_zero: forall x, shl x zero = x. Proof. bit_solve. rewrite unsigned_zero. rewrite zlt_false. f_equal; omega. omega. Qed. Lemma bitwise_binop_shl: forall f f' x y n, (forall x y i, 0 <= i < zwordsize -> testbit (f x y) i = f' (testbit x i) (testbit y i)) -> f' false false = false -> f (shl x n) (shl y n) = shl (f x y) n. Proof. intros. apply same_bits_eq; intros. rewrite H; auto. rewrite !bits_shl; auto. destruct (zlt i (unsigned n)); auto. rewrite H; auto. generalize (unsigned_range n); omega. Qed. Theorem and_shl: forall x y n, and (shl x n) (shl y n) = shl (and x y) n. Proof. intros. apply bitwise_binop_shl with andb. exact bits_and. auto. Qed. Theorem or_shl: forall x y n, or (shl x n) (shl y n) = shl (or x y) n. Proof. intros. apply bitwise_binop_shl with orb. exact bits_or. auto. Qed. Theorem xor_shl: forall x y n, xor (shl x n) (shl y n) = shl (xor x y) n. Proof. intros. apply bitwise_binop_shl with xorb. exact bits_xor. auto. Qed. Lemma ltu_inv: forall x y, ltu x y = true -> 0 <= unsigned x < unsigned y. Proof. unfold ltu; intros. destruct (zlt (unsigned x) (unsigned y)). split; auto. generalize (unsigned_range x); omega. discriminate. Qed. Lemma ltu_iwordsize_inv: forall x, ltu x iwordsize = true -> 0 <= unsigned x < zwordsize. Proof. intros. generalize (ltu_inv _ _ H). rewrite unsigned_repr_wordsize. auto. Qed. Theorem shl_shl: forall x y z, ltu y iwordsize = true -> ltu z iwordsize = true -> ltu (add y z) iwordsize = true -> shl (shl x y) z = shl x (add y z). Proof. intros. generalize (ltu_iwordsize_inv _ H) (ltu_iwordsize_inv _ H0); intros. assert (unsigned (add y z) = unsigned y + unsigned z). unfold add. apply unsigned_repr. generalize two_wordsize_max_unsigned; omega. apply same_bits_eq; intros. rewrite bits_shl; auto. destruct (zlt i (unsigned z)). - rewrite bits_shl; auto. rewrite zlt_true. auto. omega. - rewrite bits_shl. destruct (zlt (i - unsigned z) (unsigned y)). + rewrite bits_shl; auto. rewrite zlt_true. auto. omega. + rewrite bits_shl; auto. rewrite zlt_false. f_equal. omega. omega. + omega. Qed. Theorem shru_zero: forall x, shru x zero = x. Proof. bit_solve. rewrite unsigned_zero. rewrite zlt_true. f_equal; omega. omega. Qed. Lemma bitwise_binop_shru: forall f f' x y n, (forall x y i, 0 <= i < zwordsize -> testbit (f x y) i = f' (testbit x i) (testbit y i)) -> f' false false = false -> f (shru x n) (shru y n) = shru (f x y) n. Proof. intros. apply same_bits_eq; intros. rewrite H; auto. rewrite !bits_shru; auto. destruct (zlt (i + unsigned n) zwordsize); auto. rewrite H; auto. generalize (unsigned_range n); omega. Qed. Theorem and_shru: forall x y n, and (shru x n) (shru y n) = shru (and x y) n. Proof. intros. apply bitwise_binop_shru with andb; auto. exact bits_and. Qed. Theorem or_shru: forall x y n, or (shru x n) (shru y n) = shru (or x y) n. Proof. intros. apply bitwise_binop_shru with orb; auto. exact bits_or. Qed. Theorem xor_shru: forall x y n, xor (shru x n) (shru y n) = shru (xor x y) n. Proof. intros. apply bitwise_binop_shru with xorb; auto. exact bits_xor. Qed. Theorem shru_shru: forall x y z, ltu y iwordsize = true -> ltu z iwordsize = true -> ltu (add y z) iwordsize = true -> shru (shru x y) z = shru x (add y z). Proof. intros. generalize (ltu_iwordsize_inv _ H) (ltu_iwordsize_inv _ H0); intros. assert (unsigned (add y z) = unsigned y + unsigned z). unfold add. apply unsigned_repr. generalize two_wordsize_max_unsigned; omega. apply same_bits_eq; intros. rewrite bits_shru; auto. destruct (zlt (i + unsigned z) zwordsize). - rewrite bits_shru. destruct (zlt (i + unsigned z + unsigned y) zwordsize). + rewrite bits_shru; auto. rewrite zlt_true. f_equal. omega. omega. + rewrite bits_shru; auto. rewrite zlt_false. auto. omega. + omega. - rewrite bits_shru; auto. rewrite zlt_false. auto. omega. Qed. Theorem shr_zero: forall x, shr x zero = x. Proof. bit_solve. rewrite unsigned_zero. rewrite zlt_true. f_equal; omega. omega. Qed. Lemma bitwise_binop_shr: forall f f' x y n, (forall x y i, 0 <= i < zwordsize -> testbit (f x y) i = f' (testbit x i) (testbit y i)) -> f (shr x n) (shr y n) = shr (f x y) n. Proof. intros. apply same_bits_eq; intros. rewrite H; auto. rewrite !bits_shr; auto. rewrite H; auto. destruct (zlt (i + unsigned n) zwordsize). generalize (unsigned_range n); omega. omega. Qed. Theorem and_shr: forall x y n, and (shr x n) (shr y n) = shr (and x y) n. Proof. intros. apply bitwise_binop_shr with andb. exact bits_and. Qed. Theorem or_shr: forall x y n, or (shr x n) (shr y n) = shr (or x y) n. Proof. intros. apply bitwise_binop_shr with orb. exact bits_or. Qed. Theorem xor_shr: forall x y n, xor (shr x n) (shr y n) = shr (xor x y) n. Proof. intros. apply bitwise_binop_shr with xorb. exact bits_xor. Qed. Theorem shr_shr: forall x y z, ltu y iwordsize = true -> ltu z iwordsize = true -> ltu (add y z) iwordsize = true -> shr (shr x y) z = shr x (add y z). Proof. intros. generalize (ltu_iwordsize_inv _ H) (ltu_iwordsize_inv _ H0); intros. assert (unsigned (add y z) = unsigned y + unsigned z). unfold add. apply unsigned_repr. generalize two_wordsize_max_unsigned; omega. apply same_bits_eq; intros. rewrite !bits_shr; auto. f_equal. destruct (zlt (i + unsigned z) zwordsize). rewrite H4. replace (i + (unsigned y + unsigned z)) with (i + unsigned z + unsigned y) by omega. auto. rewrite (zlt_false _ (i + unsigned (add y z))). destruct (zlt (zwordsize - 1 + unsigned y) zwordsize); omega. omega. destruct (zlt (i + unsigned z) zwordsize); omega. Qed. Theorem and_shr_shru: forall x y z, and (shr x z) (shru y z) = shru (and x y) z. Proof. intros. apply same_bits_eq; intros. rewrite bits_and; auto. rewrite bits_shr; auto. rewrite !bits_shru; auto. destruct (zlt (i + unsigned z) zwordsize). - rewrite bits_and; auto. generalize (unsigned_range z); omega. - apply andb_false_r. Qed. Theorem shr_and_shru_and: forall x y z, shru (shl z y) y = z -> and (shr x y) z = and (shru x y) z. Proof. intros. rewrite <- H. rewrite and_shru. rewrite and_shr_shru. auto. Qed. Theorem shru_lt_zero: forall x, shru x (repr (zwordsize - 1)) = if lt x zero then one else zero. Proof. intros. apply same_bits_eq; intros. rewrite bits_shru; auto. rewrite unsigned_repr. destruct (zeq i 0). subst i. rewrite Zplus_0_l. rewrite zlt_true. rewrite sign_bit_of_unsigned. unfold lt. rewrite signed_zero. unfold signed. destruct (zlt (unsigned x) half_modulus). rewrite zlt_false. auto. generalize (unsigned_range x); omega. rewrite zlt_true. unfold one; rewrite testbit_repr; auto. generalize (unsigned_range x); omega. omega. rewrite zlt_false. unfold testbit. rewrite Ztestbit_eq. rewrite zeq_false. destruct (lt x zero). rewrite unsigned_one. simpl Z.div2. rewrite Z.testbit_0_l; auto. rewrite unsigned_zero. simpl Z.div2. rewrite Z.testbit_0_l; auto. auto. omega. omega. generalize wordsize_max_unsigned; omega. Qed. Theorem shr_lt_zero: forall x, shr x (repr (zwordsize - 1)) = if lt x zero then mone else zero. Proof. intros. apply same_bits_eq; intros. rewrite bits_shr; auto. rewrite unsigned_repr. transitivity (testbit x (zwordsize - 1)). f_equal. destruct (zlt (i + (zwordsize - 1)) zwordsize); omega. rewrite sign_bit_of_unsigned. unfold lt. rewrite signed_zero. unfold signed. destruct (zlt (unsigned x) half_modulus). rewrite zlt_false. rewrite bits_zero; auto. generalize (unsigned_range x); omega. rewrite zlt_true. rewrite bits_mone; auto. generalize (unsigned_range x); omega. generalize wordsize_max_unsigned; omega. Qed. (** ** Properties of rotations *) Lemma bits_rol: forall x y i, 0 <= i < zwordsize -> testbit (rol x y) i = testbit x ((i - unsigned y) mod zwordsize). Proof. intros. unfold rol. exploit (Z_div_mod_eq (unsigned y) zwordsize). apply wordsize_pos. set (j := unsigned y mod zwordsize). set (k := unsigned y / zwordsize). intros EQ. exploit (Z_mod_lt (unsigned y) zwordsize). apply wordsize_pos. fold j. intros RANGE. rewrite testbit_repr; auto. rewrite Z.lor_spec. rewrite Z.shiftr_spec. 2: omega. destruct (zlt i j). - rewrite Z.shiftl_spec_low; auto. simpl. unfold testbit. f_equal. symmetry. apply Zmod_unique with (-k - 1). rewrite EQ. ring. omega. - rewrite Z.shiftl_spec_high. fold (testbit x (i + (zwordsize - j))). rewrite bits_above. rewrite orb_false_r. fold (testbit x (i - j)). f_equal. symmetry. apply Zmod_unique with (-k). rewrite EQ. ring. omega. omega. omega. omega. Qed. Lemma bits_ror: forall x y i, 0 <= i < zwordsize -> testbit (ror x y) i = testbit x ((i + unsigned y) mod zwordsize). Proof. intros. unfold ror. exploit (Z_div_mod_eq (unsigned y) zwordsize). apply wordsize_pos. set (j := unsigned y mod zwordsize). set (k := unsigned y / zwordsize). intros EQ. exploit (Z_mod_lt (unsigned y) zwordsize). apply wordsize_pos. fold j. intros RANGE. rewrite testbit_repr; auto. rewrite Z.lor_spec. rewrite Z.shiftr_spec. 2: omega. destruct (zlt (i + j) zwordsize). - rewrite Z.shiftl_spec_low; auto. rewrite orb_false_r. unfold testbit. f_equal. symmetry. apply Zmod_unique with k. rewrite EQ. ring. omega. omega. - rewrite Z.shiftl_spec_high. fold (testbit x (i + j)). rewrite bits_above. simpl. unfold testbit. f_equal. symmetry. apply Zmod_unique with (k + 1). rewrite EQ. ring. omega. omega. omega. omega. Qed. Hint Rewrite bits_rol bits_ror: ints. Theorem shl_rolm: forall x n, ltu n iwordsize = true -> shl x n = rolm x n (shl mone n). Proof. intros. generalize (ltu_inv _ _ H). rewrite unsigned_repr_wordsize; intros. unfold rolm. apply same_bits_eq; intros. rewrite bits_and; auto. rewrite !bits_shl; auto. rewrite bits_rol; auto. destruct (zlt i (unsigned n)). - rewrite andb_false_r; auto. - generalize (unsigned_range n); intros. rewrite bits_mone. rewrite andb_true_r. f_equal. symmetry. apply Zmod_small. omega. omega. Qed. Theorem shru_rolm: forall x n, ltu n iwordsize = true -> shru x n = rolm x (sub iwordsize n) (shru mone n). Proof. intros. generalize (ltu_inv _ _ H). rewrite unsigned_repr_wordsize; intros. unfold rolm. apply same_bits_eq; intros. rewrite bits_and; auto. rewrite !bits_shru; auto. rewrite bits_rol; auto. destruct (zlt (i + unsigned n) zwordsize). - generalize (unsigned_range n); intros. rewrite bits_mone. rewrite andb_true_r. f_equal. unfold sub. rewrite unsigned_repr. rewrite unsigned_repr_wordsize. symmetry. apply Zmod_unique with (-1). ring. omega. rewrite unsigned_repr_wordsize. generalize wordsize_max_unsigned. omega. omega. - rewrite andb_false_r; auto. Qed. Theorem rol_zero: forall x, rol x zero = x. Proof. bit_solve. f_equal. rewrite unsigned_zero. rewrite Zminus_0_r. apply Zmod_small; auto. Qed. Lemma bitwise_binop_rol: forall f f' x y n, (forall x y i, 0 <= i < zwordsize -> testbit (f x y) i = f' (testbit x i) (testbit y i)) -> rol (f x y) n = f (rol x n) (rol y n). Proof. intros. apply same_bits_eq; intros. rewrite H; auto. rewrite !bits_rol; auto. rewrite H; auto. apply Z_mod_lt. apply wordsize_pos. Qed. Theorem rol_and: forall x y n, rol (and x y) n = and (rol x n) (rol y n). Proof. intros. apply bitwise_binop_rol with andb. exact bits_and. Qed. Theorem rol_or: forall x y n, rol (or x y) n = or (rol x n) (rol y n). Proof. intros. apply bitwise_binop_rol with orb. exact bits_or. Qed. Theorem rol_xor: forall x y n, rol (xor x y) n = xor (rol x n) (rol y n). Proof. intros. apply bitwise_binop_rol with xorb. exact bits_xor. Qed. Theorem rol_rol: forall x n m, Zdivide zwordsize modulus -> rol (rol x n) m = rol x (modu (add n m) iwordsize). Proof. bit_solve. f_equal. apply eqmod_mod_eq. apply wordsize_pos. set (M := unsigned m); set (N := unsigned n). apply eqmod_trans with (i - M - N). apply eqmod_sub. apply eqmod_sym. apply eqmod_mod. apply wordsize_pos. apply eqmod_refl. replace (i - M - N) with (i - (M + N)) by omega. apply eqmod_sub. apply eqmod_refl. apply eqmod_trans with (Zmod (unsigned n + unsigned m) zwordsize). replace (M + N) with (N + M) by omega. apply eqmod_mod. apply wordsize_pos. unfold modu, add. fold M; fold N. rewrite unsigned_repr_wordsize. assert (forall a, eqmod zwordsize a (unsigned (repr a))). intros. eapply eqmod_divides. apply eqm_unsigned_repr. assumption. eapply eqmod_trans. 2: apply H1. apply eqmod_refl2. apply eqmod_mod_eq. apply wordsize_pos. auto. apply Z_mod_lt. apply wordsize_pos. Qed. Theorem rolm_zero: forall x m, rolm x zero m = and x m. Proof. intros. unfold rolm. rewrite rol_zero. auto. Qed. Theorem rolm_rolm: forall x n1 m1 n2 m2, Zdivide zwordsize modulus -> rolm (rolm x n1 m1) n2 m2 = rolm x (modu (add n1 n2) iwordsize) (and (rol m1 n2) m2). Proof. intros. unfold rolm. rewrite rol_and. rewrite and_assoc. rewrite rol_rol. reflexivity. auto. Qed. Theorem or_rolm: forall x n m1 m2, or (rolm x n m1) (rolm x n m2) = rolm x n (or m1 m2). Proof. intros; unfold rolm. symmetry. apply and_or_distrib. Qed. Theorem ror_rol: forall x y, ltu y iwordsize = true -> ror x y = rol x (sub iwordsize y). Proof. intros. generalize (ltu_iwordsize_inv _ H); intros. apply same_bits_eq; intros. rewrite bits_ror; auto. rewrite bits_rol; auto. f_equal. unfold sub. rewrite unsigned_repr. rewrite unsigned_repr_wordsize. apply eqmod_mod_eq. apply wordsize_pos. exists 1. ring. rewrite unsigned_repr_wordsize. generalize wordsize_pos; generalize wordsize_max_unsigned; omega. Qed. Theorem ror_rol_neg: forall x y, (zwordsize | modulus) -> ror x y = rol x (neg y). Proof. intros. apply same_bits_eq; intros. rewrite bits_ror by auto. rewrite bits_rol by auto. f_equal. apply eqmod_mod_eq. omega. apply eqmod_trans with (i - (- unsigned y)). apply eqmod_refl2; omega. apply eqmod_sub. apply eqmod_refl. apply eqmod_divides with modulus. apply eqm_unsigned_repr. auto. Qed. Theorem or_ror: forall x y z, ltu y iwordsize = true -> ltu z iwordsize = true -> add y z = iwordsize -> ror x z = or (shl x y) (shru x z). Proof. intros. generalize (ltu_iwordsize_inv _ H) (ltu_iwordsize_inv _ H0); intros. unfold ror, or, shl, shru. apply same_bits_eq; intros. rewrite !testbit_repr; auto. rewrite !Z.lor_spec. rewrite orb_comm. f_equal; apply same_bits_eqm; auto. - apply eqm_unsigned_repr_r. apply eqm_refl2. f_equal. rewrite Zmod_small; auto. assert (unsigned (add y z) = zwordsize). rewrite H1. apply unsigned_repr_wordsize. unfold add in H5. rewrite unsigned_repr in H5. omega. generalize two_wordsize_max_unsigned; omega. - apply eqm_unsigned_repr_r. apply eqm_refl2. f_equal. apply Zmod_small; auto. Qed. (** ** Properties of [Z_one_bits] and [is_power2]. *) Fixpoint powerserie (l: list Z): Z := match l with | nil => 0 | x :: xs => two_p x + powerserie xs end. Lemma Z_one_bits_powerserie: forall x, 0 <= x < modulus -> x = powerserie (Z_one_bits wordsize x 0). Proof. assert (forall n x i, 0 <= i -> 0 <= x < two_power_nat n -> x * two_p i = powerserie (Z_one_bits n x i)). { induction n; intros. simpl. rewrite two_power_nat_O in H0. assert (x = 0) by omega. subst x. omega. rewrite two_power_nat_S in H0. simpl Z_one_bits. rewrite (Zdecomp x) in H0. rewrite Zshiftin_spec in H0. assert (EQ: Z.div2 x * two_p (i + 1) = powerserie (Z_one_bits n (Z.div2 x) (i + 1))). apply IHn. omega. destruct (Z.odd x); omega. rewrite two_p_is_exp in EQ. change (two_p 1) with 2 in EQ. rewrite (Zdecomp x) at 1. rewrite Zshiftin_spec. destruct (Z.odd x); simpl powerserie; rewrite <- EQ; ring. omega. omega. } intros. rewrite <- H. change (two_p 0) with 1. omega. omega. exact H0. Qed. Lemma Z_one_bits_range: forall x i, In i (Z_one_bits wordsize x 0) -> 0 <= i < zwordsize. Proof. assert (forall n x i j, In j (Z_one_bits n x i) -> i <= j < i + Z_of_nat n). { induction n; simpl In. tauto. intros x i j. rewrite inj_S. assert (In j (Z_one_bits n (Z.div2 x) (i + 1)) -> i <= j < i + Z.succ (Z.of_nat n)). intros. exploit IHn; eauto. omega. destruct (Z.odd x); simpl. intros [A|B]. subst j. omega. auto. auto. } intros. generalize (H wordsize x 0 i H0). fold zwordsize; omega. Qed. Lemma is_power2_rng: forall n logn, is_power2 n = Some logn -> 0 <= unsigned logn < zwordsize. Proof. intros n logn. unfold is_power2. generalize (Z_one_bits_range (unsigned n)). destruct (Z_one_bits wordsize (unsigned n) 0). intros; discriminate. destruct l. intros. injection H0; intro; subst logn; clear H0. assert (0 <= z < zwordsize). apply H. auto with coqlib. rewrite unsigned_repr. auto. generalize wordsize_max_unsigned; omega. intros; discriminate. Qed. Theorem is_power2_range: forall n logn, is_power2 n = Some logn -> ltu logn iwordsize = true. Proof. intros. unfold ltu. rewrite unsigned_repr_wordsize. apply zlt_true. generalize (is_power2_rng _ _ H). tauto. Qed. Lemma is_power2_correct: forall n logn, is_power2 n = Some logn -> unsigned n = two_p (unsigned logn). Proof. intros n logn. unfold is_power2. generalize (Z_one_bits_powerserie (unsigned n) (unsigned_range n)). generalize (Z_one_bits_range (unsigned n)). destruct (Z_one_bits wordsize (unsigned n) 0). intros; discriminate. destruct l. intros. simpl in H0. injection H1; intros; subst logn; clear H1. rewrite unsigned_repr. replace (two_p z) with (two_p z + 0). auto. omega. elim (H z); intros. generalize wordsize_max_unsigned; omega. auto with coqlib. intros; discriminate. Qed. Remark two_p_range: forall n, 0 <= n < zwordsize -> 0 <= two_p n <= max_unsigned. Proof. intros. split. assert (two_p n > 0). apply two_p_gt_ZERO. omega. omega. generalize (two_p_monotone_strict _ _ H). unfold zwordsize; rewrite <- two_power_nat_two_p. unfold max_unsigned, modulus. omega. Qed. Remark Z_one_bits_zero: forall n i, Z_one_bits n 0 i = nil. Proof. induction n; intros; simpl; auto. Qed. Remark Z_one_bits_two_p: forall n x i, 0 <= x < Z_of_nat n -> Z_one_bits n (two_p x) i = (i + x) :: nil. Proof. induction n; intros; simpl. simpl in H. omegaContradiction. rewrite inj_S in H. assert (x = 0 \/ 0 < x) by omega. destruct H0. subst x; simpl. decEq. omega. apply Z_one_bits_zero. assert (Z.odd (two_p x) = false /\ Z.div2 (two_p x) = two_p (x-1)). apply Zshiftin_inj. rewrite <- Zdecomp. rewrite !Zshiftin_spec. rewrite <- two_p_S. rewrite Zplus_0_r. f_equal; omega. omega. destruct H1 as [A B]; rewrite A; rewrite B. rewrite IHn. f_equal; omega. omega. Qed. Lemma is_power2_two_p: forall n, 0 <= n < zwordsize -> is_power2 (repr (two_p n)) = Some (repr n). Proof. intros. unfold is_power2. rewrite unsigned_repr. rewrite Z_one_bits_two_p. auto. auto. apply two_p_range. auto. Qed. (** ** Relation between bitwise operations and multiplications / divisions by powers of 2 *) (** Left shifts and multiplications by powers of 2. *) Lemma Zshiftl_mul_two_p: forall x n, 0 <= n -> Z.shiftl x n = x * two_p n. Proof. intros. destruct n; simpl. - omega. - pattern p. apply Pos.peano_ind. + change (two_power_pos 1) with 2. simpl. ring. + intros. rewrite Pos.iter_succ. rewrite H0. rewrite Pplus_one_succ_l. rewrite two_power_pos_is_exp. change (two_power_pos 1) with 2. ring. - compute in H. congruence. Qed. Lemma shl_mul_two_p: forall x y, shl x y = mul x (repr (two_p (unsigned y))). Proof. intros. unfold shl, mul. apply eqm_samerepr. rewrite Zshiftl_mul_two_p. auto with ints. generalize (unsigned_range y); omega. Qed. Theorem shl_mul: forall x y, shl x y = mul x (shl one y). Proof. intros. assert (shl one y = repr (two_p (unsigned y))). { rewrite shl_mul_two_p. rewrite mul_commut. rewrite mul_one. auto. } rewrite H. apply shl_mul_two_p. Qed. Theorem mul_pow2: forall x n logn, is_power2 n = Some logn -> mul x n = shl x logn. Proof. intros. generalize (is_power2_correct n logn H); intro. rewrite shl_mul_two_p. rewrite <- H0. rewrite repr_unsigned. auto. Qed. Theorem shifted_or_is_add: forall x y n, 0 <= n < zwordsize -> unsigned y < two_p n -> or (shl x (repr n)) y = repr(unsigned x * two_p n + unsigned y). Proof. intros. rewrite <- add_is_or. - unfold add. apply eqm_samerepr. apply eqm_add; auto with ints. rewrite shl_mul_two_p. unfold mul. apply eqm_unsigned_repr_l. apply eqm_mult; auto with ints. apply eqm_unsigned_repr_l. apply eqm_refl2. rewrite unsigned_repr. auto. generalize wordsize_max_unsigned; omega. - bit_solve. rewrite unsigned_repr. destruct (zlt i n). + auto. + replace (testbit y i) with false. apply andb_false_r. symmetry. unfold testbit. assert (EQ: Z.of_nat (Z.to_nat n) = n) by (apply Z2Nat.id; omega). apply Ztestbit_above with (Z.to_nat n). rewrite <- EQ in H0. rewrite <- two_power_nat_two_p in H0. generalize (unsigned_range y); omega. rewrite EQ; auto. + generalize wordsize_max_unsigned; omega. Qed. (** Unsigned right shifts and unsigned divisions by powers of 2. *) Lemma Zshiftr_div_two_p: forall x n, 0 <= n -> Z.shiftr x n = x / two_p n. Proof. intros. destruct n; unfold Z.shiftr; simpl. - rewrite Zdiv_1_r. auto. - pattern p. apply Pos.peano_ind. + change (two_power_pos 1) with 2. simpl. apply Zdiv2_div. + intros. rewrite Pos.iter_succ. rewrite H0. rewrite Pplus_one_succ_l. rewrite two_power_pos_is_exp. change (two_power_pos 1) with 2. rewrite Zdiv2_div. rewrite Zmult_comm. apply Zdiv_Zdiv. rewrite two_power_pos_nat. apply two_power_nat_pos. omega. - compute in H. congruence. Qed. Lemma shru_div_two_p: forall x y, shru x y = repr (unsigned x / two_p (unsigned y)). Proof. intros. unfold shru. rewrite Zshiftr_div_two_p. auto. generalize (unsigned_range y); omega. Qed. Theorem divu_pow2: forall x n logn, is_power2 n = Some logn -> divu x n = shru x logn. Proof. intros. generalize (is_power2_correct n logn H). intro. symmetry. unfold divu. rewrite H0. apply shru_div_two_p. Qed. (** Signed right shifts and signed divisions by powers of 2. *) Lemma shr_div_two_p: forall x y, shr x y = repr (signed x / two_p (unsigned y)). Proof. intros. unfold shr. rewrite Zshiftr_div_two_p. auto. generalize (unsigned_range y); omega. Qed. Theorem divs_pow2: forall x n logn, is_power2 n = Some logn -> divs x n = shrx x logn. Proof. intros. generalize (is_power2_correct _ _ H); intro. unfold shrx. rewrite shl_mul_two_p. rewrite mul_commut. rewrite mul_one. rewrite <- H0. rewrite repr_unsigned. auto. Qed. (** Unsigned modulus over [2^n] is masking with [2^n-1]. *) Lemma Ztestbit_mod_two_p: forall n x i, 0 <= n -> 0 <= i -> Z.testbit (x mod (two_p n)) i = if zlt i n then Z.testbit x i else false. Proof. intros n0 x i N0POS. revert x i; pattern n0; apply natlike_ind; auto. - intros. change (two_p 0) with 1. rewrite Zmod_1_r. rewrite Z.testbit_0_l. rewrite zlt_false; auto. omega. - intros. rewrite two_p_S; auto. replace (x0 mod (2 * two_p x)) with (Zshiftin (Z.odd x0) (Z.div2 x0 mod two_p x)). rewrite Ztestbit_shiftin; auto. rewrite (Ztestbit_eq i x0); auto. destruct (zeq i 0). + rewrite zlt_true; auto. omega. + rewrite H0. destruct (zlt (Z.pred i) x). * rewrite zlt_true; auto. omega. * rewrite zlt_false; auto. omega. * omega. + rewrite (Zdecomp x0) at 3. set (x1 := Z.div2 x0). symmetry. apply Zmod_unique with (x1 / two_p x). rewrite !Zshiftin_spec. rewrite Zplus_assoc. f_equal. transitivity (2 * (two_p x * (x1 / two_p x) + x1 mod two_p x)). f_equal. apply Z_div_mod_eq. apply two_p_gt_ZERO; auto. ring. rewrite Zshiftin_spec. exploit (Z_mod_lt x1 (two_p x)). apply two_p_gt_ZERO; auto. destruct (Z.odd x0); omega. Qed. Corollary Ztestbit_two_p_m1: forall n i, 0 <= n -> 0 <= i -> Z.testbit (two_p n - 1) i = if zlt i n then true else false. Proof. intros. replace (two_p n - 1) with ((-1) mod (two_p n)). rewrite Ztestbit_mod_two_p; auto. destruct (zlt i n); auto. apply Ztestbit_m1; auto. apply Zmod_unique with (-1). ring. exploit (two_p_gt_ZERO n). auto. omega. Qed. Theorem modu_and: forall x n logn, is_power2 n = Some logn -> modu x n = and x (sub n one). Proof. intros. generalize (is_power2_correct _ _ H); intro. generalize (is_power2_rng _ _ H); intro. apply same_bits_eq; intros. rewrite bits_and; auto. unfold sub. rewrite testbit_repr; auto. rewrite H0. rewrite unsigned_one. unfold modu. rewrite testbit_repr; auto. rewrite H0. rewrite Ztestbit_mod_two_p. rewrite Ztestbit_two_p_m1. destruct (zlt i (unsigned logn)). rewrite andb_true_r; auto. rewrite andb_false_r; auto. tauto. tauto. tauto. tauto. Qed. (** ** Properties of [shrx] (signed division by a power of 2) *) Lemma Zquot_Zdiv: forall x y, y > 0 -> Z.quot x y = if zlt x 0 then (x + y - 1) / y else x / y. Proof. intros. destruct (zlt x 0). - symmetry. apply Zquot_unique_full with ((x + y - 1) mod y - (y - 1)). + red. right; split. omega. exploit (Z_mod_lt (x + y - 1) y); auto. rewrite Z.abs_eq. omega. omega. + transitivity ((y * ((x + y - 1) / y) + (x + y - 1) mod y) - (y-1)). rewrite <- Z_div_mod_eq. ring. auto. ring. - apply Zquot_Zdiv_pos; omega. Qed. Theorem shrx_shr: forall x y, ltu y (repr (zwordsize - 1)) = true -> shrx x y = shr (if lt x zero then add x (sub (shl one y) one) else x) y. Proof. intros. set (uy := unsigned y). assert (0 <= uy < zwordsize - 1). generalize (ltu_inv _ _ H). rewrite unsigned_repr. auto. generalize wordsize_pos wordsize_max_unsigned; omega. rewrite shr_div_two_p. unfold shrx. unfold divs. assert (shl one y = repr (two_p uy)). transitivity (mul one (repr (two_p uy))). symmetry. apply mul_pow2. replace y with (repr uy). apply is_power2_two_p. omega. apply repr_unsigned. rewrite mul_commut. apply mul_one. assert (two_p uy > 0). apply two_p_gt_ZERO. omega. assert (two_p uy < half_modulus). rewrite half_modulus_power. apply two_p_monotone_strict. auto. assert (two_p uy < modulus). rewrite modulus_power. apply two_p_monotone_strict. omega. assert (unsigned (shl one y) = two_p uy). rewrite H1. apply unsigned_repr. unfold max_unsigned. omega. assert (signed (shl one y) = two_p uy). rewrite H1. apply signed_repr. unfold max_signed. generalize min_signed_neg. omega. rewrite H6. rewrite Zquot_Zdiv; auto. unfold lt. rewrite signed_zero. destruct (zlt (signed x) 0); auto. rewrite add_signed. assert (signed (sub (shl one y) one) = two_p uy - 1). unfold sub. rewrite H5. rewrite unsigned_one. apply signed_repr. generalize min_signed_neg. unfold max_signed. omega. rewrite H7. rewrite signed_repr. f_equal. f_equal. omega. generalize (signed_range x). intros. assert (two_p uy - 1 <= max_signed). unfold max_signed. omega. omega. Qed. Theorem shrx_shr_2: forall x y, ltu y (repr (zwordsize - 1)) = true -> shrx x y = shr (add x (shru (shr x (repr (zwordsize - 1))) (sub iwordsize y))) y. Proof. intros. rewrite shrx_shr by auto. f_equal. rewrite shr_lt_zero. destruct (lt x zero). - set (uy := unsigned y). generalize (unsigned_range y); fold uy; intros. assert (0 <= uy < zwordsize - 1). generalize (ltu_inv _ _ H). rewrite unsigned_repr. auto. generalize wordsize_pos wordsize_max_unsigned; omega. assert (two_p uy < modulus). rewrite modulus_power. apply two_p_monotone_strict. omega. f_equal. rewrite shl_mul_two_p. fold uy. rewrite mul_commut. rewrite mul_one. unfold sub. rewrite unsigned_one. rewrite unsigned_repr. rewrite unsigned_repr_wordsize. fold uy. apply same_bits_eq; intros. rewrite bits_shru by auto. rewrite testbit_repr by auto. rewrite Ztestbit_two_p_m1 by omega. rewrite unsigned_repr by (generalize wordsize_max_unsigned; omega). destruct (zlt i uy). rewrite zlt_true by omega. rewrite bits_mone by omega. auto. rewrite zlt_false by omega. auto. assert (two_p uy > 0) by (apply two_p_gt_ZERO; omega). unfold max_unsigned; omega. - replace (shru zero (sub iwordsize y)) with zero. rewrite add_zero; auto. bit_solve. destruct (zlt (i + unsigned (sub iwordsize y)) zwordsize); auto. Qed. Lemma Zdiv_shift: forall x y, y > 0 -> (x + (y - 1)) / y = x / y + if zeq (Zmod x y) 0 then 0 else 1. Proof. intros. generalize (Z_div_mod_eq x y H). generalize (Z_mod_lt x y H). set (q := x / y). set (r := x mod y). intros. destruct (zeq r 0). apply Zdiv_unique with (y - 1). rewrite H1. rewrite e. ring. omega. apply Zdiv_unique with (r - 1). rewrite H1. ring. omega. Qed. Theorem shrx_carry: forall x y, ltu y (repr (zwordsize - 1)) = true -> shrx x y = add (shr x y) (shr_carry x y). Proof. intros. rewrite shrx_shr; auto. unfold shr_carry. unfold lt. set (sx := signed x). rewrite signed_zero. destruct (zlt sx 0); simpl. 2: rewrite add_zero; auto. set (uy := unsigned y). assert (0 <= uy < zwordsize - 1). generalize (ltu_inv _ _ H). rewrite unsigned_repr. auto. generalize wordsize_pos wordsize_max_unsigned; omega. assert (shl one y = repr (two_p uy)). rewrite shl_mul_two_p. rewrite mul_commut. apply mul_one. assert (and x (sub (shl one y) one) = modu x (repr (two_p uy))). symmetry. rewrite H1. apply modu_and with (logn := y). rewrite is_power2_two_p. unfold uy. rewrite repr_unsigned. auto. omega. rewrite H2. rewrite H1. repeat rewrite shr_div_two_p. fold sx. fold uy. assert (two_p uy > 0). apply two_p_gt_ZERO. omega. assert (two_p uy < modulus). rewrite modulus_power. apply two_p_monotone_strict. omega. assert (two_p uy < half_modulus). rewrite half_modulus_power. apply two_p_monotone_strict. auto. assert (two_p uy < modulus). rewrite modulus_power. apply two_p_monotone_strict. omega. assert (sub (repr (two_p uy)) one = repr (two_p uy - 1)). unfold sub. apply eqm_samerepr. apply eqm_sub. apply eqm_sym; apply eqm_unsigned_repr. rewrite unsigned_one. apply eqm_refl. rewrite H7. rewrite add_signed. fold sx. rewrite (signed_repr (two_p uy - 1)). rewrite signed_repr. unfold modu. rewrite unsigned_repr. unfold eq. rewrite unsigned_zero. rewrite unsigned_repr. assert (unsigned x mod two_p uy = sx mod two_p uy). apply eqmod_mod_eq; auto. apply eqmod_divides with modulus. fold eqm. unfold sx. apply eqm_sym. apply eqm_signed_unsigned. unfold modulus. rewrite two_power_nat_two_p. exists (two_p (zwordsize - uy)). rewrite <- two_p_is_exp. f_equal. fold zwordsize; omega. omega. omega. rewrite H8. rewrite Zdiv_shift; auto. unfold add. apply eqm_samerepr. apply eqm_add. apply eqm_unsigned_repr. destruct (zeq (sx mod two_p uy) 0); simpl. rewrite unsigned_zero. apply eqm_refl. rewrite unsigned_one. apply eqm_refl. generalize (Z_mod_lt (unsigned x) (two_p uy) H3). unfold max_unsigned. omega. unfold max_unsigned; omega. generalize (signed_range x). fold sx. intros. split. omega. unfold max_signed. omega. generalize min_signed_neg. unfold max_signed. omega. Qed. (** Connections between [shr] and [shru]. *) Lemma shr_shru_positive: forall x y, signed x >= 0 -> shr x y = shru x y. Proof. intros. rewrite shr_div_two_p. rewrite shru_div_two_p. rewrite signed_eq_unsigned. auto. apply signed_positive. auto. Qed. Lemma and_positive: forall x y, signed y >= 0 -> signed (and x y) >= 0. Proof. intros. assert (unsigned y < half_modulus). rewrite signed_positive in H. unfold max_signed in H; omega. generalize (sign_bit_of_unsigned y). rewrite zlt_true; auto. intros A. generalize (sign_bit_of_unsigned (and x y)). rewrite bits_and. rewrite A. rewrite andb_false_r. unfold signed. destruct (zlt (unsigned (and x y)) half_modulus). intros. generalize (unsigned_range (and x y)); omega. congruence. generalize wordsize_pos; omega. Qed. Theorem shr_and_is_shru_and: forall x y z, lt y zero = false -> shr (and x y) z = shru (and x y) z. Proof. intros. apply shr_shru_positive. apply and_positive. unfold lt in H. rewrite signed_zero in H. destruct (zlt (signed y) 0). congruence. auto. Qed. (** ** Properties of integer zero extension and sign extension. *) Lemma Ziter_base: forall (A: Type) n (f: A -> A) x, n <= 0 -> Z.iter n f x = x. Proof. intros. unfold Z.iter. destruct n; auto. compute in H. elim H; auto. Qed. Lemma Ziter_succ: forall (A: Type) n (f: A -> A) x, 0 <= n -> Z.iter (Z.succ n) f x = f (Z.iter n f x). Proof. intros. destruct n; simpl. - auto. - rewrite Pos.add_1_r. apply Pos.iter_succ. - compute in H. elim H; auto. Qed. Lemma Znatlike_ind: forall (P: Z -> Prop), (forall n, n <= 0 -> P n) -> (forall n, 0 <= n -> P n -> P (Z.succ n)) -> forall n, P n. Proof. intros. destruct (zle 0 n). apply natlike_ind; auto. apply H; omega. apply H. omega. Qed. Lemma Zzero_ext_spec: forall n x i, 0 <= i -> Z.testbit (Zzero_ext n x) i = if zlt i n then Z.testbit x i else false. Proof. unfold Zzero_ext. induction n using Znatlike_ind. - intros. rewrite Ziter_base; auto. rewrite zlt_false. rewrite Ztestbit_0; auto. omega. - intros. rewrite Ziter_succ; auto. rewrite Ztestbit_shiftin; auto. rewrite (Ztestbit_eq i x); auto. destruct (zeq i 0). + subst i. rewrite zlt_true; auto. omega. + rewrite IHn. destruct (zlt (Z.pred i) n). rewrite zlt_true; auto. omega. rewrite zlt_false; auto. omega. omega. Qed. Lemma bits_zero_ext: forall n x i, 0 <= i -> testbit (zero_ext n x) i = if zlt i n then testbit x i else false. Proof. intros. unfold zero_ext. destruct (zlt i zwordsize). rewrite testbit_repr; auto. rewrite Zzero_ext_spec. auto. auto. rewrite !bits_above; auto. destruct (zlt i n); auto. Qed. Lemma Zsign_ext_spec: forall n x i, 0 <= i -> 0 < n -> Z.testbit (Zsign_ext n x) i = Z.testbit x (if zlt i n then i else n - 1). Proof. intros n0 x i I0 N0. revert x i I0. pattern n0. apply Zlt_lower_bound_ind with (z := 1). - unfold Zsign_ext. intros. destruct (zeq x 1). + subst x; simpl. replace (if zlt i 1 then i else 0) with 0. rewrite Ztestbit_base. destruct (Z.odd x0). apply Ztestbit_m1; auto. apply Ztestbit_0. destruct (zlt i 1); omega. + set (x1 := Z.pred x). replace x1 with (Z.succ (Z.pred x1)). rewrite Ziter_succ. rewrite Ztestbit_shiftin. destruct (zeq i 0). * subst i. rewrite zlt_true. rewrite Ztestbit_base; auto. omega. * rewrite H. unfold x1. destruct (zlt (Z.pred i) (Z.pred x)). rewrite zlt_true. rewrite (Ztestbit_eq i x0); auto. rewrite zeq_false; auto. omega. rewrite zlt_false. rewrite (Ztestbit_eq (x - 1) x0). rewrite zeq_false; auto. omega. omega. omega. unfold x1; omega. omega. * omega. * unfold x1; omega. * omega. - omega. Qed. Lemma bits_sign_ext: forall n x i, 0 <= i < zwordsize -> 0 < n -> testbit (sign_ext n x) i = testbit x (if zlt i n then i else n - 1). Proof. intros. unfold sign_ext. rewrite testbit_repr; auto. rewrite Zsign_ext_spec. destruct (zlt i n); auto. omega. auto. Qed. Hint Rewrite bits_zero_ext bits_sign_ext: ints. Theorem zero_ext_above: forall n x, n >= zwordsize -> zero_ext n x = x. Proof. intros. apply same_bits_eq; intros. rewrite bits_zero_ext. apply zlt_true. omega. omega. Qed. Theorem sign_ext_above: forall n x, n >= zwordsize -> sign_ext n x = x. Proof. intros. apply same_bits_eq; intros. unfold sign_ext; rewrite testbit_repr; auto. rewrite Zsign_ext_spec. rewrite zlt_true. auto. omega. omega. omega. Qed. Theorem zero_ext_and: forall n x, 0 <= n -> zero_ext n x = and x (repr (two_p n - 1)). Proof. bit_solve. rewrite testbit_repr; auto. rewrite Ztestbit_two_p_m1; intuition. destruct (zlt i n). rewrite andb_true_r; auto. rewrite andb_false_r; auto. tauto. Qed. Theorem zero_ext_mod: forall n x, 0 <= n < zwordsize -> unsigned (zero_ext n x) = Zmod (unsigned x) (two_p n). Proof. intros. apply equal_same_bits. intros. rewrite Ztestbit_mod_two_p; auto. fold (testbit (zero_ext n x) i). destruct (zlt i zwordsize). rewrite bits_zero_ext; auto. rewrite bits_above. rewrite zlt_false; auto. omega. omega. omega. Qed. Theorem zero_ext_widen: forall x n n', 0 <= n <= n' -> zero_ext n' (zero_ext n x) = zero_ext n x. Proof. bit_solve. destruct (zlt i n). apply zlt_true. omega. destruct (zlt i n'); auto. tauto. tauto. Qed. Theorem sign_ext_widen: forall x n n', 0 < n <= n' -> sign_ext n' (sign_ext n x) = sign_ext n x. Proof. intros. destruct (zlt n' zwordsize). bit_solve. destruct (zlt i n'). auto. rewrite (zlt_false _ i n). destruct (zlt (n' - 1) n); f_equal; omega. omega. omega. destruct (zlt i n'); omega. omega. omega. apply sign_ext_above; auto. Qed. Theorem sign_zero_ext_widen: forall x n n', 0 <= n < n' -> sign_ext n' (zero_ext n x) = zero_ext n x. Proof. intros. destruct (zlt n' zwordsize). bit_solve. destruct (zlt i n'). auto. rewrite !zlt_false. auto. omega. omega. omega. destruct (zlt i n'); omega. omega. apply sign_ext_above; auto. Qed. Theorem zero_ext_narrow: forall x n n', 0 <= n <= n' -> zero_ext n (zero_ext n' x) = zero_ext n x. Proof. bit_solve. destruct (zlt i n). apply zlt_true. omega. auto. omega. omega. omega. Qed. Theorem sign_ext_narrow: forall x n n', 0 < n <= n' -> sign_ext n (sign_ext n' x) = sign_ext n x. Proof. intros. destruct (zlt n zwordsize). bit_solve. destruct (zlt i n); f_equal; apply zlt_true; omega. omega. destruct (zlt i n); omega. omega. omega. rewrite (sign_ext_above n'). auto. omega. Qed. Theorem zero_sign_ext_narrow: forall x n n', 0 < n <= n' -> zero_ext n (sign_ext n' x) = zero_ext n x. Proof. intros. destruct (zlt n' zwordsize). bit_solve. destruct (zlt i n); auto. rewrite zlt_true; auto. omega. omega. omega. omega. rewrite sign_ext_above; auto. Qed. Theorem zero_ext_idem: forall n x, 0 <= n -> zero_ext n (zero_ext n x) = zero_ext n x. Proof. intros. apply zero_ext_widen. omega. Qed. Theorem sign_ext_idem: forall n x, 0 < n -> sign_ext n (sign_ext n x) = sign_ext n x. Proof. intros. apply sign_ext_widen. omega. Qed. Theorem sign_ext_zero_ext: forall n x, 0 < n -> sign_ext n (zero_ext n x) = sign_ext n x. Proof. intros. destruct (zlt n zwordsize). bit_solve. destruct (zlt i n). rewrite zlt_true; auto. rewrite zlt_true; auto. omega. destruct (zlt i n); omega. rewrite zero_ext_above; auto. Qed. Theorem zero_ext_sign_ext: forall n x, 0 < n -> zero_ext n (sign_ext n x) = zero_ext n x. Proof. intros. apply zero_sign_ext_narrow. omega. Qed. Theorem sign_ext_equal_if_zero_equal: forall n x y, 0 < n -> zero_ext n x = zero_ext n y -> sign_ext n x = sign_ext n y. Proof. intros. rewrite <- (sign_ext_zero_ext n x H). rewrite <- (sign_ext_zero_ext n y H). congruence. Qed. Theorem zero_ext_shru_shl: forall n x, 0 < n < zwordsize -> let y := repr (zwordsize - n) in zero_ext n x = shru (shl x y) y. Proof. intros. assert (unsigned y = zwordsize - n). unfold y. apply unsigned_repr. generalize wordsize_max_unsigned. omega. apply same_bits_eq; intros. rewrite bits_zero_ext. rewrite bits_shru; auto. destruct (zlt i n). rewrite zlt_true. rewrite bits_shl. rewrite zlt_false. f_equal. omega. omega. omega. omega. rewrite zlt_false. auto. omega. omega. Qed. Theorem sign_ext_shr_shl: forall n x, 0 < n < zwordsize -> let y := repr (zwordsize - n) in sign_ext n x = shr (shl x y) y. Proof. intros. assert (unsigned y = zwordsize - n). unfold y. apply unsigned_repr. generalize wordsize_max_unsigned. omega. apply same_bits_eq; intros. rewrite bits_sign_ext. rewrite bits_shr; auto. destruct (zlt i n). rewrite zlt_true. rewrite bits_shl. rewrite zlt_false. f_equal. omega. omega. omega. omega. rewrite zlt_false. rewrite bits_shl. rewrite zlt_false. f_equal. omega. omega. omega. omega. omega. omega. Qed. (** [zero_ext n x] is the unique integer congruent to [x] modulo [2^n] in the range [0...2^n-1]. *) Lemma zero_ext_range: forall n x, 0 <= n < zwordsize -> 0 <= unsigned (zero_ext n x) < two_p n. Proof. intros. rewrite zero_ext_mod; auto. apply Z_mod_lt. apply two_p_gt_ZERO. omega. Qed. Lemma eqmod_zero_ext: forall n x, 0 <= n < zwordsize -> eqmod (two_p n) (unsigned (zero_ext n x)) (unsigned x). Proof. intros. rewrite zero_ext_mod; auto. apply eqmod_sym. apply eqmod_mod. apply two_p_gt_ZERO. omega. Qed. (** [sign_ext n x] is the unique integer congruent to [x] modulo [2^n] in the range [-2^(n-1)...2^(n-1) - 1]. *) Lemma sign_ext_range: forall n x, 0 < n < zwordsize -> -two_p (n-1) <= signed (sign_ext n x) < two_p (n-1). Proof. intros. rewrite sign_ext_shr_shl; auto. set (X := shl x (repr (zwordsize - n))). assert (two_p (n - 1) > 0) by (apply two_p_gt_ZERO; omega). assert (unsigned (repr (zwordsize - n)) = zwordsize - n). apply unsigned_repr. split. omega. generalize wordsize_max_unsigned; omega. rewrite shr_div_two_p. rewrite signed_repr. rewrite H1. apply Zdiv_interval_1. omega. omega. apply two_p_gt_ZERO; omega. replace (- two_p (n - 1) * two_p (zwordsize - n)) with (- (two_p (n - 1) * two_p (zwordsize - n))) by ring. rewrite <- two_p_is_exp. replace (n - 1 + (zwordsize - n)) with (zwordsize - 1) by omega. rewrite <- half_modulus_power. generalize (signed_range X). unfold min_signed, max_signed. omega. omega. omega. apply Zdiv_interval_2. apply signed_range. generalize min_signed_neg; omega. generalize max_signed_pos; omega. rewrite H1. apply two_p_gt_ZERO. omega. Qed. Lemma eqmod_sign_ext': forall n x, 0 < n < zwordsize -> eqmod (two_p n) (unsigned (sign_ext n x)) (unsigned x). Proof. intros. set (N := Z.to_nat n). assert (Z.of_nat N = n) by (apply Z2Nat.id; omega). rewrite <- H0. rewrite <- two_power_nat_two_p. apply eqmod_same_bits; intros. rewrite H0 in H1. rewrite H0. fold (testbit (sign_ext n x) i). rewrite bits_sign_ext. rewrite zlt_true. auto. omega. omega. omega. Qed. Lemma eqmod_sign_ext: forall n x, 0 < n < zwordsize -> eqmod (two_p n) (signed (sign_ext n x)) (unsigned x). Proof. intros. apply eqmod_trans with (unsigned (sign_ext n x)). apply eqmod_divides with modulus. apply eqm_signed_unsigned. exists (two_p (zwordsize - n)). unfold modulus. rewrite two_power_nat_two_p. fold zwordsize. rewrite <- two_p_is_exp. f_equal. omega. omega. omega. apply eqmod_sign_ext'; auto. Qed. (** ** Properties of [one_bits] (decomposition in sum of powers of two) *) Theorem one_bits_range: forall x i, In i (one_bits x) -> ltu i iwordsize = true. Proof. assert (A: forall p, 0 <= p < zwordsize -> ltu (repr p) iwordsize = true). intros. unfold ltu, iwordsize. apply zlt_true. repeat rewrite unsigned_repr. tauto. generalize wordsize_max_unsigned; omega. generalize wordsize_max_unsigned; omega. intros. unfold one_bits in H. destruct (list_in_map_inv _ _ _ H) as [i0 [EQ IN]]. subst i. apply A. apply Z_one_bits_range with (unsigned x); auto. Qed. Fixpoint int_of_one_bits (l: list int) : int := match l with | nil => zero | a :: b => add (shl one a) (int_of_one_bits b) end. Theorem one_bits_decomp: forall x, x = int_of_one_bits (one_bits x). Proof. intros. transitivity (repr (powerserie (Z_one_bits wordsize (unsigned x) 0))). transitivity (repr (unsigned x)). auto with ints. decEq. apply Z_one_bits_powerserie. auto with ints. unfold one_bits. generalize (Z_one_bits_range (unsigned x)). generalize (Z_one_bits wordsize (unsigned x) 0). induction l. intros; reflexivity. intros; simpl. rewrite <- IHl. unfold add. apply eqm_samerepr. apply eqm_add. rewrite shl_mul_two_p. rewrite mul_commut. rewrite mul_one. apply eqm_unsigned_repr_r. rewrite unsigned_repr. auto with ints. generalize (H a (in_eq _ _)). generalize wordsize_max_unsigned. omega. auto with ints. intros; apply H; auto with coqlib. Qed. (** ** Properties of comparisons *) Theorem negate_cmp: forall c x y, cmp (negate_comparison c) x y = negb (cmp c x y). Proof. intros. destruct c; simpl; try rewrite negb_elim; auto. Qed. Theorem negate_cmpu: forall c x y, cmpu (negate_comparison c) x y = negb (cmpu c x y). Proof. intros. destruct c; simpl; try rewrite negb_elim; auto. Qed. Theorem swap_cmp: forall c x y, cmp (swap_comparison c) x y = cmp c y x. Proof. intros. destruct c; simpl; auto. apply eq_sym. decEq. apply eq_sym. Qed. Theorem swap_cmpu: forall c x y, cmpu (swap_comparison c) x y = cmpu c y x. Proof. intros. destruct c; simpl; auto. apply eq_sym. decEq. apply eq_sym. Qed. Lemma translate_eq: forall x y d, eq (add x d) (add y d) = eq x y. Proof. intros. unfold eq. case (zeq (unsigned x) (unsigned y)); intro. unfold add. rewrite e. apply zeq_true. apply zeq_false. unfold add. red; intro. apply n. apply eqm_small_eq; auto with ints. replace (unsigned x) with ((unsigned x + unsigned d) - unsigned d). replace (unsigned y) with ((unsigned y + unsigned d) - unsigned d). apply eqm_sub. apply eqm_trans with (unsigned (repr (unsigned x + unsigned d))). eauto with ints. apply eqm_trans with (unsigned (repr (unsigned y + unsigned d))). eauto with ints. eauto with ints. eauto with ints. omega. omega. Qed. Lemma translate_ltu: forall x y d, 0 <= unsigned x + unsigned d <= max_unsigned -> 0 <= unsigned y + unsigned d <= max_unsigned -> ltu (add x d) (add y d) = ltu x y. Proof. intros. unfold add. unfold ltu. repeat rewrite unsigned_repr; auto. case (zlt (unsigned x) (unsigned y)); intro. apply zlt_true. omega. apply zlt_false. omega. Qed. Theorem translate_cmpu: forall c x y d, 0 <= unsigned x + unsigned d <= max_unsigned -> 0 <= unsigned y + unsigned d <= max_unsigned -> cmpu c (add x d) (add y d) = cmpu c x y. Proof. intros. unfold cmpu. rewrite translate_eq. repeat rewrite translate_ltu; auto. Qed. Lemma translate_lt: forall x y d, min_signed <= signed x + signed d <= max_signed -> min_signed <= signed y + signed d <= max_signed -> lt (add x d) (add y d) = lt x y. Proof. intros. repeat rewrite add_signed. unfold lt. repeat rewrite signed_repr; auto. case (zlt (signed x) (signed y)); intro. apply zlt_true. omega. apply zlt_false. omega. Qed. Theorem translate_cmp: forall c x y d, min_signed <= signed x + signed d <= max_signed -> min_signed <= signed y + signed d <= max_signed -> cmp c (add x d) (add y d) = cmp c x y. Proof. intros. unfold cmp. rewrite translate_eq. repeat rewrite translate_lt; auto. Qed. Theorem notbool_isfalse_istrue: forall x, is_false x -> is_true (notbool x). Proof. unfold is_false, is_true, notbool; intros; subst x. rewrite eq_true. apply one_not_zero. Qed. Theorem notbool_istrue_isfalse: forall x, is_true x -> is_false (notbool x). Proof. unfold is_false, is_true, notbool; intros. generalize (eq_spec x zero). case (eq x zero); intro. contradiction. auto. Qed. Theorem ltu_range_test: forall x y, ltu x y = true -> unsigned y <= max_signed -> 0 <= signed x < unsigned y. Proof. intros. unfold ltu in H. destruct (zlt (unsigned x) (unsigned y)); try discriminate. rewrite signed_eq_unsigned. generalize (unsigned_range x). omega. omega. Qed. Theorem lt_sub_overflow: forall x y, xor (sub_overflow x y zero) (negative (sub x y)) = if lt x y then one else zero. Proof. intros. unfold negative, sub_overflow, lt. rewrite sub_signed. rewrite signed_zero. rewrite Zminus_0_r. generalize (signed_range x) (signed_range y). set (X := signed x); set (Y := signed y). intros RX RY. unfold min_signed, max_signed in *. generalize half_modulus_pos half_modulus_modulus; intros HM MM. destruct (zle 0 (X - Y)). - unfold proj_sumbool at 1; rewrite zle_true at 1 by omega. simpl. rewrite (zlt_false _ X) by omega. destruct (zlt (X - Y) half_modulus). + unfold proj_sumbool; rewrite zle_true by omega. rewrite signed_repr. rewrite zlt_false by omega. apply xor_idem. unfold min_signed, max_signed; omega. + unfold proj_sumbool; rewrite zle_false by omega. replace (signed (repr (X - Y))) with (X - Y - modulus). rewrite zlt_true by omega. apply xor_idem. rewrite signed_repr_eq. replace ((X - Y) mod modulus) with (X - Y). rewrite zlt_false; auto. symmetry. apply Zmod_unique with 0; omega. - unfold proj_sumbool at 2. rewrite zle_true at 1 by omega. rewrite andb_true_r. rewrite (zlt_true _ X) by omega. destruct (zlt (X - Y) (-half_modulus)). + unfold proj_sumbool; rewrite zle_false by omega. replace (signed (repr (X - Y))) with (X - Y + modulus). rewrite zlt_false by omega. apply xor_zero. rewrite signed_repr_eq. replace ((X - Y) mod modulus) with (X - Y + modulus). rewrite zlt_true by omega; auto. symmetry. apply Zmod_unique with (-1); omega. + unfold proj_sumbool; rewrite zle_true by omega. rewrite signed_repr. rewrite zlt_true by omega. apply xor_zero_l. unfold min_signed, max_signed; omega. Qed. (** Non-overlapping test *) Definition no_overlap (ofs1: int) (sz1: Z) (ofs2: int) (sz2: Z) : bool := let x1 := unsigned ofs1 in let x2 := unsigned ofs2 in zlt (x1 + sz1) modulus && zlt (x2 + sz2) modulus && (zle (x1 + sz1) x2 || zle (x2 + sz2) x1). Lemma no_overlap_sound: forall ofs1 sz1 ofs2 sz2 base, sz1 > 0 -> sz2 > 0 -> no_overlap ofs1 sz1 ofs2 sz2 = true -> unsigned (add base ofs1) + sz1 <= unsigned (add base ofs2) \/ unsigned (add base ofs2) + sz2 <= unsigned (add base ofs1). Proof. intros. destruct (andb_prop _ _ H1). clear H1. destruct (andb_prop _ _ H2). clear H2. exploit proj_sumbool_true. eexact H1. intro A; clear H1. exploit proj_sumbool_true. eexact H4. intro B; clear H4. assert (unsigned ofs1 + sz1 <= unsigned ofs2 \/ unsigned ofs2 + sz2 <= unsigned ofs1). destruct (orb_prop _ _ H3). left. eapply proj_sumbool_true; eauto. right. eapply proj_sumbool_true; eauto. clear H3. generalize (unsigned_range ofs1) (unsigned_range ofs2). intros P Q. generalize (unsigned_add_either base ofs1) (unsigned_add_either base ofs2). intros [C|C] [D|D]; omega. Qed. (** Size of integers, in bits. *) Definition Zsize (x: Z) : Z := match x with | Zpos p => Zpos (Pos.size p) | _ => 0 end. Definition size (x: int) : Z := Zsize (unsigned x). Remark Zsize_pos: forall x, 0 <= Zsize x. Proof. destruct x; simpl. omega. compute; intuition congruence. omega. Qed. Remark Zsize_pos': forall x, 0 < x -> 0 < Zsize x. Proof. destruct x; simpl; intros; try discriminate. compute; auto. Qed. Lemma Zsize_shiftin: forall b x, 0 < x -> Zsize (Zshiftin b x) = Zsucc (Zsize x). Proof. intros. destruct x; compute in H; try discriminate. destruct b. change (Zshiftin true (Zpos p)) with (Zpos (p~1)). simpl. f_equal. rewrite Pos.add_1_r; auto. change (Zshiftin false (Zpos p)) with (Zpos (p~0)). simpl. f_equal. rewrite Pos.add_1_r; auto. Qed. Lemma Ztestbit_size_1: forall x, 0 < x -> Z.testbit x (Zpred (Zsize x)) = true. Proof. intros x0 POS0; pattern x0; apply Zshiftin_pos_ind; auto. intros. rewrite Zsize_shiftin; auto. replace (Z.pred (Z.succ (Zsize x))) with (Z.succ (Z.pred (Zsize x))) by omega. rewrite Ztestbit_shiftin_succ. auto. generalize (Zsize_pos' x H); omega. Qed. Lemma Ztestbit_size_2: forall x, 0 <= x -> forall i, i >= Zsize x -> Z.testbit x i = false. Proof. intros x0 POS0. destruct (zeq x0 0). - subst x0; intros. apply Ztestbit_0. - pattern x0; apply Zshiftin_pos_ind. + simpl. intros. change 1 with (Zshiftin true 0). rewrite Ztestbit_shiftin. rewrite zeq_false. apply Ztestbit_0. omega. omega. + intros. rewrite Zsize_shiftin in H1; auto. generalize (Zsize_pos' _ H); intros. rewrite Ztestbit_shiftin. rewrite zeq_false. apply H0. omega. omega. omega. + omega. Qed. Lemma Zsize_interval_1: forall x, 0 <= x -> 0 <= x < two_p (Zsize x). Proof. intros. assert (x = x mod (two_p (Zsize x))). apply equal_same_bits; intros. rewrite Ztestbit_mod_two_p; auto. destruct (zlt i (Zsize x)). auto. apply Ztestbit_size_2; auto. apply Zsize_pos; auto. rewrite H0 at 1. rewrite H0 at 3. apply Z_mod_lt. apply two_p_gt_ZERO. apply Zsize_pos; auto. Qed. Lemma Zsize_interval_2: forall x n, 0 <= n -> 0 <= x < two_p n -> n >= Zsize x. Proof. intros. set (N := Z.to_nat n). assert (Z.of_nat N = n) by (apply Z2Nat.id; auto). rewrite <- H1 in H0. rewrite <- two_power_nat_two_p in H0. destruct (zeq x 0). subst x; simpl; omega. destruct (zlt n (Zsize x)); auto. exploit (Ztestbit_above N x (Zpred (Zsize x))). auto. omega. rewrite Ztestbit_size_1. congruence. omega. Qed. Lemma Zsize_monotone: forall x y, 0 <= x <= y -> Zsize x <= Zsize y. Proof. intros. apply Zge_le. apply Zsize_interval_2. apply Zsize_pos. exploit (Zsize_interval_1 y). omega. omega. Qed. Theorem size_zero: size zero = 0. Proof. unfold size; rewrite unsigned_zero; auto. Qed. Theorem bits_size_1: forall x, x = zero \/ testbit x (Zpred (size x)) = true. Proof. intros. destruct (zeq (unsigned x) 0). left. rewrite <- (repr_unsigned x). rewrite e; auto. right. apply Ztestbit_size_1. generalize (unsigned_range x); omega. Qed. Theorem bits_size_2: forall x i, size x <= i -> testbit x i = false. Proof. intros. apply Ztestbit_size_2. generalize (unsigned_range x); omega. fold (size x); omega. Qed. Theorem size_range: forall x, 0 <= size x <= zwordsize. Proof. intros; split. apply Zsize_pos. destruct (bits_size_1 x). subst x; unfold size; rewrite unsigned_zero; simpl. generalize wordsize_pos; omega. destruct (zle (size x) zwordsize); auto. rewrite bits_above in H. congruence. omega. Qed. Theorem bits_size_3: forall x n, 0 <= n -> (forall i, n <= i < zwordsize -> testbit x i = false) -> size x <= n. Proof. intros. destruct (zle (size x) n). auto. destruct (bits_size_1 x). subst x. unfold size; rewrite unsigned_zero; assumption. rewrite (H0 (Z.pred (size x))) in H1. congruence. generalize (size_range x); omega. Qed. Theorem bits_size_4: forall x n, 0 <= n -> testbit x (Zpred n) = true -> (forall i, n <= i < zwordsize -> testbit x i = false) -> size x = n. Proof. intros. assert (size x <= n). apply bits_size_3; auto. destruct (zlt (size x) n). rewrite bits_size_2 in H0. congruence. omega. omega. Qed. Theorem size_interval_1: forall x, 0 <= unsigned x < two_p (size x). Proof. intros; apply Zsize_interval_1. generalize (unsigned_range x); omega. Qed. Theorem size_interval_2: forall x n, 0 <= n -> 0 <= unsigned x < two_p n -> n >= size x. Proof. intros. apply Zsize_interval_2; auto. Qed. Theorem size_and: forall a b, size (and a b) <= Z.min (size a) (size b). Proof. intros. assert (0 <= Z.min (size a) (size b)). generalize (size_range a) (size_range b). zify; omega. apply bits_size_3. auto. intros. rewrite bits_and. zify. subst z z0. destruct H1. rewrite (bits_size_2 a). auto. omega. rewrite (bits_size_2 b). apply andb_false_r. omega. omega. Qed. Corollary and_interval: forall a b, 0 <= unsigned (and a b) < two_p (Z.min (size a) (size b)). Proof. intros. generalize (size_interval_1 (and a b)); intros. assert (two_p (size (and a b)) <= two_p (Z.min (size a) (size b))). apply two_p_monotone. split. generalize (size_range (and a b)); omega. apply size_and. omega. Qed. Theorem size_or: forall a b, size (or a b) = Z.max (size a) (size b). Proof. intros. generalize (size_range a) (size_range b); intros. destruct (bits_size_1 a). subst a. rewrite size_zero. rewrite or_zero_l. zify; omega. destruct (bits_size_1 b). subst b. rewrite size_zero. rewrite or_zero. zify; omega. zify. destruct H3 as [[P Q] | [P Q]]; subst. apply bits_size_4. tauto. rewrite bits_or. rewrite H2. apply orb_true_r. omega. intros. rewrite bits_or. rewrite !bits_size_2. auto. omega. omega. omega. apply bits_size_4. tauto. rewrite bits_or. rewrite H1. apply orb_true_l. destruct (zeq (size a) 0). unfold testbit in H1. rewrite Z.testbit_neg_r in H1. congruence. omega. omega. intros. rewrite bits_or. rewrite !bits_size_2. auto. omega. omega. omega. Qed. Corollary or_interval: forall a b, 0 <= unsigned (or a b) < two_p (Z.max (size a) (size b)). Proof. intros. rewrite <- size_or. apply size_interval_1. Qed. Theorem size_xor: forall a b, size (xor a b) <= Z.max (size a) (size b). Proof. intros. assert (0 <= Z.max (size a) (size b)). generalize (size_range a) (size_range b). zify; omega. apply bits_size_3. auto. intros. rewrite bits_xor. rewrite !bits_size_2. auto. zify; omega. zify; omega. omega. Qed. Corollary xor_interval: forall a b, 0 <= unsigned (xor a b) < two_p (Z.max (size a) (size b)). Proof. intros. generalize (size_interval_1 (xor a b)); intros. assert (two_p (size (xor a b)) <= two_p (Z.max (size a) (size b))). apply two_p_monotone. split. generalize (size_range (xor a b)); omega. apply size_xor. omega. Qed. End Make. (** * Specialization to integers of size 8, 32, and 64 bits *) Module Wordsize_32. Definition wordsize := 32%nat. Remark wordsize_not_zero: wordsize <> 0%nat. Proof. unfold wordsize; congruence. Qed. End Wordsize_32. Strategy opaque [Wordsize_32.wordsize]. Module Int := Make(Wordsize_32). Strategy 0 [Wordsize_32.wordsize]. Notation int := Int.int. Remark int_wordsize_divides_modulus: Zdivide (Z_of_nat Int.wordsize) Int.modulus. Proof. exists (two_p (32-5)); reflexivity. Qed. Module Wordsize_8. Definition wordsize := 8%nat. Remark wordsize_not_zero: wordsize <> 0%nat. Proof. unfold wordsize; congruence. Qed. End Wordsize_8. Strategy opaque [Wordsize_8.wordsize]. Module Byte := Make(Wordsize_8). Strategy 0 [Wordsize_8.wordsize]. Notation byte := Byte.int. Module Wordsize_64. Definition wordsize := 64%nat. Remark wordsize_not_zero: wordsize <> 0%nat. Proof. unfold wordsize; congruence. Qed. End Wordsize_64. Strategy opaque [Wordsize_64.wordsize]. Module Int64. Include Make(Wordsize_64). (** Shifts with amount given as a 32-bit integer *) Definition iwordsize': Int.int := Int.repr zwordsize. Definition shl' (x: int) (y: Int.int): int := repr (Z.shiftl (unsigned x) (Int.unsigned y)). Definition shru' (x: int) (y: Int.int): int := repr (Z.shiftr (unsigned x) (Int.unsigned y)). Definition shr' (x: int) (y: Int.int): int := repr (Z.shiftr (signed x) (Int.unsigned y)). Lemma bits_shl': forall x y i, 0 <= i < zwordsize -> testbit (shl' x y) i = if zlt i (Int.unsigned y) then false else testbit x (i - Int.unsigned y). Proof. intros. unfold shl'. rewrite testbit_repr; auto. destruct (zlt i (Int.unsigned y)). apply Z.shiftl_spec_low. auto. apply Z.shiftl_spec_high. omega. omega. Qed. Lemma bits_shru': forall x y i, 0 <= i < zwordsize -> testbit (shru' x y) i = if zlt (i + Int.unsigned y) zwordsize then testbit x (i + Int.unsigned y) else false. Proof. intros. unfold shru'. rewrite testbit_repr; auto. rewrite Z.shiftr_spec. fold (testbit x (i + Int.unsigned y)). destruct (zlt (i + Int.unsigned y) zwordsize). auto. apply bits_above; auto. omega. Qed. Lemma bits_shr': forall x y i, 0 <= i < zwordsize -> testbit (shr' x y) i = testbit x (if zlt (i + Int.unsigned y) zwordsize then i + Int.unsigned y else zwordsize - 1). Proof. intros. unfold shr'. rewrite testbit_repr; auto. rewrite Z.shiftr_spec. apply bits_signed. generalize (Int.unsigned_range y); omega. omega. Qed. (** Decomposing 64-bit ints as pairs of 32-bit ints *) Definition loword (n: int) : Int.int := Int.repr (unsigned n). Definition hiword (n: int) : Int.int := Int.repr (unsigned (shru n (repr Int.zwordsize))). Definition ofwords (hi lo: Int.int) : int := or (shl (repr (Int.unsigned hi)) (repr Int.zwordsize)) (repr (Int.unsigned lo)). Lemma bits_loword: forall n i, 0 <= i < Int.zwordsize -> Int.testbit (loword n) i = testbit n i. Proof. intros. unfold loword. rewrite Int.testbit_repr; auto. Qed. Lemma bits_hiword: forall n i, 0 <= i < Int.zwordsize -> Int.testbit (hiword n) i = testbit n (i + Int.zwordsize). Proof. intros. unfold hiword. rewrite Int.testbit_repr; auto. assert (zwordsize = 2 * Int.zwordsize) by reflexivity. fold (testbit (shru n (repr Int.zwordsize)) i). rewrite bits_shru. change (unsigned (repr Int.zwordsize)) with Int.zwordsize. apply zlt_true. omega. omega. Qed. Lemma bits_ofwords: forall hi lo i, 0 <= i < zwordsize -> testbit (ofwords hi lo) i = if zlt i Int.zwordsize then Int.testbit lo i else Int.testbit hi (i - Int.zwordsize). Proof. intros. unfold ofwords. rewrite bits_or; auto. rewrite bits_shl; auto. change (unsigned (repr Int.zwordsize)) with Int.zwordsize. assert (zwordsize = 2 * Int.zwordsize) by reflexivity. destruct (zlt i Int.zwordsize). rewrite testbit_repr; auto. rewrite !testbit_repr; auto. fold (Int.testbit lo i). rewrite Int.bits_above. apply orb_false_r. auto. omega. Qed. Lemma lo_ofwords: forall hi lo, loword (ofwords hi lo) = lo. Proof. intros. apply Int.same_bits_eq; intros. rewrite bits_loword; auto. rewrite bits_ofwords. apply zlt_true. omega. assert (zwordsize = 2 * Int.zwordsize) by reflexivity. omega. Qed. Lemma hi_ofwords: forall hi lo, hiword (ofwords hi lo) = hi. Proof. intros. apply Int.same_bits_eq; intros. rewrite bits_hiword; auto. rewrite bits_ofwords. rewrite zlt_false. f_equal. omega. omega. assert (zwordsize = 2 * Int.zwordsize) by reflexivity. omega. Qed. Lemma ofwords_recompose: forall n, ofwords (hiword n) (loword n) = n. Proof. intros. apply same_bits_eq; intros. rewrite bits_ofwords; auto. destruct (zlt i Int.zwordsize). apply bits_loword. omega. rewrite bits_hiword. f_equal. omega. assert (zwordsize = 2 * Int.zwordsize) by reflexivity. omega. Qed. Lemma ofwords_add: forall lo hi, ofwords hi lo = repr (Int.unsigned hi * two_p 32 + Int.unsigned lo). Proof. intros. unfold ofwords. rewrite shifted_or_is_add. apply eqm_samerepr. apply eqm_add. apply eqm_mult. apply eqm_sym; apply eqm_unsigned_repr. apply eqm_refl. apply eqm_sym; apply eqm_unsigned_repr. change Int.zwordsize with 32; change zwordsize with 64; omega. rewrite unsigned_repr. generalize (Int.unsigned_range lo). intros [A B]. exact B. assert (Int.max_unsigned < max_unsigned) by (compute; auto). generalize (Int.unsigned_range_2 lo); omega. Qed. Lemma ofwords_add': forall lo hi, unsigned (ofwords hi lo) = Int.unsigned hi * two_p 32 + Int.unsigned lo. Proof. intros. rewrite ofwords_add. apply unsigned_repr. generalize (Int.unsigned_range hi) (Int.unsigned_range lo). change (two_p 32) with Int.modulus. change Int.modulus with 4294967296. change max_unsigned with 18446744073709551615. omega. Qed. Remark eqm_mul_2p32: forall x y, Int.eqm x y -> eqm (x * two_p 32) (y * two_p 32). Proof. intros. destruct H as [k EQ]. exists k. rewrite EQ. change Int.modulus with (two_p 32). change modulus with (two_p 32 * two_p 32). ring. Qed. Lemma ofwords_add'': forall lo hi, signed (ofwords hi lo) = Int.signed hi * two_p 32 + Int.unsigned lo. Proof. intros. rewrite ofwords_add. replace (repr (Int.unsigned hi * two_p 32 + Int.unsigned lo)) with (repr (Int.signed hi * two_p 32 + Int.unsigned lo)). apply signed_repr. generalize (Int.signed_range hi) (Int.unsigned_range lo). change (two_p 32) with Int.modulus. change min_signed with (Int.min_signed * Int.modulus). change max_signed with (Int.max_signed * Int.modulus + Int.modulus - 1). change Int.modulus with 4294967296. omega. apply eqm_samerepr. apply eqm_add. apply eqm_mul_2p32. apply Int.eqm_signed_unsigned. apply eqm_refl. Qed. (** Expressing 64-bit operations in terms of 32-bit operations *) Lemma decompose_bitwise_binop: forall f f64 f32 xh xl yh yl, (forall x y i, 0 <= i < zwordsize -> testbit (f64 x y) i = f (testbit x i) (testbit y i)) -> (forall x y i, 0 <= i < Int.zwordsize -> Int.testbit (f32 x y) i = f (Int.testbit x i) (Int.testbit y i)) -> f64 (ofwords xh xl) (ofwords yh yl) = ofwords (f32 xh yh) (f32 xl yl). Proof. intros. apply Int64.same_bits_eq; intros. rewrite H by auto. rewrite ! bits_ofwords by auto. assert (zwordsize = 2 * Int.zwordsize) by reflexivity. destruct (zlt i Int.zwordsize); rewrite H0 by omega; auto. Qed. Lemma decompose_and: forall xh xl yh yl, and (ofwords xh xl) (ofwords yh yl) = ofwords (Int.and xh yh) (Int.and xl yl). Proof. intros. apply decompose_bitwise_binop with andb. apply bits_and. apply Int.bits_and. Qed. Lemma decompose_or: forall xh xl yh yl, or (ofwords xh xl) (ofwords yh yl) = ofwords (Int.or xh yh) (Int.or xl yl). Proof. intros. apply decompose_bitwise_binop with orb. apply bits_or. apply Int.bits_or. Qed. Lemma decompose_xor: forall xh xl yh yl, xor (ofwords xh xl) (ofwords yh yl) = ofwords (Int.xor xh yh) (Int.xor xl yl). Proof. intros. apply decompose_bitwise_binop with xorb. apply bits_xor. apply Int.bits_xor. Qed. Lemma decompose_not: forall xh xl, not (ofwords xh xl) = ofwords (Int.not xh) (Int.not xl). Proof. intros. unfold not, Int.not. rewrite <- decompose_xor. f_equal. apply (Int64.eq_spec mone (ofwords Int.mone Int.mone)). Qed. Lemma decompose_shl_1: forall xh xl y, 0 <= Int.unsigned y < Int.zwordsize -> shl' (ofwords xh xl) y = ofwords (Int.or (Int.shl xh y) (Int.shru xl (Int.sub Int.iwordsize y))) (Int.shl xl y). Proof. intros. assert (Int.unsigned (Int.sub Int.iwordsize y) = Int.zwordsize - Int.unsigned y). { unfold Int.sub. rewrite Int.unsigned_repr. auto. rewrite Int.unsigned_repr_wordsize. generalize Int.wordsize_max_unsigned; omega. } assert (zwordsize = 2 * Int.zwordsize) by reflexivity. apply Int64.same_bits_eq; intros. rewrite bits_shl' by auto. symmetry. rewrite bits_ofwords by auto. destruct (zlt i Int.zwordsize). rewrite Int.bits_shl by omega. destruct (zlt i (Int.unsigned y)). auto. rewrite bits_ofwords by omega. rewrite zlt_true by omega. auto. rewrite zlt_false by omega. rewrite bits_ofwords by omega. rewrite Int.bits_or by omega. rewrite Int.bits_shl by omega. rewrite Int.bits_shru by omega. rewrite H0. destruct (zlt (i - Int.unsigned y) (Int.zwordsize)). rewrite zlt_true by omega. rewrite zlt_true by omega. rewrite orb_false_l. f_equal. omega. rewrite zlt_false by omega. rewrite zlt_false by omega. rewrite orb_false_r. f_equal. omega. Qed. Lemma decompose_shl_2: forall xh xl y, Int.zwordsize <= Int.unsigned y < zwordsize -> shl' (ofwords xh xl) y = ofwords (Int.shl xl (Int.sub y Int.iwordsize)) Int.zero. Proof. intros. assert (zwordsize = 2 * Int.zwordsize) by reflexivity. assert (Int.unsigned (Int.sub y Int.iwordsize) = Int.unsigned y - Int.zwordsize). { unfold Int.sub. rewrite Int.unsigned_repr. auto. rewrite Int.unsigned_repr_wordsize. generalize (Int.unsigned_range_2 y). omega. } apply Int64.same_bits_eq; intros. rewrite bits_shl' by auto. symmetry. rewrite bits_ofwords by auto. destruct (zlt i Int.zwordsize). rewrite zlt_true by omega. apply Int.bits_zero. rewrite Int.bits_shl by omega. destruct (zlt i (Int.unsigned y)). rewrite zlt_true by omega. auto. rewrite zlt_false by omega. rewrite bits_ofwords by omega. rewrite zlt_true by omega. f_equal. omega. Qed. Lemma decompose_shru_1: forall xh xl y, 0 <= Int.unsigned y < Int.zwordsize -> shru' (ofwords xh xl) y = ofwords (Int.shru xh y) (Int.or (Int.shru xl y) (Int.shl xh (Int.sub Int.iwordsize y))). Proof. intros. assert (Int.unsigned (Int.sub Int.iwordsize y) = Int.zwordsize - Int.unsigned y). { unfold Int.sub. rewrite Int.unsigned_repr. auto. rewrite Int.unsigned_repr_wordsize. generalize Int.wordsize_max_unsigned; omega. } assert (zwordsize = 2 * Int.zwordsize) by reflexivity. apply Int64.same_bits_eq; intros. rewrite bits_shru' by auto. symmetry. rewrite bits_ofwords by auto. destruct (zlt i Int.zwordsize). rewrite zlt_true by omega. rewrite bits_ofwords by omega. rewrite Int.bits_or by omega. rewrite Int.bits_shl by omega. rewrite Int.bits_shru by omega. rewrite H0. destruct (zlt (i + Int.unsigned y) (Int.zwordsize)). rewrite zlt_true by omega. rewrite orb_false_r. auto. rewrite zlt_false by omega. rewrite orb_false_l. f_equal. omega. rewrite Int.bits_shru by omega. destruct (zlt (i + Int.unsigned y) zwordsize). rewrite bits_ofwords by omega. rewrite zlt_true by omega. rewrite zlt_false by omega. f_equal. omega. rewrite zlt_false by omega. auto. Qed. Lemma decompose_shru_2: forall xh xl y, Int.zwordsize <= Int.unsigned y < zwordsize -> shru' (ofwords xh xl) y = ofwords Int.zero (Int.shru xh (Int.sub y Int.iwordsize)). Proof. intros. assert (zwordsize = 2 * Int.zwordsize) by reflexivity. assert (Int.unsigned (Int.sub y Int.iwordsize) = Int.unsigned y - Int.zwordsize). { unfold Int.sub. rewrite Int.unsigned_repr. auto. rewrite Int.unsigned_repr_wordsize. generalize (Int.unsigned_range_2 y). omega. } apply Int64.same_bits_eq; intros. rewrite bits_shru' by auto. symmetry. rewrite bits_ofwords by auto. destruct (zlt i Int.zwordsize). rewrite Int.bits_shru by omega. rewrite H1. destruct (zlt (i + Int.unsigned y) zwordsize). rewrite zlt_true by omega. rewrite bits_ofwords by omega. rewrite zlt_false by omega. f_equal; omega. rewrite zlt_false by omega. auto. rewrite zlt_false by omega. apply Int.bits_zero. Qed. Lemma decompose_shr_1: forall xh xl y, 0 <= Int.unsigned y < Int.zwordsize -> shr' (ofwords xh xl) y = ofwords (Int.shr xh y) (Int.or (Int.shru xl y) (Int.shl xh (Int.sub Int.iwordsize y))). Proof. intros. assert (Int.unsigned (Int.sub Int.iwordsize y) = Int.zwordsize - Int.unsigned y). { unfold Int.sub. rewrite Int.unsigned_repr. auto. rewrite Int.unsigned_repr_wordsize. generalize Int.wordsize_max_unsigned; omega. } assert (zwordsize = 2 * Int.zwordsize) by reflexivity. apply Int64.same_bits_eq; intros. rewrite bits_shr' by auto. symmetry. rewrite bits_ofwords by auto. destruct (zlt i Int.zwordsize). rewrite zlt_true by omega. rewrite bits_ofwords by omega. rewrite Int.bits_or by omega. rewrite Int.bits_shl by omega. rewrite Int.bits_shru by omega. rewrite H0. destruct (zlt (i + Int.unsigned y) (Int.zwordsize)). rewrite zlt_true by omega. rewrite orb_false_r. auto. rewrite zlt_false by omega. rewrite orb_false_l. f_equal. omega. rewrite Int.bits_shr by omega. destruct (zlt (i + Int.unsigned y) zwordsize). rewrite bits_ofwords by omega. rewrite zlt_true by omega. rewrite zlt_false by omega. f_equal. omega. rewrite zlt_false by omega. rewrite bits_ofwords by omega. rewrite zlt_false by omega. f_equal. Qed. Lemma decompose_shr_2: forall xh xl y, Int.zwordsize <= Int.unsigned y < zwordsize -> shr' (ofwords xh xl) y = ofwords (Int.shr xh (Int.sub Int.iwordsize Int.one)) (Int.shr xh (Int.sub y Int.iwordsize)). Proof. intros. assert (zwordsize = 2 * Int.zwordsize) by reflexivity. assert (Int.unsigned (Int.sub y Int.iwordsize) = Int.unsigned y - Int.zwordsize). { unfold Int.sub. rewrite Int.unsigned_repr. auto. rewrite Int.unsigned_repr_wordsize. generalize (Int.unsigned_range_2 y). omega. } apply Int64.same_bits_eq; intros. rewrite bits_shr' by auto. symmetry. rewrite bits_ofwords by auto. destruct (zlt i Int.zwordsize). rewrite Int.bits_shr by omega. rewrite H1. destruct (zlt (i + Int.unsigned y) zwordsize). rewrite zlt_true by omega. rewrite bits_ofwords by omega. rewrite zlt_false by omega. f_equal; omega. rewrite zlt_false by omega. rewrite bits_ofwords by omega. rewrite zlt_false by omega. auto. rewrite Int.bits_shr by omega. change (Int.unsigned (Int.sub Int.iwordsize Int.one)) with (Int.zwordsize - 1). destruct (zlt (i + Int.unsigned y) zwordsize); rewrite bits_ofwords by omega. symmetry. rewrite zlt_false by omega. f_equal. destruct (zlt (i - Int.zwordsize + (Int.zwordsize - 1)) Int.zwordsize); omega. symmetry. rewrite zlt_false by omega. f_equal. destruct (zlt (i - Int.zwordsize + (Int.zwordsize - 1)) Int.zwordsize); omega. Qed. Lemma decompose_add: forall xh xl yh yl, add (ofwords xh xl) (ofwords yh yl) = ofwords (Int.add (Int.add xh yh) (Int.add_carry xl yl Int.zero)) (Int.add xl yl). Proof. intros. symmetry. rewrite ofwords_add. rewrite add_unsigned. apply eqm_samerepr. rewrite ! ofwords_add'. rewrite (Int.unsigned_add_carry xl yl). set (cc := Int.add_carry xl yl Int.zero). set (Xl := Int.unsigned xl); set (Xh := Int.unsigned xh); set (Yl := Int.unsigned yl); set (Yh := Int.unsigned yh). change Int.modulus with (two_p 32). replace (Xh * two_p 32 + Xl + (Yh * two_p 32 + Yl)) with ((Xh + Yh) * two_p 32 + (Xl + Yl)) by ring. replace (Int.unsigned (Int.add (Int.add xh yh) cc) * two_p 32 + (Xl + Yl - Int.unsigned cc * two_p 32)) with ((Int.unsigned (Int.add (Int.add xh yh) cc) - Int.unsigned cc) * two_p 32 + (Xl + Yl)) by ring. apply eqm_add. 2: apply eqm_refl. apply eqm_mul_2p32. replace (Xh + Yh) with ((Xh + Yh + Int.unsigned cc) - Int.unsigned cc) by ring. apply Int.eqm_sub. 2: apply Int.eqm_refl. apply Int.eqm_unsigned_repr_l. apply Int.eqm_add. 2: apply Int.eqm_refl. apply Int.eqm_unsigned_repr_l. apply Int.eqm_refl. Qed. Lemma decompose_sub: forall xh xl yh yl, sub (ofwords xh xl) (ofwords yh yl) = ofwords (Int.sub (Int.sub xh yh) (Int.sub_borrow xl yl Int.zero)) (Int.sub xl yl). Proof. intros. symmetry. rewrite ofwords_add. apply eqm_samerepr. rewrite ! ofwords_add'. rewrite (Int.unsigned_sub_borrow xl yl). set (bb := Int.sub_borrow xl yl Int.zero). set (Xl := Int.unsigned xl); set (Xh := Int.unsigned xh); set (Yl := Int.unsigned yl); set (Yh := Int.unsigned yh). change Int.modulus with (two_p 32). replace (Xh * two_p 32 + Xl - (Yh * two_p 32 + Yl)) with ((Xh - Yh) * two_p 32 + (Xl - Yl)) by ring. replace (Int.unsigned (Int.sub (Int.sub xh yh) bb) * two_p 32 + (Xl - Yl + Int.unsigned bb * two_p 32)) with ((Int.unsigned (Int.sub (Int.sub xh yh) bb) + Int.unsigned bb) * two_p 32 + (Xl - Yl)) by ring. apply eqm_add. 2: apply eqm_refl. apply eqm_mul_2p32. replace (Xh - Yh) with ((Xh - Yh - Int.unsigned bb) + Int.unsigned bb) by ring. apply Int.eqm_add. 2: apply Int.eqm_refl. apply Int.eqm_unsigned_repr_l. apply Int.eqm_add. 2: apply Int.eqm_refl. apply Int.eqm_unsigned_repr_l. apply Int.eqm_refl. Qed. Lemma decompose_sub': forall xh xl yh yl, sub (ofwords xh xl) (ofwords yh yl) = ofwords (Int.add (Int.add xh (Int.not yh)) (Int.add_carry xl (Int.not yl) Int.one)) (Int.sub xl yl). Proof. intros. rewrite decompose_sub. f_equal. rewrite Int.sub_borrow_add_carry by auto. rewrite Int.sub_add_not_3. rewrite Int.xor_assoc. rewrite Int.xor_idem. rewrite Int.xor_zero. auto. rewrite Int.xor_zero_l. unfold Int.add_carry. destruct (zlt (Int.unsigned xl + Int.unsigned (Int.not yl) + Int.unsigned Int.one) Int.modulus); compute; [right|left]; apply Int.mkint_eq; auto. Qed. Definition mul' (x y: Int.int) : int := repr (Int.unsigned x * Int.unsigned y). Lemma mul'_mulhu: forall x y, mul' x y = ofwords (Int.mulhu x y) (Int.mul x y). Proof. intros. rewrite ofwords_add. unfold mul', Int.mulhu, Int.mul. set (p := Int.unsigned x * Int.unsigned y). set (ph := p / Int.modulus). set (pl := p mod Int.modulus). transitivity (repr (ph * Int.modulus + pl)). - f_equal. rewrite Zmult_comm. apply Z_div_mod_eq. apply Int.modulus_pos. - apply eqm_samerepr. apply eqm_add. apply eqm_mul_2p32. auto with ints. rewrite Int.unsigned_repr_eq. apply eqm_refl. Qed. Lemma decompose_mul: forall xh xl yh yl, mul (ofwords xh xl) (ofwords yh yl) = ofwords (Int.add (Int.add (hiword (mul' xl yl)) (Int.mul xl yh)) (Int.mul xh yl)) (loword (mul' xl yl)). Proof. intros. set (pl := loword (mul' xl yl)); set (ph := hiword (mul' xl yl)). assert (EQ0: unsigned (mul' xl yl) = Int.unsigned ph * two_p 32 + Int.unsigned pl). { rewrite <- (ofwords_recompose (mul' xl yl)). apply ofwords_add'. } symmetry. rewrite ofwords_add. unfold mul. rewrite !ofwords_add'. set (XL := Int.unsigned xl); set (XH := Int.unsigned xh); set (YL := Int.unsigned yl); set (YH := Int.unsigned yh). set (PH := Int.unsigned ph) in *. set (PL := Int.unsigned pl) in *. transitivity (repr (((PH + XL * YH) + XH * YL) * two_p 32 + PL)). apply eqm_samerepr. apply eqm_add. 2: apply eqm_refl. apply eqm_mul_2p32. rewrite Int.add_unsigned. apply Int.eqm_unsigned_repr_l. apply Int.eqm_add. rewrite Int.add_unsigned. apply Int.eqm_unsigned_repr_l. apply Int.eqm_add. apply Int.eqm_refl. unfold Int.mul. apply Int.eqm_unsigned_repr_l. apply Int.eqm_refl. unfold Int.mul. apply Int.eqm_unsigned_repr_l. apply Int.eqm_refl. transitivity (repr (unsigned (mul' xl yl) + (XL * YH + XH * YL) * two_p 32)). rewrite EQ0. f_equal. ring. transitivity (repr ((XL * YL + (XL * YH + XH * YL) * two_p 32))). apply eqm_samerepr. apply eqm_add. 2: apply eqm_refl. unfold mul'. apply eqm_unsigned_repr_l. apply eqm_refl. transitivity (repr (0 + (XL * YL + (XL * YH + XH * YL) * two_p 32))). rewrite Zplus_0_l; auto. transitivity (repr (XH * YH * (two_p 32 * two_p 32) + (XL * YL + (XL * YH + XH * YL) * two_p 32))). apply eqm_samerepr. apply eqm_add. 2: apply eqm_refl. change (two_p 32 * two_p 32) with modulus. exists (- XH * YH). ring. f_equal. ring. Qed. Lemma decompose_mul_2: forall xh xl yh yl, mul (ofwords xh xl) (ofwords yh yl) = ofwords (Int.add (Int.add (Int.mulhu xl yl) (Int.mul xl yh)) (Int.mul xh yl)) (Int.mul xl yl). Proof. intros. rewrite decompose_mul. rewrite mul'_mulhu. rewrite hi_ofwords, lo_ofwords. auto. Qed. Lemma decompose_ltu: forall xh xl yh yl, ltu (ofwords xh xl) (ofwords yh yl) = if Int.eq xh yh then Int.ltu xl yl else Int.ltu xh yh. Proof. intros. unfold ltu. rewrite ! ofwords_add'. unfold Int.ltu, Int.eq. destruct (zeq (Int.unsigned xh) (Int.unsigned yh)). rewrite e. destruct (zlt (Int.unsigned xl) (Int.unsigned yl)). apply zlt_true; omega. apply zlt_false; omega. change (two_p 32) with Int.modulus. generalize (Int.unsigned_range xl) (Int.unsigned_range yl). change Int.modulus with 4294967296. intros. destruct (zlt (Int.unsigned xh) (Int.unsigned yh)). apply zlt_true; omega. apply zlt_false; omega. Qed. Lemma decompose_leu: forall xh xl yh yl, negb (ltu (ofwords yh yl) (ofwords xh xl)) = if Int.eq xh yh then negb (Int.ltu yl xl) else Int.ltu xh yh. Proof. intros. rewrite decompose_ltu. rewrite Int.eq_sym. unfold Int.eq. destruct (zeq (Int.unsigned xh) (Int.unsigned yh)). auto. unfold Int.ltu. destruct (zlt (Int.unsigned xh) (Int.unsigned yh)). rewrite zlt_false by omega; auto. rewrite zlt_true by omega; auto. Qed. Lemma decompose_lt: forall xh xl yh yl, lt (ofwords xh xl) (ofwords yh yl) = if Int.eq xh yh then Int.ltu xl yl else Int.lt xh yh. Proof. intros. unfold lt. rewrite ! ofwords_add''. rewrite Int.eq_signed. destruct (zeq (Int.signed xh) (Int.signed yh)). rewrite e. unfold Int.ltu. destruct (zlt (Int.unsigned xl) (Int.unsigned yl)). apply zlt_true; omega. apply zlt_false; omega. change (two_p 32) with Int.modulus. generalize (Int.unsigned_range xl) (Int.unsigned_range yl). change Int.modulus with 4294967296. intros. unfold Int.lt. destruct (zlt (Int.signed xh) (Int.signed yh)). apply zlt_true; omega. apply zlt_false; omega. Qed. Lemma decompose_le: forall xh xl yh yl, negb (lt (ofwords yh yl) (ofwords xh xl)) = if Int.eq xh yh then negb (Int.ltu yl xl) else Int.lt xh yh. Proof. intros. rewrite decompose_lt. rewrite Int.eq_sym. rewrite Int.eq_signed. destruct (zeq (Int.signed xh) (Int.signed yh)). auto. unfold Int.lt. destruct (zlt (Int.signed xh) (Int.signed yh)). rewrite zlt_false by omega; auto. rewrite zlt_true by omega; auto. Qed. End Int64. Strategy 0 [Wordsize_64.wordsize]. Notation int64 := Int64.int. Global Opaque Int.repr Int64.repr Byte.repr.