(* *********************************************************************) (* *) (* The Compcert verified compiler *) (* *) (* Xavier Leroy, INRIA Paris-Rocquencourt *) (* *) (* Copyright Institut National de Recherche en Informatique et en *) (* Automatique. All rights reserved. This file is distributed *) (* under the terms of the GNU General Public License as published by *) (* the Free Software Foundation, either version 2 of the License, or *) (* (at your option) any later version. This file is also distributed *) (* under the terms of the INRIA Non-Commercial License Agreement. *) (* *) (* *********************************************************************) (* Library of useful Caml <-> Coq conversions *) open Datatypes open BinNums open BinInt open BinPos open Floats (* Coq's [nat] type and some of its operations *) module Nat = struct type t = nat = O | S of t let rec to_int = function | O -> 0 | S n -> succ (to_int n) let rec to_int32 = function | O -> 0l | S n -> Int32.succ(to_int32 n) let rec of_int n = assert (n >= 0); if n = 0 then O else S (of_int (pred n)) let rec of_int32 n = assert (n >= 0l); if n = 0l then O else S (of_int32 (Int32.pred n)) end (* Coq's [positive] type and some of its operations *) module P = struct type t = positive = Coq_xI of t | Coq_xO of t | Coq_xH let one = Coq_xH let succ = Pos.succ let pred = Pos.pred let add = Pos.add let sub = Pos.sub let eq x y = (Pos.compare x y = Eq) let lt x y = (Pos.compare x y = Lt) let gt x y = (Pos.compare x y = Gt) let le x y = (Pos.compare x y <> Gt) let ge x y = (Pos.compare x y <> Lt) let compare x y = match Pos.compare x y with Lt -> -1 | Eq -> 0 | Gt -> 1 let rec to_int = function | Coq_xI p -> (to_int p lsl 1) + 1 | Coq_xO p -> to_int p lsl 1 | Coq_xH -> 1 let rec of_int n = if n = 0 then assert false else if n = 1 then Coq_xH else if n land 1 = 0 then Coq_xO (of_int (n lsr 1)) else Coq_xI (of_int (n lsr 1)) let rec to_int32 = function | Coq_xI p -> Int32.add (Int32.shift_left (to_int32 p) 1) 1l | Coq_xO p -> Int32.shift_left (to_int32 p) 1 | Coq_xH -> 1l let rec of_int32 n = if n = 0l then assert false else if n = 1l then Coq_xH else if Int32.logand n 1l = 0l then Coq_xO (of_int32 (Int32.shift_right_logical n 1)) else Coq_xI (of_int32 (Int32.shift_right_logical n 1)) let rec to_int64 = function | Coq_xI p -> Int64.add (Int64.shift_left (to_int64 p) 1) 1L | Coq_xO p -> Int64.shift_left (to_int64 p) 1 | Coq_xH -> 1L let rec of_int64 n = if n = 0L then assert false else if n = 1L then Coq_xH else if Int64.logand n 1L = 0L then Coq_xO (of_int64 (Int64.shift_right_logical n 1)) else Coq_xI (of_int64 (Int64.shift_right_logical n 1)) let (+) = add let (-) = sub let (=) = eq let (<) = lt let (<=) = le let (>) = gt let (>=) = ge end (* Coq's [Z] type and some of its operations *) module Z = struct type t = coq_Z = Z0 | Zpos of positive | Zneg of positive let zero = Z0 let one = Zpos Coq_xH let mone = Zneg Coq_xH let succ = Z.succ let pred = Z.pred let neg = Z.opp let add = Z.add let sub = Z.sub let mul = Z.mul let eq x y = (Z.compare x y = Eq) let lt x y = (Z.compare x y = Lt) let gt x y = (Z.compare x y = Gt) let le x y = (Z.compare x y <> Gt) let ge x y = (Z.compare x y <> Lt) let compare x y = match Z.compare x y with Lt -> -1 | Eq -> 0 | Gt -> 1 let to_int = function | Z0 -> 0 | Zpos p -> P.to_int p | Zneg p -> - (P.to_int p) let of_sint n = if n = 0 then Z0 else if n > 0 then Zpos (P.of_int n) else Zneg (P.of_int (-n)) let of_uint n = if n = 0 then Z0 else Zpos (P.of_int n) let to_int32 = function | Z0 -> 0l | Zpos p -> P.to_int32 p | Zneg p -> Int32.neg (P.to_int32 p) let of_sint32 n = if n = 0l then Z0 else if n > 0l then Zpos (P.of_int32 n) else Zneg (P.of_int32 (Int32.neg n)) let of_uint32 n = if n = 0l then Z0 else Zpos (P.of_int32 n) let to_int64 = function | Z0 -> 0L | Zpos p -> P.to_int64 p | Zneg p -> Int64.neg (P.to_int64 p) let of_sint64 n = if n = 0L then Z0 else if n > 0L then Zpos (P.of_int64 n) else Zneg (P.of_int64 (Int64.neg n)) let of_uint64 n = if n = 0L then Z0 else Zpos (P.of_int64 n) let rec to_string_rec base buff x = if x = Z0 then () else begin let (q, r) = Z.div_eucl x base in to_string_rec base buff q; let d = to_int r in Buffer.add_char buff (Char.chr (if d < 10 then Char.code '0' + d else Char.code 'A' + d - 10)) end let to_string_aux base x = match x with | Z0 -> "0" | Zpos _ -> let buff = Buffer.create 10 in to_string_rec base buff x; Buffer.contents buff | Zneg p -> let buff = Buffer.create 10 in Buffer.add_char buff '-'; to_string_rec base buff (Zpos p); Buffer.contents buff let dec = to_string_aux (of_uint 10) let hex = to_string_aux (of_uint 16) let to_string = dec let (+) = add let (-) = sub let ( * ) = mul let (=) = eq let (<) = lt let (<=) = le let (>) = gt let (>=) = ge end (* Alternate names *) let camlint_of_coqint : Integers.Int.int -> int32 = Z.to_int32 let coqint_of_camlint : int32 -> Integers.Int.int = Z.of_uint32 (* interpret the int32 as unsigned so that result Z is in range for int *) let camlint64_of_coqint : Integers.Int64.int -> int64 = Z.to_int64 let coqint_of_camlint64 : int64 -> Integers.Int64.int = Z.of_uint64 (* interpret the int64 as unsigned so that result Z is in range for int *) (* Atoms (positive integers representing strings) *) let atom_of_string = (Hashtbl.create 17 : (string, positive) Hashtbl.t) let string_of_atom = (Hashtbl.create 17 : (positive, string) Hashtbl.t) let next_atom = ref Coq_xH let intern_string s = try Hashtbl.find atom_of_string s with Not_found -> let a = !next_atom in next_atom := Pos.succ !next_atom; Hashtbl.add atom_of_string s a; Hashtbl.add string_of_atom a s; a let extern_atom a = try Hashtbl.find string_of_atom a with Not_found -> Printf.sprintf "$%d" (P.to_int a) let first_unused_ident () = !next_atom (* Strings *) let camlstring_of_coqstring (s: char list) = let r = String.create (List.length s) in let rec fill pos = function | [] -> r | c :: s -> r.[pos] <- c; fill (pos + 1) s in fill 0 s (* Floats *) let coqfloat_of_camlfloat f = Float.double_of_bits(coqint_of_camlint64(Int64.bits_of_float f)) let camlfloat_of_coqfloat f = Int64.float_of_bits(camlint64_of_coqint(Float.bits_of_double f)) (* Timing facility *) (* let timers = (Hashtbl.create 9 : (string, float) Hashtbl.t) let add_to_timer name time = let old = try Hashtbl.find timers name with Not_found -> 0.0 in Hashtbl.replace timers name (old +. time) let time name fn arg = let start = Unix.gettimeofday() in try let res = fn arg in add_to_timer name (Unix.gettimeofday() -. start); res with x -> add_to_timer name (Unix.gettimeofday() -. start); raise x let print_timers () = Hashtbl.iter (fun name time -> Printf.printf "%-20s %.3f\n" name time) timers let _ = at_exit print_timers *) (* Heap profiling facility *) (* let heap_info msg = Gc.full_major(); let s = Gc.stat() in Printf.printf "%s: size %d live %d\n " msg s.Gc.heap_words s.Gc.live_words; flush stdout *)