(* *********************************************************************) (* *) (* The Compcert verified compiler *) (* *) (* Xavier Leroy, INRIA Paris-Rocquencourt *) (* *) (* Copyright Institut National de Recherche en Informatique et en *) (* Automatique. All rights reserved. This file is distributed *) (* under the terms of the GNU General Public License as published by *) (* the Free Software Foundation, either version 2 of the License, or *) (* (at your option) any later version. This file is also distributed *) (* under the terms of the INRIA Non-Commercial License Agreement. *) (* *) (* *********************************************************************) (* Library of useful Caml <-> Coq conversions *) open Datatypes open BinNums open BinNat open BinInt open BinPos open Floats (* Coq's [nat] type and some of its operations *) module Nat = struct type t = nat = O | S of t let rec to_int = function | O -> 0 | S n -> succ (to_int n) let rec to_int32 = function | O -> 0l | S n -> Int32.succ(to_int32 n) let rec of_int n = assert (n >= 0); if n = 0 then O else S (of_int (pred n)) let rec of_int32 n = assert (n >= 0l); if n = 0l then O else S (of_int32 (Int32.pred n)) end (* Coq's [positive] type and some of its operations *) module P = struct type t = positive = Coq_xI of t | Coq_xO of t | Coq_xH let one = Coq_xH let succ = Pos.succ let pred = Pos.pred let add = Pos.add let sub = Pos.sub let eq x y = (Pos.compare x y = Eq) let lt x y = (Pos.compare x y = Lt) let gt x y = (Pos.compare x y = Gt) let le x y = (Pos.compare x y <> Gt) let ge x y = (Pos.compare x y <> Lt) let compare x y = match Pos.compare x y with Lt -> -1 | Eq -> 0 | Gt -> 1 let rec to_int = function | Coq_xI p -> let n = to_int p in n + n + 1 | Coq_xO p -> let n = to_int p in n + n | Coq_xH -> 1 let rec of_int n = if n land 1 = 0 then if n = 0 then assert false else Coq_xO (of_int (n lsr 1)) else if n = 1 then Coq_xH else Coq_xI (of_int (n lsr 1)) let rec to_int32 = function | Coq_xI p -> Int32.add (Int32.shift_left (to_int32 p) 1) 1l | Coq_xO p -> Int32.shift_left (to_int32 p) 1 | Coq_xH -> 1l let rec of_int32 n = if Int32.logand n 1l = 0l then if n = 0l then assert false else Coq_xO (of_int32 (Int32.shift_right_logical n 1)) else if n = 1l then Coq_xH else Coq_xI (of_int32 (Int32.shift_right_logical n 1)) let rec to_int64 = function | Coq_xI p -> Int64.add (Int64.shift_left (to_int64 p) 1) 1L | Coq_xO p -> Int64.shift_left (to_int64 p) 1 | Coq_xH -> 1L let rec of_int64 n = if Int64.logand n 1L = 0L then if n = 0L then assert false else Coq_xO (of_int64 (Int64.shift_right_logical n 1)) else if n = 1L then Coq_xH else Coq_xI (of_int64 (Int64.shift_right_logical n 1)) let (+) = add let (-) = sub let (=) = eq let (<) = lt let (<=) = le let (>) = gt let (>=) = ge end (* Coq's [N] type and some of its operations *) module N = struct type t = coq_N = N0 | Npos of positive let zero = N0 let one = Npos Coq_xH let succ = N.succ let pred = N.pred let add = N.add let sub = N.sub let mul = N.mul let eq x y = (N.compare x y = Eq) let lt x y = (N.compare x y = Lt) let gt x y = (N.compare x y = Gt) let le x y = (N.compare x y <> Gt) let ge x y = (N.compare x y <> Lt) let compare x y = match N.compare x y with Lt -> -1 | Eq -> 0 | Gt -> 1 let to_int = function | N0 -> 0 | Npos p -> P.to_int p let of_int n = if n = 0 then N0 else Npos (P.of_int n) let to_int32 = function | N0 -> 0l | Npos p -> P.to_int32 p let of_int32 n = if n = 0l then N0 else Npos (P.of_int32 n) let to_int64 = function | N0 -> 0L | Npos p -> P.to_int64 p let of_int64 n = if n = 0L then N0 else Npos (P.of_int64 n) let (+) = add let (-) = sub let ( * ) = mul let (=) = eq let (<) = lt let (<=) = le let (>) = gt let (>=) = ge end (* Coq's [Z] type and some of its operations *) module Z = struct type t = coq_Z = Z0 | Zpos of positive | Zneg of positive let zero = Z0 let one = Zpos Coq_xH let mone = Zneg Coq_xH let succ = Z.succ let pred = Z.pred let neg = Z.opp let add = Z.add let sub = Z.sub let mul = Z.mul let eq x y = (Z.compare x y = Eq) let lt x y = (Z.compare x y = Lt) let gt x y = (Z.compare x y = Gt) let le x y = (Z.compare x y <> Gt) let ge x y = (Z.compare x y <> Lt) let compare x y = match Z.compare x y with Lt -> -1 | Eq -> 0 | Gt -> 1 let to_int = function | Z0 -> 0 | Zpos p -> P.to_int p | Zneg p -> - (P.to_int p) let of_sint n = if n = 0 then Z0 else if n > 0 then Zpos (P.of_int n) else Zneg (P.of_int (-n)) let of_uint n = if n = 0 then Z0 else Zpos (P.of_int n) let to_int32 = function | Z0 -> 0l | Zpos p -> P.to_int32 p | Zneg p -> Int32.neg (P.to_int32 p) let of_sint32 n = if n = 0l then Z0 else if n > 0l then Zpos (P.of_int32 n) else Zneg (P.of_int32 (Int32.neg n)) let of_uint32 n = if n = 0l then Z0 else Zpos (P.of_int32 n) let to_int64 = function | Z0 -> 0L | Zpos p -> P.to_int64 p | Zneg p -> Int64.neg (P.to_int64 p) let of_sint64 n = if n = 0L then Z0 else if n > 0L then Zpos (P.of_int64 n) else Zneg (P.of_int64 (Int64.neg n)) let of_uint64 n = if n = 0L then Z0 else Zpos (P.of_int64 n) let of_N = Z.of_N let rec to_string_rec base buff x = if x = Z0 then () else begin let (q, r) = Z.div_eucl x base in to_string_rec base buff q; let d = to_int r in Buffer.add_char buff (Char.chr (if d < 10 then Char.code '0' + d else Char.code 'A' + d - 10)) end let to_string_aux base x = match x with | Z0 -> "0" | Zpos _ -> let buff = Buffer.create 10 in to_string_rec base buff x; Buffer.contents buff | Zneg p -> let buff = Buffer.create 10 in Buffer.add_char buff '-'; to_string_rec base buff (Zpos p); Buffer.contents buff let dec = to_string_aux (of_uint 10) let hex = to_string_aux (of_uint 16) let to_string = dec let (+) = add let (-) = sub let ( * ) = mul let (=) = eq let (<) = lt let (<=) = le let (>) = gt let (>=) = ge end (* Alternate names *) let camlint_of_coqint : Integers.Int.int -> int32 = Z.to_int32 let coqint_of_camlint : int32 -> Integers.Int.int = Z.of_uint32 (* interpret the int32 as unsigned so that result Z is in range for int *) let camlint64_of_coqint : Integers.Int64.int -> int64 = Z.to_int64 let coqint_of_camlint64 : int64 -> Integers.Int64.int = Z.of_uint64 (* interpret the int64 as unsigned so that result Z is in range for int *) (* Atoms (positive integers representing strings) *) let atom_of_string = (Hashtbl.create 17 : (string, positive) Hashtbl.t) let string_of_atom = (Hashtbl.create 17 : (positive, string) Hashtbl.t) let next_atom = ref Coq_xH let intern_string s = try Hashtbl.find atom_of_string s with Not_found -> let a = !next_atom in next_atom := Pos.succ !next_atom; Hashtbl.add atom_of_string s a; Hashtbl.add string_of_atom a s; a let extern_atom a = try Hashtbl.find string_of_atom a with Not_found -> Printf.sprintf "$%d" (P.to_int a) let first_unused_ident () = !next_atom (* Strings *) let camlstring_of_coqstring (s: char list) = let r = String.create (List.length s) in let rec fill pos = function | [] -> r | c :: s -> r.[pos] <- c; fill (pos + 1) s in fill 0 s let coqstring_of_camlstring s = let rec cstring accu pos = if pos < 0 then accu else cstring (s.[pos] :: accu) (pos - 1) in cstring [] (String.length s - 1) (* Floats *) let coqfloat_of_camlfloat f = Float.of_bits(coqint_of_camlint64(Int64.bits_of_float f)) let camlfloat_of_coqfloat f = Int64.float_of_bits(camlint64_of_coqint(Float.to_bits f)) let coqfloat32_of_camlfloat f = Float32.of_bits(coqint_of_camlint(Int32.bits_of_float f)) let camlfloat_of_coqfloat32 f = Int32.float_of_bits(camlint_of_coqint(Float32.to_bits f)) (* Int31 *) module Int31 = struct (* let constr (b30,b29,b28,b27,b26,b25,b24, b23,b22,b21,b20,b19,b18,b17,b16, b15,b14,b13,b12,b11,b10,b9,b8, b7,b6,b5,b4,b3,b2,b1,b0) = let f i b accu = if b then accu + (1 lsl i) else accu in f 30 b30 (f 29 b29 (f 28 b28 (f 27 b27 (f 26 b26 (f 25 b25 (f 24 b24 (f 23 b23 (f 22 b22 (f 21 b21 (f 20 b20 (f 19 b19 (f 18 b18 (f 17 b17 (f 16 b16 (f 15 b15 (f 14 b14 (f 13 b13 (f 12 b12 (f 11 b11 (f 10 b10 (f 9 b9 (f 8 b8 (f 7 b7 (f 6 b6 (f 5 b5 (f 4 b4 (f 3 b3 (f 2 b2 (f 1 b1 (f 0 b0 0)))))))))))))))))))))))))))))) *) let constr (b30,b29,b28,b27,b26,b25,b24, b23,b22,b21,b20,b19,b18,b17,b16, b15,b14,b13,b12,b11,b10,b9,b8, b7,b6,b5,b4,b3,b2,b1,b0) = let f i b = if b then 1 lsl i else 0 in f 30 b30 + f 29 b29 + f 28 b28 + f 27 b27 + f 26 b26 + f 25 b25 + f 24 b24 + f 23 b23 + f 22 b22 + f 21 b21 + f 20 b20 + f 19 b19 + f 18 b18 + f 17 b17 + f 16 b16 + f 15 b15 + f 14 b14 + f 13 b13 + f 12 b12 + f 11 b11 + f 10 b10 + f 9 b9 + f 8 b8 + f 7 b7 + f 6 b6 + f 5 b5 + f 4 b4 + f 3 b3 + f 2 b2 + f 1 b1 + f 0 b0 let destr f n = let b i = n land (1 lsl i) <> 0 in f (b 30) (b 29) (b 28) (b 27) (b 26) (b 25) (b 24) (b 23) (b 22) (b 21) (b 20) (b 19) (b 18) (b 17) (b 16) (b 15) (b 14) (b 13) (b 12) (b 11) (b 10) (b 9) (b 8) (b 7) (b 6) (b 5) (b 4) (b 3) (b 2) (b 1) (b 0) let twice n = (n lsl 1) land 0x7FFFFFFF let twice_plus_one n = ((n lsl 1) land 0x7FFFFFFF) lor 1 let compare (x:int) (y:int) = if x = y then Datatypes.Eq else begin let sx = x < 0 and sy = y < 0 in if sx = sy then (if x < y then Datatypes.Lt else Datatypes.Gt) else (if sx then Datatypes.Gt else Datatypes.Lt) end end