(* *********************************************************************) (* *) (* The Compcert verified compiler *) (* *) (* Xavier Leroy, INRIA Paris-Rocquencourt *) (* *) (* Copyright Institut National de Recherche en Informatique et en *) (* Automatique. All rights reserved. This file is distributed *) (* under the terms of the INRIA Non-Commercial License Agreement. *) (* *) (* *********************************************************************) (** Static analysis and strength reduction for operators and conditions. This is the machine-dependent part of [Constprop]. *) Require Import Coqlib. Require Import AST. Require Import Integers. Require Import Floats. Require Import Op. Require Import Registers. (** * Static analysis *) (** To each pseudo-register at each program point, the static analysis associates a compile-time approximation taken from the following set. *) Inductive approx : Type := | Novalue: approx (** No value possible, code is unreachable. *) | Unknown: approx (** All values are possible, no compile-time information is available. *) | I: int -> approx (** A known integer value. *) | F: float -> approx (** A known floating-point value. *) | G: ident -> int -> approx (** The value is the address of the given global symbol plus the given integer offset. *) | S: int -> approx. (** The value is the stack pointer plus the offset. *) (** We now define the abstract interpretations of conditions and operators over this set of approximations. For instance, the abstract interpretation of the operator [Oaddf] applied to two expressions [a] and [b] is [F(Float.add f g)] if [a] and [b] have static approximations [Vfloat f] and [Vfloat g] respectively, and [Unknown] otherwise. The static approximations are defined by large pattern-matchings over the approximations of the results. We write these matchings in the indirect style described in file [SelectOp] to avoid excessive duplication of cases in proofs. *) Nondetfunction eval_static_condition (cond: condition) (vl: list approx) := match cond, vl with | Ccomp c, I n1 :: I n2 :: nil => Some(Int.cmp c n1 n2) | Ccompu c, I n1 :: I n2 :: nil => Some(Int.cmpu c n1 n2) | Ccompimm c n, I n1 :: nil => Some(Int.cmp c n1 n) | Ccompuimm c n, I n1 :: nil => Some(Int.cmpu c n1 n) | Ccompf c, F n1 :: F n2 :: nil => Some(Float.cmp c n1 n2) | Cnotcompf c, F n1 :: F n2 :: nil => Some(negb(Float.cmp c n1 n2)) | Cmaskzero n, I n1 :: nil => Some(Int.eq (Int.and n1 n) Int.zero) | Cmasknotzero n, I n1::nil => Some(negb(Int.eq (Int.and n1 n) Int.zero)) | _, _ => None end. Definition eval_static_condition_val (cond: condition) (vl: list approx) := match eval_static_condition cond vl with | None => Unknown | Some b => I(if b then Int.one else Int.zero) end. Definition eval_static_intoffloat (f: float) := match Float.intoffloat f with Some x => I x | None => Unknown end. Nondetfunction eval_static_addressing (addr: addressing) (vl: list approx) := match addr, vl with | Aindexed n, I n1::nil => I (Int.add n1 n) | Aindexed n, G id ofs::nil => G id (Int.add ofs n) | Aindexed n, S ofs::nil => S (Int.add ofs n) | Aindexed2 n, I n1::I n2::nil => I (Int.add (Int.add n1 n2) n) | Aindexed2 n, G id ofs::I n2::nil => G id (Int.add (Int.add ofs n2) n) | Aindexed2 n, I n1::G id ofs::nil => G id (Int.add (Int.add ofs n1) n) | Aindexed2 n, S ofs::I n2::nil => S (Int.add (Int.add ofs n2) n) | Aindexed2 n, I n1::S ofs::nil => S (Int.add (Int.add ofs n1) n) | Ascaled sc n, I n1::nil => I (Int.add (Int.mul n1 sc) n) | Aindexed2scaled sc n, I n1::I n2::nil => I (Int.add n1 (Int.add (Int.mul n2 sc) n)) | Aindexed2scaled sc n, G id ofs::I n2::nil => G id (Int.add ofs (Int.add (Int.mul n2 sc) n)) | Aindexed2scaled sc n, S ofs::I n2::nil => S (Int.add ofs (Int.add (Int.mul n2 sc) n)) | Aglobal id ofs, nil => G id ofs | Abased id ofs, I n1::nil => G id (Int.add ofs n1) | Abasedscaled sc id ofs, I n1::nil => G id (Int.add ofs (Int.mul sc n1)) | Ainstack ofs, nil => S ofs | _, _ => Unknown end. Parameter propagate_float_constants: unit -> bool. Nondetfunction eval_static_operation (op: operation) (vl: list approx) := match op, vl with | Omove, v1::nil => v1 | Ointconst n, nil => I n | Ofloatconst n, nil => if propagate_float_constants tt then F n else Unknown | Ocast8signed, I n1 :: nil => I(Int.sign_ext 8 n1) | Ocast8unsigned, I n1 :: nil => I(Int.zero_ext 8 n1) | Ocast16signed, I n1 :: nil => I(Int.sign_ext 16 n1) | Ocast16unsigned, I n1 :: nil => I(Int.zero_ext 16 n1) | Oneg, I n1 :: nil => I(Int.neg n1) | Osub, I n1 :: I n2 :: nil => I(Int.sub n1 n2) | Osub, G s1 n1 :: I n2 :: nil => G s1 (Int.sub n1 n2) | Omul, I n1 :: I n2 :: nil => I(Int.mul n1 n2) | Omulimm n, I n1 :: nil => I(Int.mul n1 n) | Odiv, I n1 :: I n2 :: nil => if Int.eq n2 Int.zero then Unknown else if Int.eq n1 (Int.repr Int.min_signed) && Int.eq n2 Int.mone then Unknown else I(Int.divs n1 n2) | Odivu, I n1 :: I n2 :: nil => if Int.eq n2 Int.zero then Unknown else I(Int.divu n1 n2) | Omod, I n1 :: I n2 :: nil => if Int.eq n2 Int.zero then Unknown else if Int.eq n1 (Int.repr Int.min_signed) && Int.eq n2 Int.mone then Unknown else I(Int.mods n1 n2) | Omodu, I n1 :: I n2 :: nil => if Int.eq n2 Int.zero then Unknown else I(Int.modu n1 n2) | Oand, I n1 :: I n2 :: nil => I(Int.and n1 n2) | Oandimm n, I n1 :: nil => I(Int.and n1 n) | Oor, I n1 :: I n2 :: nil => I(Int.or n1 n2) | Oorimm n, I n1 :: nil => I(Int.or n1 n) | Oxor, I n1 :: I n2 :: nil => I(Int.xor n1 n2) | Oxorimm n, I n1 :: nil => I(Int.xor n1 n) | Oshl, I n1 :: I n2 :: nil => if Int.ltu n2 Int.iwordsize then I(Int.shl n1 n2) else Unknown | Oshlimm n, I n1 :: nil => if Int.ltu n Int.iwordsize then I(Int.shl n1 n) else Unknown | Oshr, I n1 :: I n2 :: nil => if Int.ltu n2 Int.iwordsize then I(Int.shr n1 n2) else Unknown | Oshrimm n, I n1 :: nil => if Int.ltu n Int.iwordsize then I(Int.shr n1 n) else Unknown | Oshrximm n, I n1 :: nil => if Int.ltu n (Int.repr 31) then I(Int.shrx n1 n) else Unknown | Oshru, I n1 :: I n2 :: nil => if Int.ltu n2 Int.iwordsize then I(Int.shru n1 n2) else Unknown | Oshruimm n, I n1 :: nil => if Int.ltu n Int.iwordsize then I(Int.shru n1 n) else Unknown | Ororimm n, I n1 :: nil => if Int.ltu n Int.iwordsize then I(Int.ror n1 n) else Unknown | Olea mode, vl => eval_static_addressing mode vl | Onegf, F n1 :: nil => F(Float.neg n1) | Oabsf, F n1 :: nil => F(Float.abs n1) | Oaddf, F n1 :: F n2 :: nil => F(Float.add n1 n2) | Osubf, F n1 :: F n2 :: nil => F(Float.sub n1 n2) | Omulf, F n1 :: F n2 :: nil => F(Float.mul n1 n2) | Odivf, F n1 :: F n2 :: nil => F(Float.div n1 n2) | Osingleoffloat, F n1 :: nil => F(Float.singleoffloat n1) | Ointoffloat, F n1 :: nil => eval_static_intoffloat n1 | Ofloatofint, I n1 :: nil => if propagate_float_constants tt then F(Float.floatofint n1) else Unknown | Ocmp c, vl => eval_static_condition_val c vl | _, _ => Unknown end. (** * Operator strength reduction *) (** We now define auxiliary functions for strength reduction of operators and addressing modes: replacing an operator with a cheaper one if some of its arguments are statically known. These are again large pattern-matchings expressed in indirect style. *) Section STRENGTH_REDUCTION. Variable app: reg -> approx. Nondetfunction cond_strength_reduction (cond: condition) (args: list reg) (vl: list approx) := match cond, args, vl with | Ccomp c, r1 :: r2 :: nil, I n1 :: v2 :: nil => (Ccompimm (swap_comparison c) n1, r2 :: nil) | Ccomp c, r1 :: r2 :: nil, v1 :: I n2 :: nil => (Ccompimm c n2, r1 :: nil) | Ccompu c, r1 :: r2 :: nil, I n1 :: v2 :: nil => (Ccompuimm (swap_comparison c) n1, r2 :: nil) | Ccompu c, r1 :: r2 :: nil, v1 :: I n2 :: nil => (Ccompuimm c n2, r1 :: nil) | _, _, _ => (cond, args) end. Nondetfunction addr_strength_reduction (addr: addressing) (args: list reg) (vl: list approx) := match addr, args, vl with | Aindexed ofs, r1 :: nil, G symb n :: nil => (Aglobal symb (Int.add n ofs), nil) | Aindexed ofs, r1 :: nil, S n :: nil => (Ainstack (Int.add n ofs), nil) | Aindexed2 ofs, r1 :: r2 :: nil, G symb n1 :: I n2 :: nil => (Aglobal symb (Int.add (Int.add n1 n2) ofs), nil) | Aindexed2 ofs, r1 :: r2 :: nil, I n1 :: G symb n2 :: nil => (Aglobal symb (Int.add (Int.add n1 n2) ofs), nil) | Aindexed2 ofs, r1 :: r2 :: nil, S n1 :: I n2 :: nil => (Ainstack (Int.add (Int.add n1 n2) ofs), nil) | Aindexed2 ofs, r1 :: r2 :: nil, I n1 :: S n2 :: nil => (Ainstack (Int.add (Int.add n1 n2) ofs), nil) | Aindexed2 ofs, r1 :: r2 :: nil, G symb n1 :: v2 :: nil => (Abased symb (Int.add n1 ofs), r2 :: nil) | Aindexed2 ofs, r1 :: r2 :: nil, v1 :: G symb n2 :: nil => (Abased symb (Int.add n2 ofs), r1 :: nil) | Aindexed2 ofs, r1 :: r2 :: nil, I n1 :: v2 :: nil => (Aindexed (Int.add n1 ofs), r2 :: nil) | Aindexed2 ofs, r1 :: r2 :: nil, v1 :: I n2 :: nil => (Aindexed (Int.add n2 ofs), r1 :: nil) | Aindexed2scaled sc ofs, r1 :: r2 :: nil, G symb n1 :: I n2 :: nil => (Aglobal symb (Int.add (Int.add n1 (Int.mul n2 sc)) ofs), nil) | Aindexed2scaled sc ofs, r1 :: r2 :: nil, G symb n1 :: v2 :: nil => (Abasedscaled sc symb (Int.add n1 ofs), r2 :: nil) | Aindexed2scaled sc ofs, r1 :: r2 :: nil, v1 :: I n2 :: nil => (Aindexed (Int.add (Int.mul n2 sc) ofs), r1 :: nil) | Abased id ofs, r1 :: nil, I n1 :: nil => (Aglobal id (Int.add ofs n1), nil) | Abasedscaled sc id ofs, r1 :: nil, I n1 :: nil => (Aglobal id (Int.add ofs (Int.mul sc n1)), nil) | _, _ => (addr, args) end. Definition make_addimm (n: int) (r: reg) := if Int.eq n Int.zero then (Omove, r :: nil) else (Olea (Aindexed n), r :: nil). Definition make_shlimm (n: int) (r: reg) := if Int.eq n Int.zero then (Omove, r :: nil) else (Oshlimm n, r :: nil). Definition make_shrimm (n: int) (r: reg) := if Int.eq n Int.zero then (Omove, r :: nil) else (Oshrimm n, r :: nil). Definition make_shruimm (n: int) (r: reg) := if Int.eq n Int.zero then (Omove, r :: nil) else (Oshruimm n, r :: nil). Definition make_mulimm (n: int) (r: reg) := if Int.eq n Int.zero then (Ointconst Int.zero, nil) else if Int.eq n Int.one then (Omove, r :: nil) else match Int.is_power2 n with | Some l => make_shlimm l r | None => (Omulimm n, r :: nil) end. Definition make_andimm (n: int) (r: reg) := if Int.eq n Int.zero then (Ointconst Int.zero, nil) else if Int.eq n Int.mone then (Omove, r :: nil) else (Oandimm n, r :: nil). Definition make_orimm (n: int) (r: reg) := if Int.eq n Int.zero then (Omove, r :: nil) else if Int.eq n Int.mone then (Ointconst Int.mone, nil) else (Oorimm n, r :: nil). Definition make_xorimm (n: int) (r: reg) := if Int.eq n Int.zero then (Omove, r :: nil) else (Oxorimm n, r :: nil). Definition make_divimm n (r1 r2: reg) := match Int.is_power2 n with | Some l => if Int.ltu l (Int.repr 31) then (Oshrximm l, r1 :: nil) else (Odiv, r1 :: r2 :: nil) | None => (Odiv, r1 :: r2 :: nil) end. Definition make_divuimm n (r1 r2: reg) := match Int.is_power2 n with | Some l => make_shruimm l r1 | None => (Odivu, r1 :: r2 :: nil) end. Definition make_moduimm n (r1 r2: reg) := match Int.is_power2 n with | Some l => (Oandimm (Int.sub n Int.one), r1 :: nil) | None => (Omodu, r1 :: r2 :: nil) end. (** We must be careful to preserve 2-address constraints over the RTL code, which means that commutative operations cannot be specialized if their first argument is a constant. *) Nondetfunction op_strength_reduction (op: operation) (args: list reg) (vl: list approx) := match op, args, vl with | Osub, r1 :: r2 :: nil, v1 :: I n2 :: nil => make_addimm (Int.neg n2) r1 | Omul, r1 :: r2 :: nil, v1 :: I n2 :: nil => make_mulimm n2 r1 | Odiv, r1 :: r2 :: nil, v1 :: I n2 :: nil => make_divimm n2 r1 r2 | Odivu, r1 :: r2 :: nil, v1 :: I n2 :: nil => make_divuimm n2 r1 r2 | Omodu, r1 :: r2 :: nil, v1 :: I n2 :: nil => make_moduimm n2 r1 r2 | Oand, r1 :: r2 :: nil, v1 :: I n2 :: nil => make_andimm n2 r1 | Oor, r1 :: r2 :: nil, v1 :: I n2 :: nil => make_orimm n2 r1 | Oxor, r1 :: r2 :: nil, v1 :: I n2 :: nil => make_xorimm n2 r1 | Oshl, r1 :: r2 :: nil, v1 :: I n2 :: nil => make_shlimm n2 r1 | Oshr, r1 :: r2 :: nil, v1 :: I n2 :: nil => make_shrimm n2 r1 | Oshru, r1 :: r2 :: nil, v1 :: I n2 :: nil => make_shruimm n2 r1 | Olea addr, args, vl => let (addr', args') := addr_strength_reduction addr args vl in (Olea addr', args') | Ocmp c, args, vl => let (c', args') := cond_strength_reduction c args vl in (Ocmp c', args') | _, _, _ => (op, args) end. End STRENGTH_REDUCTION.