(* *********************************************************************) (* *) (* The Compcert verified compiler *) (* *) (* Xavier Leroy, INRIA Paris-Rocquencourt *) (* *) (* Copyright Institut National de Recherche en Informatique et en *) (* Automatique. All rights reserved. This file is distributed *) (* under the terms of the INRIA Non-Commercial License Agreement. *) (* *) (* *********************************************************************) (** Recognition of combined operations, addressing modes and conditions during the [CSE] phase. *) Require Import Coqlib. Require Import Integers. Require Import Values. Require Import Memory. Require Import Op. Require Import RTL. Require Import CombineOp. Require Import CSE. Section COMBINE. Variable ge: genv. Variable sp: val. Variable m: mem. Variable get: valnum -> option rhs. Variable valu: valnum -> val. Hypothesis get_sound: forall v rhs, get v = Some rhs -> equation_holds valu ge sp m v rhs. Lemma combine_compimm_ne_0_sound: forall x cond args, combine_compimm_ne_0 get x = Some(cond, args) -> eval_condition cond (map valu args) m = Val.cmp_bool Cne (valu x) (Vint Int.zero) /\ eval_condition cond (map valu args) m = Val.cmpu_bool (Mem.valid_pointer m) Cne (valu x) (Vint Int.zero). Proof. intros until args. functional induction (combine_compimm_ne_0 get x); intros EQ; inv EQ. (* of cmp *) exploit get_sound; eauto. unfold equation_holds. simpl. intro EQ; inv EQ. destruct (eval_condition cond (map valu args) m); simpl; auto. destruct b; auto. (* of and *) exploit get_sound; eauto. unfold equation_holds; simpl. destruct args; try discriminate. destruct args; try discriminate. simpl. intros EQ; inv EQ. destruct (valu v); simpl; auto. Qed. Lemma combine_compimm_eq_0_sound: forall x cond args, combine_compimm_eq_0 get x = Some(cond, args) -> eval_condition cond (map valu args) m = Val.cmp_bool Ceq (valu x) (Vint Int.zero) /\ eval_condition cond (map valu args) m = Val.cmpu_bool (Mem.valid_pointer m) Ceq (valu x) (Vint Int.zero). Proof. intros until args. functional induction (combine_compimm_eq_0 get x); intros EQ; inv EQ. (* of cmp *) exploit get_sound; eauto. unfold equation_holds. simpl. intro EQ; inv EQ. rewrite eval_negate_condition. destruct (eval_condition c (map valu args) m); simpl; auto. destruct b; auto. (* of and *) exploit get_sound; eauto. unfold equation_holds; simpl. destruct args; try discriminate. destruct args; try discriminate. simpl. intros EQ; inv EQ. destruct (valu v); simpl; auto. Qed. Lemma combine_compimm_eq_1_sound: forall x cond args, combine_compimm_eq_1 get x = Some(cond, args) -> eval_condition cond (map valu args) m = Val.cmp_bool Ceq (valu x) (Vint Int.one) /\ eval_condition cond (map valu args) m = Val.cmpu_bool (Mem.valid_pointer m) Ceq (valu x) (Vint Int.one). Proof. intros until args. functional induction (combine_compimm_eq_1 get x); intros EQ; inv EQ. (* of cmp *) exploit get_sound; eauto. unfold equation_holds. simpl. intro EQ; inv EQ. destruct (eval_condition cond (map valu args) m); simpl; auto. destruct b; auto. Qed. Lemma combine_compimm_ne_1_sound: forall x cond args, combine_compimm_ne_1 get x = Some(cond, args) -> eval_condition cond (map valu args) m = Val.cmp_bool Cne (valu x) (Vint Int.one) /\ eval_condition cond (map valu args) m = Val.cmpu_bool (Mem.valid_pointer m) Cne (valu x) (Vint Int.one). Proof. intros until args. functional induction (combine_compimm_ne_1 get x); intros EQ; inv EQ. (* of cmp *) exploit get_sound; eauto. unfold equation_holds. simpl. intro EQ; inv EQ. rewrite eval_negate_condition. destruct (eval_condition c (map valu args) m); simpl; auto. destruct b; auto. Qed. Theorem combine_cond_sound: forall cond args cond' args', combine_cond get cond args = Some(cond', args') -> eval_condition cond' (map valu args') m = eval_condition cond (map valu args) m. Proof. intros. functional inversion H; subst. (* compimm ne zero *) simpl; eapply combine_compimm_ne_0_sound; eauto. (* compimm ne one *) simpl; eapply combine_compimm_ne_1_sound; eauto. (* compimm eq zero *) simpl; eapply combine_compimm_eq_0_sound; eauto. (* compimm eq one *) simpl; eapply combine_compimm_eq_1_sound; eauto. (* compuimm ne zero *) simpl; eapply combine_compimm_ne_0_sound; eauto. (* compuimm ne one *) simpl; eapply combine_compimm_ne_1_sound; eauto. (* compuimm eq zero *) simpl; eapply combine_compimm_eq_0_sound; eauto. (* compuimm eq one *) simpl; eapply combine_compimm_eq_1_sound; eauto. Qed. Theorem combine_addr_sound: forall addr args addr' args', combine_addr get addr args = Some(addr', args') -> eval_addressing ge sp addr' (map valu args') = eval_addressing ge sp addr (map valu args). Proof. intros. functional inversion H; subst. exploit get_sound; eauto. unfold equation_holds; simpl; intro EQ. assert (forall vl, eval_addressing ge sp (SelectOp.offset_addressing a n) vl = option_map (fun v => Val.add v (Vint n)) (eval_addressing ge sp a vl)). intros. destruct a; simpl; repeat (destruct vl; auto); simpl. rewrite Val.add_assoc. auto. repeat rewrite Val.add_assoc. auto. rewrite Val.add_assoc. auto. repeat rewrite Val.add_assoc. auto. unfold symbol_address. destruct (Globalenvs.Genv.find_symbol ge i); auto. unfold symbol_address. destruct (Globalenvs.Genv.find_symbol ge i); auto. repeat rewrite <- (Val.add_commut v). rewrite Val.add_assoc. auto. unfold symbol_address. destruct (Globalenvs.Genv.find_symbol ge i0); auto. repeat rewrite <- (Val.add_commut (Val.mul v (Vint i))). rewrite Val.add_assoc. auto. rewrite Val.add_assoc; auto. rewrite H0. rewrite EQ. auto. Qed. Theorem combine_op_sound: forall op args op' args', combine_op get op args = Some(op', args') -> eval_operation ge sp op' (map valu args') m = eval_operation ge sp op (map valu args) m. Proof. intros. functional inversion H; subst. (* lea *) simpl. eapply combine_addr_sound; eauto. (* cmp *) simpl. decEq; decEq. eapply combine_cond_sound; eauto. Qed. End COMBINE.