(* *********************************************************************) (* *) (* The Compcert verified compiler *) (* *) (* Xavier Leroy, INRIA Paris-Rocquencourt *) (* *) (* Copyright Institut National de Recherche en Informatique et en *) (* Automatique. All rights reserved. This file is distributed *) (* under the terms of the INRIA Non-Commercial License Agreement. *) (* *) (* *********************************************************************) (** Correctness proof for x86 generation: main proof. *) Require Import Coqlib. Require Import Errors. Require Import AST. Require Import Integers. Require Import Floats. Require Import Values. Require Import Memory. Require Import Events. Require Import Globalenvs. Require Import Smallstep. Require Import Op. Require Import Locations. Require Import Mach. Require Import Conventions. Require Import Asm. Require Import Asmgen. Require Import Asmgenproof0. Require Import Asmgenproof1. Section PRESERVATION. Variable prog: Mach.program. Variable tprog: Asm.program. Hypothesis TRANSF: transf_program prog = Errors.OK tprog. Let ge := Genv.globalenv prog. Let tge := Genv.globalenv tprog. Lemma symbols_preserved: forall id, Genv.find_symbol tge id = Genv.find_symbol ge id. Proof. intros. unfold ge, tge. apply Genv.find_symbol_transf_partial with transf_fundef. exact TRANSF. Qed. Lemma functions_translated: forall b f, Genv.find_funct_ptr ge b = Some f -> exists tf, Genv.find_funct_ptr tge b = Some tf /\ transf_fundef f = Errors.OK tf. Proof (Genv.find_funct_ptr_transf_partial transf_fundef _ TRANSF). Lemma functions_transl: forall fb f tf, Genv.find_funct_ptr ge fb = Some (Internal f) -> transf_function f = OK tf -> Genv.find_funct_ptr tge fb = Some (Internal tf). Proof. intros. exploit functions_translated; eauto. intros [tf' [A B]]. monadInv B. rewrite H0 in EQ; inv EQ; auto. Qed. Lemma varinfo_preserved: forall b, Genv.find_var_info tge b = Genv.find_var_info ge b. Proof. intros. unfold ge, tge. apply Genv.find_var_info_transf_partial with transf_fundef. exact TRANSF. Qed. (** * Properties of control flow *) Lemma transf_function_no_overflow: forall f tf, transf_function f = OK tf -> list_length_z tf <= Int.max_unsigned. Proof. intros. monadInv H. destruct (zlt (list_length_z x) Int.max_unsigned); monadInv EQ0. rewrite list_length_z_cons. omega. Qed. Lemma exec_straight_exec: forall f c ep tf tc c' rs m rs' m', transl_code_at_pc ge (rs PC) f c ep tf tc -> exec_straight tge tf tc rs m c' rs' m' -> plus step tge (State rs m) E0 (State rs' m'). Proof. intros. inv H. eapply exec_straight_steps_1; eauto. eapply transf_function_no_overflow; eauto. eapply functions_transl; eauto. Qed. Lemma exec_straight_at: forall f c ep tf tc c' ep' tc' rs m rs' m', transl_code_at_pc ge (rs PC) f c ep tf tc -> transl_code f c' ep' = OK tc' -> exec_straight tge tf tc rs m tc' rs' m' -> transl_code_at_pc ge (rs' PC) f c' ep' tf tc'. Proof. intros. inv H. exploit exec_straight_steps_2; eauto. eapply transf_function_no_overflow; eauto. eapply functions_transl; eauto. intros [ofs' [PC' CT']]. rewrite PC'. constructor; auto. Qed. (** The [find_label] function returns the code tail starting at the given label. A connection with [code_tail] is then established. *) Fixpoint find_label (lbl: label) (c: code) {struct c} : option code := match c with | nil => None | instr :: c' => if is_label lbl instr then Some c' else find_label lbl c' end. Lemma label_pos_code_tail: forall lbl c pos c', find_label lbl c = Some c' -> exists pos', label_pos lbl pos c = Some pos' /\ code_tail (pos' - pos) c c' /\ pos < pos' <= pos + list_length_z c. Proof. induction c. simpl; intros. discriminate. simpl; intros until c'. case (is_label lbl a). intro EQ; injection EQ; intro; subst c'. exists (pos + 1). split. auto. split. replace (pos + 1 - pos) with (0 + 1) by omega. constructor. constructor. rewrite list_length_z_cons. generalize (list_length_z_pos c). omega. intros. generalize (IHc (pos + 1) c' H). intros [pos' [A [B C]]]. exists pos'. split. auto. split. replace (pos' - pos) with ((pos' - (pos + 1)) + 1) by omega. constructor. auto. rewrite list_length_z_cons. omega. Qed. (** The following lemmas show that the translation from Mach to Asm preserves labels, in the sense that the following diagram commutes: << translation Mach code ------------------------ Asm instr sequence | | | Mach.find_label lbl find_label lbl | | | v v Mach code tail ------------------- Asm instr seq tail translation >> The proof demands many boring lemmas showing that Asm constructor functions do not introduce new labels. *) Section TRANSL_LABEL. Variable lbl: label. Remark mk_mov_label: forall rd rs k c, mk_mov rd rs k = OK c -> find_label lbl c = find_label lbl k. Proof. unfold mk_mov; intros. destruct rd; try discriminate; destruct rs; inv H; auto. Qed. Remark mk_shift_label: forall f r1 r2 k c, mk_shift f r1 r2 k = OK c -> (forall r, is_label lbl (f r) = false) -> find_label lbl c = find_label lbl k. Proof. unfold mk_shift; intros. destruct (ireg_eq r2 ECX). monadInv H; simpl; rewrite H0; auto. destruct (ireg_eq r1 ECX); monadInv H; simpl; rewrite H0; auto. Qed. Remark mk_mov2_label: forall r1 r2 r3 r4 k, find_label lbl (mk_mov2 r1 r2 r3 r4 k) = find_label lbl k. Proof. intros; unfold mk_mov2. destruct (ireg_eq r1 r2); auto. destruct (ireg_eq r3 r4); auto. destruct (ireg_eq r3 r2); auto. destruct (ireg_eq r1 r4); auto. Qed. Remark mk_div_label: forall f r1 r2 k c, mk_div f r1 r2 k = OK c -> (forall r, is_label lbl (f r) = false) -> find_label lbl c = find_label lbl k. Proof. unfold mk_div; intros. destruct (ireg_eq r1 EAX). destruct (ireg_eq r2 EDX); monadInv H; simpl; rewrite H0; auto. monadInv H; simpl. rewrite mk_mov2_label. simpl; rewrite H0; auto. Qed. Remark mk_mod_label: forall f r1 r2 k c, mk_mod f r1 r2 k = OK c -> (forall r, is_label lbl (f r) = false) -> find_label lbl c = find_label lbl k. Proof. unfold mk_mod; intros. destruct (ireg_eq r1 EAX). destruct (ireg_eq r2 EDX); monadInv H; simpl; rewrite H0; auto. monadInv H; simpl. rewrite mk_mov2_label. simpl; rewrite H0; auto. Qed. Remark mk_shrximm_label: forall r n k c, mk_shrximm r n k = OK c -> find_label lbl c = find_label lbl k. Proof. intros. monadInv H; auto. Qed. Remark mk_intconv_label: forall f r1 r2 k c, mk_intconv f r1 r2 k = OK c -> (forall r r', is_label lbl (f r r') = false) -> find_label lbl c = find_label lbl k. Proof. unfold mk_intconv; intros. destruct (low_ireg r2); inv H; simpl; rewrite H0; auto. Qed. Remark mk_smallstore_label: forall f addr r k c, mk_smallstore f addr r k = OK c -> (forall r addr, is_label lbl (f r addr) = false) -> find_label lbl c = find_label lbl k. Proof. unfold mk_smallstore; intros. destruct (low_ireg r). monadInv H; simpl; rewrite H0; auto. destruct (addressing_mentions addr ECX); monadInv H; simpl; rewrite H0; auto. Qed. Remark loadind_label: forall base ofs ty dst k c, loadind base ofs ty dst k = OK c -> find_label lbl c = find_label lbl k. Proof. unfold loadind; intros. destruct ty. monadInv H; auto. destruct (preg_of dst); inv H; auto. Qed. Remark storeind_label: forall base ofs ty src k c, storeind src base ofs ty k = OK c -> find_label lbl c = find_label lbl k. Proof. unfold storeind; intros. destruct ty. monadInv H; auto. destruct (preg_of src); inv H; auto. Qed. Remark mk_setcc_label: forall xc rd k, find_label lbl (mk_setcc xc rd k) = find_label lbl k. Proof. intros. destruct xc; simpl; auto; destruct (ireg_eq rd EDX); auto. Qed. Remark mk_jcc_label: forall xc lbl' k, find_label lbl (mk_jcc xc lbl' k) = find_label lbl k. Proof. intros. destruct xc; auto. Qed. Ltac ArgsInv := match goal with | [ H: Error _ = OK _ |- _ ] => discriminate | [ H: match ?args with nil => _ | _ :: _ => _ end = OK _ |- _ ] => destruct args; ArgsInv | [ H: bind _ _ = OK _ |- _ ] => monadInv H; ArgsInv | _ => idtac end. Remark transl_cond_label: forall cond args k c, transl_cond cond args k = OK c -> find_label lbl c = find_label lbl k. Proof. unfold transl_cond; intros. destruct cond; ArgsInv; auto. destruct (Int.eq_dec i Int.zero); auto. destruct c0; auto. destruct c0; auto. Qed. Remark transl_op_label: forall op args r k c, transl_op op args r k = OK c -> find_label lbl c = find_label lbl k. Proof. unfold transl_op; intros. destruct op; ArgsInv; auto. eapply mk_mov_label; eauto. destruct (Int.eq_dec i Int.zero); auto. destruct (Float.eq_dec f Float.zero); auto. eapply mk_intconv_label; eauto. eapply mk_intconv_label; eauto. eapply mk_intconv_label; eauto. eapply mk_intconv_label; eauto. eapply mk_div_label; eauto. eapply mk_div_label; eauto. eapply mk_mod_label; eauto. eapply mk_mod_label; eauto. eapply mk_shift_label; eauto. eapply mk_shift_label; eauto. eapply mk_shrximm_label; eauto. eapply mk_shift_label; eauto. eapply trans_eq. eapply transl_cond_label; eauto. apply mk_setcc_label. Qed. Remark transl_load_label: forall chunk addr args dest k c, transl_load chunk addr args dest k = OK c -> find_label lbl c = find_label lbl k. Proof. intros. monadInv H. destruct chunk; monadInv EQ0; auto. Qed. Remark transl_store_label: forall chunk addr args src k c, transl_store chunk addr args src k = OK c -> find_label lbl c = find_label lbl k. Proof. intros. monadInv H. destruct chunk; monadInv EQ0; auto; eapply mk_smallstore_label; eauto. Qed. Lemma transl_instr_label: forall f i ep k c, transl_instr f i ep k = OK c -> find_label lbl c = if Mach.is_label lbl i then Some k else find_label lbl k. Proof. intros. generalize (Mach.is_label_correct lbl i). case (Mach.is_label lbl i); intro. subst i. monadInv H. simpl. rewrite peq_true. auto. Opaque loadind. destruct i; simpl in H. eapply loadind_label; eauto. eapply storeind_label; eauto. destruct ep. eapply loadind_label; eauto. monadInv H. eapply trans_eq; eapply loadind_label; eauto. eapply transl_op_label; eauto. eapply transl_load_label; eauto. eapply transl_store_label; eauto. destruct s0; monadInv H; auto. destruct s0; monadInv H; auto. monadInv H; auto. monadInv H; auto. inv H; simpl. destruct (peq lbl l). congruence. auto. monadInv H; auto. eapply trans_eq. eapply transl_cond_label; eauto. apply mk_jcc_label. monadInv H; auto. monadInv H; auto. Qed. Lemma transl_code_label: forall f c ep tc, transl_code f c ep = OK tc -> match Mach.find_label lbl c with | None => find_label lbl tc = None | Some c' => exists tc', find_label lbl tc = Some tc' /\ transl_code f c' false = OK tc' end. Proof. induction c; simpl; intros. inv H. auto. monadInv H. rewrite (transl_instr_label _ _ _ _ _ EQ0). generalize (Mach.is_label_correct lbl a). destruct (Mach.is_label lbl a); intros. subst a. simpl in EQ. exists x; auto. eapply IHc; eauto. Qed. Lemma transl_find_label: forall f tf, transf_function f = OK tf -> match Mach.find_label lbl f.(Mach.fn_code) with | None => find_label lbl tf = None | Some c => exists tc, find_label lbl tf = Some tc /\ transl_code f c false = OK tc end. Proof. intros. monadInv H. destruct (zlt (list_length_z x) Int.max_unsigned); inv EQ0. simpl. eapply transl_code_label; eauto. Qed. End TRANSL_LABEL. (** A valid branch in a piece of Mach code translates to a valid ``go to'' transition in the generated PPC code. *) Lemma find_label_goto_label: forall f tf lbl rs m c' b ofs, Genv.find_funct_ptr ge b = Some (Internal f) -> transf_function f = OK tf -> rs PC = Vptr b ofs -> Mach.find_label lbl f.(Mach.fn_code) = Some c' -> exists tc', exists rs', goto_label tf lbl rs m = Next rs' m /\ transl_code_at_pc ge (rs' PC) f c' false tf tc' /\ forall r, r <> PC -> rs'#r = rs#r. Proof. intros. exploit (transl_find_label lbl f tf); eauto. rewrite H2. intros [tc [A B]]. exploit label_pos_code_tail; eauto. instantiate (1 := 0). intros [pos' [P [Q R]]]. exists tc; exists (rs#PC <- (Vptr b (Int.repr pos'))). split. unfold goto_label. rewrite P. rewrite H1. auto. split. rewrite Pregmap.gss. constructor; auto. rewrite Int.unsigned_repr. replace (pos' - 0) with pos' in Q. auto. omega. generalize (transf_function_no_overflow _ _ H0). omega. intros. apply Pregmap.gso; auto. Qed. (** * Proof of semantic preservation *) (** Semantic preservation is proved using simulation diagrams of the following form. << st1 --------------- st2 | | t| *|t | | v v st1'--------------- st2' >> The invariant is the [match_states] predicate below, which includes: - The PPC code pointed by the PC register is the translation of the current Mach code sequence. - Mach register values and PPC register values agree. *) Inductive match_states: Mach.state -> Asm.state -> Prop := | match_states_intro: forall s f sp c ep ms m m' rs tf tc ra (STACKS: match_stack ge s m m' ra sp) (MEXT: Mem.extends m m') (AT: transl_code_at_pc ge (rs PC) f c ep tf tc) (AG: agree ms (Vptr sp Int.zero) rs) (RSA: retaddr_stored_at m m' sp (Int.unsigned f.(fn_retaddr_ofs)) ra) (DXP: ep = true -> rs#EDX = parent_sp s), match_states (Mach.State s f (Vptr sp Int.zero) c ms m) (Asm.State rs m') | match_states_call: forall s fd ms m m' rs fb (STACKS: match_stack ge s m m' (rs RA) (Mem.nextblock m)) (MEXT: Mem.extends m m') (AG: agree ms (parent_sp s) rs) (ATPC: rs PC = Vptr fb Int.zero) (FUNCT: Genv.find_funct_ptr ge fb = Some fd) (WTRA: Val.has_type (rs RA) Tint), match_states (Mach.Callstate s fd ms m) (Asm.State rs m') | match_states_return: forall s ms m m' rs (STACKS: match_stack ge s m m' (rs PC) (Mem.nextblock m)) (MEXT: Mem.extends m m') (AG: agree ms (parent_sp s) rs), match_states (Mach.Returnstate s ms m) (Asm.State rs m'). Lemma exec_straight_steps: forall s f rs1 i c ep tf tc m1' m2 m2' sp ms2 ra, match_stack ge s m2 m2' ra sp -> Mem.extends m2 m2' -> retaddr_stored_at m2 m2' sp (Int.unsigned f.(fn_retaddr_ofs)) ra -> transl_code_at_pc ge (rs1 PC) f (i :: c) ep tf tc -> (forall k c (TR: transl_instr f i ep k = OK c), exists rs2, exec_straight tge tf c rs1 m1' k rs2 m2' /\ agree ms2 (Vptr sp Int.zero) rs2 /\ (edx_preserved ep i = true -> rs2#EDX = parent_sp s)) -> exists st', plus step tge (State rs1 m1') E0 st' /\ match_states (Mach.State s f (Vptr sp Int.zero) c ms2 m2) st'. Proof. intros. inversion H2; subst. monadInv H7. exploit H3; eauto. intros [rs2 [A [B C]]]. exists (State rs2 m2'); split. eapply exec_straight_exec; eauto. econstructor; eauto. eapply exec_straight_at; eauto. Qed. Lemma exec_straight_steps_goto: forall s f rs1 i c ep tf tc m1' m2 m2' sp ms2 lbl c' ra, match_stack ge s m2 m2' ra sp -> Mem.extends m2 m2' -> retaddr_stored_at m2 m2' sp (Int.unsigned f.(fn_retaddr_ofs)) ra -> Mach.find_label lbl f.(Mach.fn_code) = Some c' -> transl_code_at_pc ge (rs1 PC) f (i :: c) ep tf tc -> edx_preserved ep i = false -> (forall k c (TR: transl_instr f i ep k = OK c), exists jmp, exists k', exists rs2, exec_straight tge tf c rs1 m1' (jmp :: k') rs2 m2' /\ agree ms2 (Vptr sp Int.zero) rs2 /\ exec_instr tge tf jmp rs2 m2' = goto_label tf lbl rs2 m2') -> exists st', plus step tge (State rs1 m1') E0 st' /\ match_states (Mach.State s f (Vptr sp Int.zero) c' ms2 m2) st'. Proof. intros. inversion H3; subst. monadInv H9. exploit H5; eauto. intros [jmp [k' [rs2 [A [B C]]]]]. generalize (functions_transl _ _ _ H7 H8); intro FN. generalize (transf_function_no_overflow _ _ H8); intro NOOV. exploit exec_straight_steps_2; eauto. intros [ofs' [PC2 CT2]]. exploit find_label_goto_label; eauto. intros [tc' [rs3 [GOTO [AT' OTH]]]]. exists (State rs3 m2'); split. eapply plus_right'. eapply exec_straight_steps_1; eauto. econstructor; eauto. eapply find_instr_tail. eauto. rewrite C. eexact GOTO. traceEq. econstructor; eauto. apply agree_exten with rs2; auto with asmgen. congruence. Qed. (** We need to show that, in the simulation diagram, we cannot take infinitely many Mach transitions that correspond to zero transitions on the PPC side. Actually, all Mach transitions correspond to at least one Asm transition, except the transition from [Mach.Returnstate] to [Mach.State]. So, the following integer measure will suffice to rule out the unwanted behaviour. *) Definition measure (s: Mach.state) : nat := match s with | Mach.State _ _ _ _ _ _ => 0%nat | Mach.Callstate _ _ _ _ => 0%nat | Mach.Returnstate _ _ _ => 1%nat end. (** This is the simulation diagram. We prove it by case analysis on the Mach transition. *) Theorem step_simulation: forall S1 t S2, Mach.step ge S1 t S2 -> forall S1' (MS: match_states S1 S1'), (exists S2', plus step tge S1' t S2' /\ match_states S2 S2') \/ (measure S2 < measure S1 /\ t = E0 /\ match_states S2 S1')%nat. Proof. induction 1; intros; inv MS. - (* Mlabel *) left; eapply exec_straight_steps; eauto; intros. monadInv TR. econstructor; split. apply exec_straight_one. simpl; eauto. auto. split. apply agree_nextinstr; auto. simpl; congruence. - (* Mgetstack *) unfold load_stack in H. exploit Mem.loadv_extends; eauto. intros [v' [A B]]. rewrite (sp_val _ _ _ AG) in A. left; eapply exec_straight_steps; eauto. intros. simpl in TR. exploit loadind_correct; eauto. intros [rs' [P [Q R]]]. exists rs'; split. eauto. split. eapply agree_set_mreg; eauto. congruence. simpl; congruence. - (* Msetstack *) unfold store_stack in H. assert (Val.lessdef (rs src) (rs0 (preg_of src))). eapply preg_val; eauto. exploit Mem.storev_extends; eauto. intros [m2' [A B]]. left; eapply exec_straight_steps; eauto. eapply match_stack_storev; eauto. eapply retaddr_stored_at_storev; eauto. rewrite (sp_val _ _ _ AG) in A. intros. simpl in TR. exploit storeind_correct; eauto. intros [rs' [P Q]]. exists rs'; split. eauto. split. unfold undef_setstack. eapply agree_undef_move; eauto. simpl; intros. rewrite Q; auto with asmgen. - (* Mgetparam *) unfold load_stack in *. exploit Mem.loadv_extends. eauto. eexact H. auto. intros [parent' [A B]]. rewrite (sp_val _ _ _ AG) in A. exploit lessdef_parent_sp; eauto. clear B; intros B; subst parent'. exploit Mem.loadv_extends. eauto. eexact H0. auto. intros [v' [C D]]. Opaque loadind. left; eapply exec_straight_steps; eauto; intros. assert (DIFF: negb (mreg_eq dst IT1) = true -> IR EDX <> preg_of dst). intros. change (IR EDX) with (preg_of IT1). red; intros. unfold proj_sumbool in H1. destruct (mreg_eq dst IT1); try discriminate. elim n. eapply preg_of_injective; eauto. destruct ep; simpl in TR. (* EDX contains parent *) exploit loadind_correct. eexact TR. instantiate (2 := rs0). rewrite DXP; eauto. intros [rs1 [P [Q R]]]. exists rs1; split. eauto. split. eapply agree_set_mreg. eapply agree_set_mreg; eauto. congruence. auto. simpl; intros. rewrite R; auto. (* EDX does not contain parent *) monadInv TR. exploit loadind_correct. eexact EQ0. eauto. intros [rs1 [P [Q R]]]. simpl in Q. exploit loadind_correct. eexact EQ. instantiate (2 := rs1). rewrite Q. eauto. intros [rs2 [S [T U]]]. exists rs2; split. eapply exec_straight_trans; eauto. split. eapply agree_set_mreg. eapply agree_set_mreg; eauto. congruence. auto. simpl; intros. rewrite U; auto. - (* Mop *) assert (eval_operation tge (Vptr sp0 Int.zero) op rs##args m = Some v). rewrite <- H. apply eval_operation_preserved. exact symbols_preserved. exploit eval_operation_lessdef. eapply preg_vals; eauto. eauto. eexact H0. intros [v' [A B]]. rewrite (sp_val _ _ _ AG) in A. left; eapply exec_straight_steps; eauto; intros. simpl in TR. exploit transl_op_correct; eauto. intros [rs2 [P [Q R]]]. assert (S: Val.lessdef v (rs2 (preg_of res))) by (eapply Val.lessdef_trans; eauto). exists rs2; split. eauto. split. unfold undef_op. destruct op; try (eapply agree_set_undef_mreg; eauto). eapply agree_set_undef_move_mreg; eauto. simpl; congruence. - (* Mload *) assert (eval_addressing tge (Vptr sp0 Int.zero) addr rs##args = Some a). rewrite <- H. apply eval_addressing_preserved. exact symbols_preserved. exploit eval_addressing_lessdef. eapply preg_vals; eauto. eexact H1. intros [a' [A B]]. rewrite (sp_val _ _ _ AG) in A. exploit Mem.loadv_extends; eauto. intros [v' [C D]]. left; eapply exec_straight_steps; eauto; intros. simpl in TR. exploit transl_load_correct; eauto. intros [rs2 [P [Q R]]]. exists rs2; split. eauto. split. eapply agree_set_undef_mreg; eauto. congruence. simpl; congruence. - (* Mstore *) assert (eval_addressing tge (Vptr sp0 Int.zero) addr rs##args = Some a). rewrite <- H. apply eval_addressing_preserved. exact symbols_preserved. exploit eval_addressing_lessdef. eapply preg_vals; eauto. eexact H1. intros [a' [A B]]. rewrite (sp_val _ _ _ AG) in A. assert (Val.lessdef (rs src) (rs0 (preg_of src))). eapply preg_val; eauto. exploit Mem.storev_extends; eauto. intros [m2' [C D]]. left; eapply exec_straight_steps; eauto. eapply match_stack_storev; eauto. eapply retaddr_stored_at_storev; eauto. intros. simpl in TR. exploit transl_store_correct; eauto. intros [rs2 [P Q]]. exists rs2; split. eauto. split. eapply agree_exten_temps; eauto. simpl; congruence. - (* Mcall *) inv AT. assert (NOOV: list_length_z tf <= Int.max_unsigned). eapply transf_function_no_overflow; eauto. destruct ros as [rf|fid]; simpl in H; monadInv H3. + (* Indirect call *) exploit Genv.find_funct_inv; eauto. intros [bf EQ2]. rewrite EQ2 in H; rewrite Genv.find_funct_find_funct_ptr in H. assert (rs0 x0 = Vptr bf Int.zero). exploit ireg_val; eauto. rewrite EQ2; intros LD; inv LD; auto. generalize (code_tail_next_int _ _ _ _ NOOV H4). intro CT1. assert (TCA: transl_code_at_pc ge (Vptr b (Int.add ofs Int.one)) f c false tf x). econstructor; eauto. left; econstructor; split. apply plus_one. eapply exec_step_internal. eauto. eapply functions_transl; eauto. eapply find_instr_tail; eauto. simpl. eauto. econstructor; eauto. econstructor; eauto. rewrite <- H0. eexact TCA. change (Mem.valid_block m sp0). eapply retaddr_stored_at_valid; eauto. simpl. eapply agree_exten; eauto. intros. Simplifs. rewrite <- H0. exact I. + (* Direct call *) destruct (Genv.find_symbol ge fid) as [bf|] eqn:FS; try discriminate. generalize (code_tail_next_int _ _ _ _ NOOV H4). intro CT1. assert (TCA: transl_code_at_pc ge (Vptr b (Int.add ofs Int.one)) f c false tf x). econstructor; eauto. left; econstructor; split. apply plus_one. eapply exec_step_internal. eauto. eapply functions_transl; eauto. eapply find_instr_tail; eauto. simpl. unfold symbol_offset. rewrite symbols_preserved. rewrite FS. eauto. econstructor; eauto. econstructor; eauto. rewrite <- H0. eexact TCA. change (Mem.valid_block m sp0). eapply retaddr_stored_at_valid; eauto. simpl. eapply agree_exten; eauto. intros. Simplifs. auto. rewrite <- H0. exact I. - (* Mtailcall *) inv AT. assert (NOOV: list_length_z tf <= Int.max_unsigned). eapply transf_function_no_overflow; eauto. rewrite (sp_val _ _ _ AG) in *. unfold load_stack in *. exploit Mem.loadv_extends. eauto. eexact H0. auto. simpl. intros [parent' [A B]]. exploit lessdef_parent_sp; eauto. intros. subst parent'. clear B. assert (C: Mem.loadv Mint32 m'0 (Val.add (rs0 ESP) (Vint (fn_retaddr_ofs f))) = Some ra). Opaque Int.repr. erewrite agree_sp; eauto. simpl. rewrite Int.add_zero_l. eapply rsa_contains; eauto. exploit retaddr_stored_at_can_free; eauto. intros [m2' [E F]]. assert (M: match_stack ge s m'' m2' ra (Mem.nextblock m'')). apply match_stack_change_bound with stk. eapply match_stack_free_left; eauto. eapply match_stack_free_left; eauto. eapply match_stack_free_right; eauto. omega. apply Z.lt_le_incl. change (Mem.valid_block m'' stk). eapply Mem.valid_block_free_1; eauto. eapply Mem.valid_block_free_1; eauto. eapply retaddr_stored_at_valid; eauto. destruct ros as [rf|fid]; simpl in H; monadInv H6. + (* Indirect call *) exploit Genv.find_funct_inv; eauto. intros [bf EQ2]. rewrite EQ2 in H; rewrite Genv.find_funct_find_funct_ptr in H. assert (rs0 x0 = Vptr bf Int.zero). exploit ireg_val; eauto. rewrite EQ2; intros LD; inv LD; auto. generalize (code_tail_next_int _ _ _ _ NOOV H7). intro CT1. left; econstructor; split. eapply plus_left. eapply exec_step_internal. eauto. eapply functions_transl; eauto. eapply find_instr_tail; eauto. simpl. rewrite C. rewrite A. rewrite <- (sp_val _ _ _ AG). rewrite E. eauto. apply star_one. eapply exec_step_internal. transitivity (Val.add rs0#PC Vone). auto. rewrite <- H3. simpl. eauto. eapply functions_transl; eauto. eapply find_instr_tail; eauto. simpl. eauto. traceEq. econstructor; eauto. apply agree_set_other; auto. apply agree_nextinstr. apply agree_set_other; auto. eapply agree_change_sp; eauto. eapply parent_sp_def; eauto. Simplifs. rewrite Pregmap.gso; auto. generalize (preg_of_not_SP rf). rewrite (ireg_of_eq _ _ EQ1). congruence. change (Val.has_type ra Tint). eapply retaddr_stored_at_type; eauto. + (* Direct call *) destruct (Genv.find_symbol ge fid) as [bf|] eqn:FS; try discriminate. generalize (code_tail_next_int _ _ _ _ NOOV H7). intro CT1. left; econstructor; split. eapply plus_left. eapply exec_step_internal. eauto. eapply functions_transl; eauto. eapply find_instr_tail; eauto. simpl. rewrite C. rewrite A. rewrite <- (sp_val _ _ _ AG). rewrite E. eauto. apply star_one. eapply exec_step_internal. transitivity (Val.add rs0#PC Vone). auto. rewrite <- H3. simpl. eauto. eapply functions_transl; eauto. eapply find_instr_tail; eauto. simpl. eauto. traceEq. econstructor; eauto. apply agree_set_other; auto. apply agree_nextinstr. apply agree_set_other; auto. eapply agree_change_sp; eauto. eapply parent_sp_def; eauto. rewrite Pregmap.gss. unfold symbol_offset. rewrite symbols_preserved. rewrite FS. auto. change (Val.has_type ra Tint). eapply retaddr_stored_at_type; eauto. - (* Mbuiltin *) inv AT. monadInv H3. exploit functions_transl; eauto. intro FN. generalize (transf_function_no_overflow _ _ H2); intro NOOV. exploit external_call_mem_extends; eauto. eapply preg_vals; eauto. intros [vres' [m2' [A [B [C D]]]]]. left. econstructor; split. apply plus_one. eapply exec_step_builtin. eauto. eauto. eapply find_instr_tail; eauto. eapply external_call_symbols_preserved; eauto. exact symbols_preserved. exact varinfo_preserved. econstructor; eauto. eapply match_stack_extcall; eauto. intros; eapply external_call_max_perm; eauto. instantiate (2 := tf); instantiate (1 := x). unfold nextinstr_nf, nextinstr. rewrite Pregmap.gss. simpl undef_regs. repeat rewrite Pregmap.gso; auto with asmgen. rewrite <- H0. simpl. econstructor; eauto. eapply code_tail_next_int; eauto. apply agree_nextinstr_nf. eapply agree_set_undef_mreg; eauto. rewrite Pregmap.gss. auto. intros. Simplifs. eapply retaddr_stored_at_extcall; eauto. intros; eapply external_call_max_perm; eauto. congruence. - (* Mannot *) inv AT. monadInv H4. exploit functions_transl; eauto. intro FN. generalize (transf_function_no_overflow _ _ H3); intro NOOV. exploit annot_arguments_match; eauto. intros [vargs' [P Q]]. exploit external_call_mem_extends; eauto. intros [vres' [m2' [A [B [C D]]]]]. left. econstructor; split. apply plus_one. eapply exec_step_annot. eauto. eauto. eapply find_instr_tail; eauto. eauto. eapply external_call_symbols_preserved; eauto. exact symbols_preserved. exact varinfo_preserved. eapply match_states_intro with (ep := false); eauto with coqlib. eapply match_stack_extcall; eauto. intros; eapply external_call_max_perm; eauto. unfold nextinstr. rewrite Pregmap.gss. rewrite <- H1; simpl. econstructor; eauto. eapply code_tail_next_int; eauto. apply agree_nextinstr. auto. eapply retaddr_stored_at_extcall; eauto. intros; eapply external_call_max_perm; eauto. congruence. - (* Mgoto *) inv AT. monadInv H3. exploit find_label_goto_label; eauto. intros [tc' [rs' [GOTO [AT2 INV]]]]. left; exists (State rs' m'); split. apply plus_one. econstructor; eauto. eapply functions_transl; eauto. eapply find_instr_tail; eauto. simpl; eauto. econstructor; eauto. eapply agree_exten; eauto with asmgen. congruence. - (* Mcond true *) exploit eval_condition_lessdef. eapply preg_vals; eauto. eauto. eauto. intros EC. left; eapply exec_straight_steps_goto; eauto. intros. simpl in TR. destruct (transl_cond_correct tge tf cond args _ _ rs0 m' TR) as [rs' [A [B C]]]. rewrite EC in B. destruct (testcond_for_condition cond); simpl in *. (* simple jcc *) exists (Pjcc c1 lbl); exists k; exists rs'. split. eexact A. split. eapply agree_exten_temps; eauto. simpl. rewrite B. auto. (* jcc; jcc *) destruct (eval_testcond c1 rs') as [b1|] eqn:TC1; destruct (eval_testcond c2 rs') as [b2|] eqn:TC2; inv B. destruct b1. (* first jcc jumps *) exists (Pjcc c1 lbl); exists (Pjcc c2 lbl :: k); exists rs'. split. eexact A. split. eapply agree_exten_temps; eauto. simpl. rewrite TC1. auto. (* second jcc jumps *) exists (Pjcc c2 lbl); exists k; exists (nextinstr rs'). split. eapply exec_straight_trans. eexact A. eapply exec_straight_one. simpl. rewrite TC1. auto. auto. split. eapply agree_exten_temps; eauto. intros; Simplifs. simpl. rewrite eval_testcond_nextinstr. rewrite TC2. destruct b2; auto || discriminate. (* jcc2 *) destruct (eval_testcond c1 rs') as [b1|] eqn:TC1; destruct (eval_testcond c2 rs') as [b2|] eqn:TC2; inv B. destruct (andb_prop _ _ H2). subst. exists (Pjcc2 c1 c2 lbl); exists k; exists rs'. split. eexact A. split. eapply agree_exten_temps; eauto. simpl. rewrite TC1; rewrite TC2; auto. - (* Mcond false *) exploit eval_condition_lessdef. eapply preg_vals; eauto. eauto. eauto. intros EC. left; eapply exec_straight_steps; eauto. intros. simpl in TR. destruct (transl_cond_correct tge tf cond args _ _ rs0 m' TR) as [rs' [A [B C]]]. rewrite EC in B. destruct (testcond_for_condition cond); simpl in *. (* simple jcc *) econstructor; split. eapply exec_straight_trans. eexact A. apply exec_straight_one. simpl. rewrite B. eauto. auto. split. apply agree_nextinstr. eapply agree_exten_temps; eauto. simpl; congruence. (* jcc ; jcc *) destruct (eval_testcond c1 rs') as [b1|] eqn:TC1; destruct (eval_testcond c2 rs') as [b2|] eqn:TC2; inv B. destruct (orb_false_elim _ _ H1); subst. econstructor; split. eapply exec_straight_trans. eexact A. eapply exec_straight_two. simpl. rewrite TC1. eauto. auto. simpl. rewrite eval_testcond_nextinstr. rewrite TC2. eauto. auto. auto. split. apply agree_nextinstr. apply agree_nextinstr. eapply agree_exten_temps; eauto. simpl; congruence. (* jcc2 *) destruct (eval_testcond c1 rs') as [b1|] eqn:TC1; destruct (eval_testcond c2 rs') as [b2|] eqn:TC2; inv B. exists (nextinstr rs'); split. eapply exec_straight_trans. eexact A. apply exec_straight_one. simpl. rewrite TC1; rewrite TC2. destruct b1. simpl in *. subst b2. auto. auto. auto. split. apply agree_nextinstr. eapply agree_exten_temps; eauto. rewrite H1; congruence. - (* Mjumptable *) inv AT. monadInv H5. exploit functions_transl; eauto. intro FN. generalize (transf_function_no_overflow _ _ H4); intro NOOV. exploit find_label_goto_label. eauto. eauto. instantiate (2 := rs0#ECX <- Vundef #EDX <- Vundef). repeat (rewrite Pregmap.gso by auto with asmgen). eauto. eauto. intros [tc' [rs' [A [B C]]]]. exploit ireg_val; eauto. rewrite H. intros LD; inv LD. left; econstructor; split. apply plus_one. econstructor; eauto. eapply find_instr_tail; eauto. simpl. rewrite <- H8. unfold Mach.label in H0; unfold label; rewrite H0. eauto. econstructor; eauto. eapply agree_exten_temps; eauto. intros. rewrite C; auto with asmgen. Simplifs. congruence. - (* Mreturn *) inv AT. assert (NOOV: list_length_z tf <= Int.max_unsigned). eapply transf_function_no_overflow; eauto. rewrite (sp_val _ _ _ AG) in *. unfold load_stack in *. exploit Mem.loadv_extends. eauto. eexact H. auto. simpl. intros [parent' [A B]]. exploit lessdef_parent_sp; eauto. intros. subst parent'. clear B. assert (C: Mem.loadv Mint32 m'0 (Val.add (rs0 ESP) (Vint (fn_retaddr_ofs f))) = Some ra). Opaque Int.repr. erewrite agree_sp; eauto. simpl. rewrite Int.add_zero_l. eapply rsa_contains; eauto. exploit retaddr_stored_at_can_free; eauto. intros [m2' [E F]]. assert (M: match_stack ge s m'' m2' ra (Mem.nextblock m'')). apply match_stack_change_bound with stk. eapply match_stack_free_left; eauto. eapply match_stack_free_left; eauto. eapply match_stack_free_right; eauto. omega. apply Z.lt_le_incl. change (Mem.valid_block m'' stk). eapply Mem.valid_block_free_1; eauto. eapply Mem.valid_block_free_1; eauto. eapply retaddr_stored_at_valid; eauto. monadInv H5. exploit code_tail_next_int; eauto. intro CT1. left; econstructor; split. eapply plus_left. eapply exec_step_internal. eauto. eapply functions_transl; eauto. eapply find_instr_tail; eauto. simpl. rewrite C. rewrite A. rewrite <- (sp_val _ _ _ AG). rewrite E. eauto. apply star_one. eapply exec_step_internal. transitivity (Val.add rs0#PC Vone). auto. rewrite <- H2. simpl. eauto. eapply functions_transl; eauto. eapply find_instr_tail; eauto. simpl. eauto. traceEq. constructor; auto. apply agree_set_other; auto. apply agree_nextinstr. apply agree_set_other; auto. eapply agree_change_sp; eauto. eapply parent_sp_def; eauto. - (* internal function *) exploit functions_translated; eauto. intros [tf [A B]]. monadInv B. generalize EQ; intros EQ'. monadInv EQ'. destruct (zlt (list_length_z x0) Int.max_unsigned); inversion EQ1. clear EQ1. unfold store_stack in *. exploit Mem.alloc_extends. eauto. eauto. apply Zle_refl. apply Zle_refl. intros [m1' [C D]]. assert (E: Mem.extends m2 m1') by (eapply Mem.free_left_extends; eauto). exploit Mem.storev_extends. eexact E. eexact H1. eauto. eauto. intros [m2' [F G]]. exploit retaddr_stored_at_can_alloc. eexact H. eauto. eauto. eauto. eauto. auto. auto. auto. auto. eauto. intros [m3' [P [Q R]]]. left; econstructor; split. apply plus_one. econstructor; eauto. subst x; simpl. rewrite Int.unsigned_zero. simpl. eauto. simpl. rewrite C. simpl in F. rewrite (sp_val _ _ _ AG) in F. rewrite F. rewrite Int.add_zero_l. rewrite P. eauto. econstructor; eauto. assert (STK: stk = Mem.nextblock m) by (eapply Mem.alloc_result; eauto). rewrite <- STK in STACKS. simpl in F. simpl in H1. eapply match_stack_invariant; eauto. intros. eapply Mem.perm_alloc_4; eauto. eapply Mem.perm_free_3; eauto. eapply Mem.perm_store_2; eauto. unfold block; omega. intros. eapply Mem.perm_store_1; eauto. eapply Mem.perm_store_1; eauto. eapply Mem.perm_alloc_1; eauto. intros. erewrite Mem.load_store_other. 2: eauto. erewrite Mem.load_store_other. 2: eauto. eapply Mem.load_alloc_other; eauto. left; unfold block; omega. left; unfold block; omega. unfold nextinstr. rewrite Pregmap.gss. repeat rewrite Pregmap.gso; auto with asmgen. rewrite ATPC. simpl. constructor; eauto. subst x. unfold fn_code. eapply code_tail_next_int. rewrite list_length_z_cons. omega. constructor. apply agree_nextinstr. eapply agree_change_sp; eauto. apply agree_exten_temps with rs0; eauto. intros; Simplifs. congruence. intros. Simplifs. eapply agree_sp; eauto. - (* external function *) exploit functions_translated; eauto. intros [tf [A B]]. simpl in B. inv B. exploit extcall_arguments_match; eauto. intros [args' [C D]]. exploit external_call_mem_extends; eauto. intros [res' [m2' [P [Q [R S]]]]]. left; econstructor; split. apply plus_one. eapply exec_step_external; eauto. eapply external_call_symbols_preserved; eauto. exact symbols_preserved. exact varinfo_preserved. econstructor; eauto. rewrite Pregmap.gss. apply match_stack_change_bound with (Mem.nextblock m). eapply match_stack_extcall; eauto. intros. eapply external_call_max_perm; eauto. eapply external_call_nextblock; eauto. unfold loc_external_result. eapply agree_set_mreg; eauto. rewrite Pregmap.gso; auto with asmgen. rewrite Pregmap.gss. auto. intros; Simplifs. - (* return *) inv STACKS. simpl in *. right. split. omega. split. auto. econstructor; eauto. congruence. Qed. Lemma transf_initial_states: forall st1, Mach.initial_state prog st1 -> exists st2, Asm.initial_state tprog st2 /\ match_states st1 st2. Proof. intros. inversion H. unfold ge0 in *. exploit functions_translated; eauto. intros [tf [A B]]. econstructor; split. econstructor. eapply Genv.init_mem_transf_partial; eauto. replace (symbol_offset (Genv.globalenv tprog) (prog_main tprog) Int.zero) with (Vptr b Int.zero). econstructor; eauto. constructor. apply Mem.extends_refl. split. auto. intros. rewrite Regmap.gi. auto. reflexivity. exact I. unfold symbol_offset. rewrite (transform_partial_program_main _ _ TRANSF). rewrite symbols_preserved. unfold ge; rewrite H1. auto. Qed. Lemma transf_final_states: forall st1 st2 r, match_states st1 st2 -> Mach.final_state st1 r -> Asm.final_state st2 r. Proof. intros. inv H0. inv H. inv STACKS. constructor. auto. compute in H1. generalize (preg_val _ _ _ AX AG). rewrite H1. intros LD; inv LD. auto. Qed. Theorem transf_program_correct: forward_simulation (Mach.semantics prog) (Asm.semantics tprog). Proof. eapply forward_simulation_star with (measure := measure). eexact symbols_preserved. eexact transf_initial_states. eexact transf_final_states. exact step_simulation. Qed. End PRESERVATION.