(* *********************************************************************) (* *) (* The Compcert verified compiler *) (* *) (* Xavier Leroy, INRIA Paris-Rocquencourt *) (* *) (* Copyright Institut National de Recherche en Informatique et en *) (* Automatique. All rights reserved. This file is distributed *) (* under the terms of the INRIA Non-Commercial License Agreement. *) (* *) (* *********************************************************************) (** Translation from Mach to IA32 Asm. *) Require Import Coqlib. Require Import Maps. Require Import Errors. Require Import AST. Require Import Integers. Require Import Floats. Require Import Values. Require Import Memory. Require Import Globalenvs. Require Import Op. Require Import Locations. Require Import Mach. Require Import Asm. Open Local Scope string_scope. Open Local Scope error_monad_scope. (** The code generation functions take advantage of several characteristics of the [Mach] code generated by earlier passes of the compiler: - Argument and result registers are of the correct type. - For two-address instructions, the result and the first argument are in the same register. (True by construction in [RTLgen], and preserved by [Reload].) - The first argument register is never [ECX] (a.k.a. [IT2]) nor [XMM7] (a.k.a [FT2]). - The top of the floating-point stack ([ST0], a.k.a. [FP0]) can only appear in [mov] instructions, but never in arithmetic instructions. All these properties are true by construction, but it is painful to track them statically. Instead, we recheck them during code generation and fail if they do not hold. *) (** Extracting integer or float registers. *) Definition ireg_of (r: mreg) : res ireg := match preg_of r with IR mr => OK mr | _ => Error(msg "Asmgen.ireg_of") end. Definition freg_of (r: mreg) : res freg := match preg_of r with FR mr => OK mr | _ => Error(msg "Asmgen.freg_of") end. (** Smart constructors for various operations. *) Definition mk_mov (rd rs: preg) (k: code) : res code := match rd, rs with | IR rd, IR rs => OK (Pmov_rr rd rs :: k) | FR rd, FR rs => OK (Pmovsd_ff rd rs :: k) | ST0, FR rs => OK (Pfld_f rs :: k) | FR rd, ST0 => OK (Pfstp_f rd :: k) | _, _ => Error(msg "Asmgen.mk_mov") end. Definition mk_shift (shift_instr: ireg -> instruction) (r1 r2: ireg) (k: code) : res code := if ireg_eq r2 ECX then OK (shift_instr r1 :: k) else do x <- assertion (negb (ireg_eq r1 ECX)); OK (Pmov_rr ECX r2 :: shift_instr r1 :: k). Definition mk_div (div_instr: ireg -> instruction) (r1 r2: ireg) (k: code) : res code := if ireg_eq r1 EAX then if ireg_eq r2 EDX then OK (Pmov_rr ECX EDX :: div_instr ECX :: k) else OK (div_instr r2 :: k) else do x <- assertion (negb (ireg_eq r1 ECX)); if ireg_eq r2 EAX then OK (Pmov_rr ECX EAX :: Pmov_rr EAX r1 :: div_instr ECX :: Pmov_rr r1 EAX :: Pmov_rr EAX ECX :: k) else OK (Pmovd_fr XMM7 EAX :: Pmov_rr ECX r2 :: Pmov_rr EAX r1 :: div_instr ECX :: Pmov_rr r2 ECX :: Pmov_rr r1 EAX :: Pmovd_rf EAX XMM7 :: k). Definition mk_mod (div_instr: ireg -> instruction) (r1 r2: ireg) (k: code) : res code := if ireg_eq r1 EAX then if ireg_eq r2 EDX then OK (Pmov_rr ECX EDX :: div_instr ECX :: Pmov_rr EAX EDX :: k) else OK (div_instr r2 :: Pmov_rr EAX EDX :: k) else do x <- assertion (negb (ireg_eq r1 ECX)); if ireg_eq r2 EDX then OK (Pmovd_fr XMM7 EAX :: Pmov_rr ECX EDX :: Pmov_rr EAX r1 :: div_instr ECX :: Pmov_rr r1 EDX :: Pmovd_rf EAX XMM7 :: k) else OK (Pmovd_fr XMM7 EAX :: Pmov_rr ECX r2 :: Pmov_rr EAX r1 :: div_instr ECX :: Pmov_rr r2 ECX :: Pmov_rr r1 EDX :: Pmovd_rf EAX XMM7 :: k). Definition mk_shrximm (r: ireg) (n: int) (k: code) : res code := do x <- assertion (negb (ireg_eq r ECX)); let p := Int.sub (Int.shl Int.one n) Int.one in OK (Ptest_rr r r :: Plea ECX (Addrmode (Some r) None (inl _ p)) :: Pcmov Cond_l r ECX :: Psar_ri r n :: k). Definition low_ireg (r: ireg) : bool := match r with | EAX | EBX | ECX | EDX => true | ESI | EDI | EBP | ESP => false end. Definition mk_intconv (mk: ireg -> ireg -> instruction) (rd rs: ireg) (k: code) := if low_ireg rs then OK (mk rd rs :: k) else OK (Pmov_rr EDX rs :: mk rd EDX :: k). Definition addressing_mentions (addr: addrmode) (r: ireg) : bool := match addr with Addrmode base displ const => match base with Some r' => ireg_eq r r' | None => false end || match displ with Some(r', sc) => ireg_eq r r' | None => false end end. Definition mk_smallstore (sto: addrmode -> ireg ->instruction) (addr: addrmode) (rs: ireg) (k: code) := if low_ireg rs then OK (sto addr rs :: k) else if addressing_mentions addr ECX then OK (Plea ECX addr :: Pmov_rr EDX rs :: sto (Addrmode (Some ECX) None (inl _ Int.zero)) EDX :: k) else OK (Pmov_rr ECX rs :: sto addr ECX :: k). (** Accessing slots in the stack frame. *) Definition loadind (base: ireg) (ofs: int) (ty: typ) (dst: mreg) (k: code) := match ty with | Tint => do r <- ireg_of dst; OK (Pmov_rm r (Addrmode (Some base) None (inl _ ofs)) :: k) | Tfloat => match preg_of dst with | FR r => OK (Pmovsd_fm r (Addrmode (Some base) None (inl _ ofs)) :: k) | ST0 => OK (Pfld_m (Addrmode (Some base) None (inl _ ofs)) :: k) | _ => Error (msg "Asmgen.loadind") end end. Definition storeind (src: mreg) (base: ireg) (ofs: int) (ty: typ) (k: code) := match ty with | Tint => do r <- ireg_of src; OK (Pmov_mr (Addrmode (Some base) None (inl _ ofs)) r :: k) | Tfloat => match preg_of src with | FR r => OK (Pmovsd_mf (Addrmode (Some base) None (inl _ ofs)) r :: k) | ST0 => OK (Pfstp_m (Addrmode (Some base) None (inl _ ofs)) :: k) | _ => Error (msg "Asmgen.loadind") end end. (** Translation of addressing modes *) Definition transl_addressing (a: addressing) (args: list mreg): res addrmode := match a, args with | Aindexed n, a1 :: nil => do r1 <- ireg_of a1; OK(Addrmode (Some r1) None (inl _ n)) | Aindexed2 n, a1 :: a2 :: nil => do r1 <- ireg_of a1; do r2 <- ireg_of a2; OK(Addrmode (Some r1) (Some(r2, Int.one)) (inl _ n)) | Ascaled sc n, a1 :: nil => do r1 <- ireg_of a1; OK(Addrmode None (Some(r1, sc)) (inl _ n)) | Aindexed2scaled sc n, a1 :: a2 :: nil => do r1 <- ireg_of a1; do r2 <- ireg_of a2; OK(Addrmode (Some r1) (Some(r2, sc)) (inl _ n)) | Aglobal id ofs, nil => OK(Addrmode None None (inr _ (id, ofs))) | Abased id ofs, a1 :: nil => do r1 <- ireg_of a1; OK(Addrmode (Some r1) None (inr _ (id, ofs))) | Abasedscaled sc id ofs, a1 :: nil => do r1 <- ireg_of a1; OK(Addrmode None (Some(r1, sc)) (inr _ (id, ofs))) | Ainstack n, nil => OK(Addrmode (Some ESP) None (inl _ n)) | _, _ => Error(msg "Asmgen.transl_addressing") end. (** Floating-point comparison. We swap the operands in some cases to simplify the handling of the unordered case. *) Definition floatcomp (cmp: comparison) (r1 r2: freg) : instruction := match cmp with | Clt | Cle => Pcomisd_ff r2 r1 | Ceq | Cne | Cgt | Cge => Pcomisd_ff r1 r2 end. (** Translation of a condition. Prepends to [k] the instructions that evaluate the condition and leave its boolean result in bits of the condition register. *) Definition transl_cond (cond: condition) (args: list mreg) (k: code) : res code := match cond, args with | Ccomp c, a1 :: a2 :: nil => do r1 <- ireg_of a1; do r2 <- ireg_of a2; OK (Pcmp_rr r1 r2 :: k) | Ccompu c, a1 :: a2 :: nil => do r1 <- ireg_of a1; do r2 <- ireg_of a2; OK (Pcmp_rr r1 r2 :: k) | Ccompimm c n, a1 :: nil => do r1 <- ireg_of a1; OK (if Int.eq_dec n Int.zero then Ptest_rr r1 r1 :: k else Pcmp_ri r1 n :: k) | Ccompuimm c n, a1 :: nil => do r1 <- ireg_of a1; OK (Pcmp_ri r1 n :: k) | Ccompf cmp, a1 :: a2 :: nil => do r1 <- freg_of a1; do r2 <- freg_of a2; OK (floatcomp cmp r1 r2 :: k) | Cnotcompf cmp, a1 :: a2 :: nil => do r1 <- freg_of a1; do r2 <- freg_of a2; OK (floatcomp cmp r1 r2 :: k) | Cmaskzero n, a1 :: nil => do r1 <- ireg_of a1; OK (Ptest_ri r1 n :: k) | Cmasknotzero n, a1 :: nil => do r1 <- ireg_of a1; OK (Ptest_ri r1 n :: k) | _, _ => Error(msg "Asmgen.transl_cond") end. (** What processor condition to test for a given Mach condition. *) Definition testcond_for_signed_comparison (cmp: comparison) := match cmp with | Ceq => Cond_e | Cne => Cond_ne | Clt => Cond_l | Cle => Cond_le | Cgt => Cond_g | Cge => Cond_ge end. Definition testcond_for_unsigned_comparison (cmp: comparison) := match cmp with | Ceq => Cond_e | Cne => Cond_ne | Clt => Cond_b | Cle => Cond_be | Cgt => Cond_a | Cge => Cond_ae end. Definition testcond_for_condition (cond: condition) : testcond := match cond with | Ccomp c => testcond_for_signed_comparison c | Ccompu c => testcond_for_unsigned_comparison c | Ccompimm c n => testcond_for_signed_comparison c | Ccompuimm c n => testcond_for_unsigned_comparison c | Ccompf c => match c with | Ceq => Cond_enp | Cne => Cond_nep | Clt => Cond_a | Cle => Cond_ae | Cgt => Cond_a | Cge => Cond_ae end | Cnotcompf c => match c with | Ceq => Cond_nep | Cne => Cond_enp | Clt => Cond_be | Cle => Cond_b | Cgt => Cond_be | Cge => Cond_b end | Cmaskzero n => Cond_e | Cmasknotzero n => Cond_ne end. (** Translation of the arithmetic operation [r <- op(args)]. The corresponding instructions are prepended to [k]. *) Definition transl_op (op: operation) (args: list mreg) (res: mreg) (k: code) : Errors.res code := match op, args with | Omove, a1 :: nil => mk_mov (preg_of res) (preg_of a1) k | Ointconst n, nil => do r <- ireg_of res; OK (Pmov_ri r n :: k) | Ofloatconst f, nil => do r <- freg_of res; OK (Pmovsd_fi r f :: k) | Ocast8signed, a1 :: nil => do r1 <- ireg_of a1; do r <- ireg_of res; mk_intconv Pmovsb_rr r r1 k | Ocast8unsigned, a1 :: nil => do r1 <- ireg_of a1; do r <- ireg_of res; mk_intconv Pmovzb_rr r r1 k | Ocast16signed, a1 :: nil => do r1 <- ireg_of a1; do r <- ireg_of res; mk_intconv Pmovsw_rr r r1 k | Ocast16unsigned, a1 :: nil => do r1 <- ireg_of a1; do r <- ireg_of res; mk_intconv Pmovzw_rr r r1 k | Oneg, a1 :: nil => do x <- assertion (mreg_eq a1 res); do r <- ireg_of res; OK (Pneg r :: k) | Osub, a1 :: a2 :: nil => do x <- assertion (mreg_eq a1 res); do r <- ireg_of res; do r2 <- ireg_of a2; OK (Psub_rr r r2 :: k) | Omul, a1 :: a2 :: nil => do x <- assertion (mreg_eq a1 res); do r <- ireg_of res; do r2 <- ireg_of a2; OK (Pimul_rr r r2 :: k) | Omulimm n, a1 :: nil => do x <- assertion (mreg_eq a1 res); do r <- ireg_of res; OK (Pimul_ri r n :: k) | Odiv, a1 :: a2 :: nil => do x <- assertion (mreg_eq a1 res); do r <- ireg_of res; do r2 <- ireg_of a2; mk_div Pidiv r r2 k | Odivu, a1 :: a2 :: nil => do x <- assertion (mreg_eq a1 res); do r <- ireg_of res; do r2 <- ireg_of a2; mk_div Pdiv r r2 k | Omod, a1 :: a2 :: nil => do x <- assertion (mreg_eq a1 res); do r <- ireg_of res; do r2 <- ireg_of a2; mk_mod Pidiv r r2 k | Omodu, a1 :: a2 :: nil => do x <- assertion (mreg_eq a1 res); do r <- ireg_of res; do r2 <- ireg_of a2; mk_mod Pdiv r r2 k | Oand, a1 :: a2 :: nil => do x <- assertion (mreg_eq a1 res); do r <- ireg_of res; do r2 <- ireg_of a2; OK (Pand_rr r r2 :: k) | Oandimm n, a1 :: nil => do x <- assertion (mreg_eq a1 res); do r <- ireg_of res; OK (Pand_ri r n :: k) | Oor, a1 :: a2 :: nil => do x <- assertion (mreg_eq a1 res); do r <- ireg_of res; do r2 <- ireg_of a2; OK (Por_rr r r2 :: k) | Oorimm n, a1 :: nil => do x <- assertion (mreg_eq a1 res); do r <- ireg_of res; OK (Por_ri r n :: k) | Oxor, a1 :: a2 :: nil => do x <- assertion (mreg_eq a1 res); do r <- ireg_of res; do r2 <- ireg_of a2; OK (Pxor_rr r r2 :: k) | Oxorimm n, a1 :: nil => do x <- assertion (mreg_eq a1 res); do r <- ireg_of res; OK (Pxor_ri r n :: k) | Oshl, a1 :: a2 :: nil => do x <- assertion (mreg_eq a1 res); do r <- ireg_of res; do r2 <- ireg_of a2; mk_shift Psal_rcl r r2 k | Oshlimm n, a1 :: nil => do x <- assertion (mreg_eq a1 res); do r <- ireg_of res; OK (Psal_ri r n :: k) | Oshr, a1 :: a2 :: nil => do x <- assertion (mreg_eq a1 res); do r <- ireg_of res; do r2 <- ireg_of a2; mk_shift Psar_rcl r r2 k | Oshrimm n, a1 :: nil => do x <- assertion (mreg_eq a1 res); do r <- ireg_of res; OK (Psar_ri r n :: k) | Oshru, a1 :: a2 :: nil => do x <- assertion (mreg_eq a1 res); do r <- ireg_of res; do r2 <- ireg_of a2; mk_shift Pshr_rcl r r2 k | Oshruimm n, a1 :: nil => do x <- assertion (mreg_eq a1 res); do r <- ireg_of res; OK (Pshr_ri r n :: k) | Oshrximm n, a1 :: nil => do x <- assertion (mreg_eq a1 res); do r <- ireg_of res; mk_shrximm r n k | Ororimm n, a1 :: nil => do x <- assertion (mreg_eq a1 res); do r <- ireg_of res; OK (Pror_ri r n :: k) | Olea addr, _ => do am <- transl_addressing addr args; do r <- ireg_of res; OK (Plea r am :: k) | Onegf, a1 :: nil => do x <- assertion (mreg_eq a1 res); do r <- freg_of res; OK (Pnegd r :: k) | Oabsf, a1 :: nil => do x <- assertion (mreg_eq a1 res); do r <- freg_of res; OK (Pabsd r :: k) | Oaddf, a1 :: a2 :: nil => do x <- assertion (mreg_eq a1 res); do r <- freg_of res; do r2 <- freg_of a2; OK (Paddd_ff r r2 :: k) | Osubf, a1 :: a2 :: nil => do x <- assertion (mreg_eq a1 res); do r <- freg_of res; do r2 <- freg_of a2; OK (Psubd_ff r r2 :: k) | Omulf, a1 :: a2 :: nil => do x <- assertion (mreg_eq a1 res); do r <- freg_of res; do r2 <- freg_of a2; OK (Pmuld_ff r r2 :: k) | Odivf, a1 :: a2 :: nil => do x <- assertion (mreg_eq a1 res); do r <- freg_of res; do r2 <- freg_of a2; OK (Pdivd_ff r r2 :: k) | Osingleoffloat, a1 :: nil => do r <- freg_of res; do r1 <- freg_of a1; OK (Pcvtsd2ss_ff r r1 :: k) | Ointoffloat, a1 :: nil => do r <- ireg_of res; do r1 <- freg_of a1; OK (Pcvttsd2si_rf r r1 :: k) | Ofloatofint, a1 :: nil => do r <- freg_of res; do r1 <- ireg_of a1; OK (Pcvtsi2sd_fr r r1 :: k) | Ocmp c, args => do r <- ireg_of res; transl_cond c args (Psetcc (testcond_for_condition c) r :: k) | _, _ => Error(msg "Asmgen.transl_op") end. (** Translation of memory loads and stores *) Definition transl_load (chunk: memory_chunk) (addr: addressing) (args: list mreg) (dest: mreg) (k: code) : res code := do am <- transl_addressing addr args; match chunk with | Mint8unsigned => do r <- ireg_of dest; OK(Pmovzb_rm r am :: k) | Mint8signed => do r <- ireg_of dest; OK(Pmovsb_rm r am :: k) | Mint16unsigned => do r <- ireg_of dest; OK(Pmovzw_rm r am :: k) | Mint16signed => do r <- ireg_of dest; OK(Pmovsw_rm r am :: k) | Mint32 => do r <- ireg_of dest; OK(Pmov_rm r am :: k) | Mfloat32 => do r <- freg_of dest; OK(Pcvtss2sd_fm r am :: k) | Mfloat64 => do r <- freg_of dest; OK(Pmovsd_fm r am :: k) end. Definition transl_store (chunk: memory_chunk) (addr: addressing) (args: list mreg) (src: mreg) (k: code) : res code := do am <- transl_addressing addr args; match chunk with | Mint8unsigned | Mint8signed => do r <- ireg_of src; mk_smallstore Pmovb_mr am r k | Mint16unsigned | Mint16signed => do r <- ireg_of src; OK(Pmovw_mr am r :: k) | Mint32 => do r <- ireg_of src; OK(Pmov_mr am r :: k) | Mfloat32 => do r <- freg_of src; OK(Pcvtsd2ss_mf am r :: k) | Mfloat64 => do r <- freg_of src; OK(Pmovsd_mf am r :: k) end. (** Translation of a Mach instruction. *) Definition transl_instr (f: Mach.function) (i: Mach.instruction) (edx_is_parent: bool) (k: code) := match i with | Mgetstack ofs ty dst => loadind ESP ofs ty dst k | Msetstack src ofs ty => storeind src ESP ofs ty k | Mgetparam ofs ty dst => if edx_is_parent then loadind EDX ofs ty dst k else (do k1 <- loadind EDX ofs ty dst k; loadind ESP f.(fn_link_ofs) Tint IT1 k1) | Mop op args res => transl_op op args res k | Mload chunk addr args dst => transl_load chunk addr args dst k | Mstore chunk addr args src => transl_store chunk addr args src k | Mcall sig (inl reg) => do r <- ireg_of reg; OK (Pcall_r r :: k) | Mcall sig (inr symb) => OK (Pcall_s symb :: k) | Mtailcall sig (inl reg) => do r <- ireg_of reg; OK (Pfreeframe f.(fn_stacksize) f.(fn_retaddr_ofs) f.(fn_link_ofs) :: Pjmp_r r :: k) | Mtailcall sig (inr symb) => OK (Pfreeframe f.(fn_stacksize) f.(fn_retaddr_ofs) f.(fn_link_ofs) :: Pjmp_s symb :: k) | Mlabel lbl => OK(Plabel lbl :: k) | Mgoto lbl => OK(Pjmp_l lbl :: k) | Mcond cond args lbl => transl_cond cond args (Pjcc (testcond_for_condition cond) lbl :: k) | Mjumptable arg tbl => do r <- ireg_of arg; OK (Pjmptbl r tbl :: k) | Mreturn => OK (Pfreeframe f.(fn_stacksize) f.(fn_retaddr_ofs) f.(fn_link_ofs) :: Pret :: k) | Mbuiltin ef args res => OK (Pbuiltin ef (List.map preg_of args) (preg_of res) :: k) end. (** Translation of a code sequence *) Definition edx_preserved (before: bool) (i: Mach.instruction) : bool := match i with | Msetstack src ofs ty => before | Mgetparam ofs ty dst => negb (mreg_eq dst IT1) | _ => false end. Fixpoint transl_code (f: Mach.function) (il: list Mach.instruction) (edx_is_parent: bool) := match il with | nil => OK nil | i1 :: il' => do k <- transl_code f il' (edx_preserved edx_is_parent i1); transl_instr f i1 edx_is_parent k end. (** Translation of a whole function. Note that we must check that the generated code contains less than [2^32] instructions, otherwise the offset part of the [PC] code pointer could wrap around, leading to incorrect executions. *) Definition transf_function (f: Mach.function) : res Asm.code := do c <- transl_code f f.(fn_code) true; if zlt (list_length_z c) Int.max_unsigned then OK (Pallocframe f.(fn_stacksize) f.(fn_retaddr_ofs) f.(fn_link_ofs) :: c) else Error (msg "code size exceeded"). Definition transf_fundef (f: Mach.fundef) : res Asm.fundef := transf_partial_fundef transf_function f. Definition transf_program (p: Mach.program) : res Asm.program := transform_partial_program transf_fundef p.