(** This file is part of the Flocq formalization of floating-point arithmetic in Coq: http://flocq.gforge.inria.fr/ Copyright (C) 2010-2013 Sylvie Boldo #
# Copyright (C) 2010-2013 Guillaume Melquiond This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the COPYING file for more details. *) (** * Basic definitions: float and rounding property *) Require Import Fcore_Raux. Section Def. (** Definition of a floating-point number *) Record float (beta : radix) := Float { Fnum : Z ; Fexp : Z }. Implicit Arguments Fnum [[beta]]. Implicit Arguments Fexp [[beta]]. Variable beta : radix. Definition F2R (f : float beta) := (Z2R (Fnum f) * bpow beta (Fexp f))%R. (** Requirements on a rounding mode *) Definition round_pred_total (P : R -> R -> Prop) := forall x, exists f, P x f. Definition round_pred_monotone (P : R -> R -> Prop) := forall x y f g, P x f -> P y g -> (x <= y)%R -> (f <= g)%R. Definition round_pred (P : R -> R -> Prop) := round_pred_total P /\ round_pred_monotone P. End Def. Implicit Arguments Fnum [[beta]]. Implicit Arguments Fexp [[beta]]. Implicit Arguments F2R [[beta]]. Section RND. (** property of being a round toward -inf *) Definition Rnd_DN_pt (F : R -> Prop) (x f : R) := F f /\ (f <= x)%R /\ forall g : R, F g -> (g <= x)%R -> (g <= f)%R. Definition Rnd_DN (F : R -> Prop) (rnd : R -> R) := forall x : R, Rnd_DN_pt F x (rnd x). (** property of being a round toward +inf *) Definition Rnd_UP_pt (F : R -> Prop) (x f : R) := F f /\ (x <= f)%R /\ forall g : R, F g -> (x <= g)%R -> (f <= g)%R. Definition Rnd_UP (F : R -> Prop) (rnd : R -> R) := forall x : R, Rnd_UP_pt F x (rnd x). (** property of being a round toward zero *) Definition Rnd_ZR_pt (F : R -> Prop) (x f : R) := ( (0 <= x)%R -> Rnd_DN_pt F x f ) /\ ( (x <= 0)%R -> Rnd_UP_pt F x f ). Definition Rnd_ZR (F : R -> Prop) (rnd : R -> R) := forall x : R, Rnd_ZR_pt F x (rnd x). (** property of being a round to nearest *) Definition Rnd_N_pt (F : R -> Prop) (x f : R) := F f /\ forall g : R, F g -> (Rabs (f - x) <= Rabs (g - x))%R. Definition Rnd_N (F : R -> Prop) (rnd : R -> R) := forall x : R, Rnd_N_pt F x (rnd x). Definition Rnd_NG_pt (F : R -> Prop) (P : R -> R -> Prop) (x f : R) := Rnd_N_pt F x f /\ ( P x f \/ forall f2 : R, Rnd_N_pt F x f2 -> f2 = f ). Definition Rnd_NG (F : R -> Prop) (P : R -> R -> Prop) (rnd : R -> R) := forall x : R, Rnd_NG_pt F P x (rnd x). Definition Rnd_NA_pt (F : R -> Prop) (x f : R) := Rnd_N_pt F x f /\ forall f2 : R, Rnd_N_pt F x f2 -> (Rabs f2 <= Rabs f)%R. Definition Rnd_NA (F : R -> Prop) (rnd : R -> R) := forall x : R, Rnd_NA_pt F x (rnd x). End RND.